An Introduction to Cancer Biology

Geoff Mitchell April 24, 2007

Learning Objectives

• The students will be able to:

- Identify the **3** most prevalent cancers for a person of their gender
- Define cancer
- Explain why cancer is a genetic disease even though its heritability is rather low
- Compare the functions of oncogenes and tumor suppressor genes
- Explain why tumor suppressors are often the 1st genes mutated in a developing cancer
- List the Six Hallmarks of Cancer
- Describe the advantages of using modern, targeted cancer therapies

US Mortality, 2003

Rank	Cause of Death		No. of deaths		
1.	Heart Diseases	685,089	2	8.0	
2.	Cancer	556,902	2	2.7	
3.	Cerebrovascular diseases	157,689	6	6.4	
4.	Chronic lower respiratory diseases	s 12	26,382	5.2	
5.	Accidents (Unintentional injuries)	1(09,277		4.5
6.	Diabetes mellitus	74,219	3.0		
7.	Influenza and pneumonia	65,163	2.7		
8.	Alzheimer disease	63,457	2.6		
1.	Nephritis	42,453	1.7		
10.	Septicemia	3	84,069 1	.4	

2006 Estimated US Cancer Cases*

		Men 720,280	Women 679,510		
Prostate	33%			31%	Breast
Lung & bronchus	13%			12%	Lung & bronchus
Colon & rectum	10%			11%	Colon & rectum
Urinary bladder	6%			6%	Uterine corpus
Melanoma of skin	5%			4%	Non-Hodgkin
Non-Hodgkin Iymphoma	4%			4%	lymphoma Melanoma of skin
Kidney	3%			3%	Thyroid
Oral cavity	3%			3%	Ovary
Leukemia	3%			2%	Urinary bladder
Pancreas	2%			2%	Pancreas
All Other Sites	18%			22%	All Other Sites

*Excludes basal and squamous cell skin cancers and in situ carcinomas except urinary bladder. Source: American Cancer Society, 2006.

2006 Estimated US Cancer Deaths*

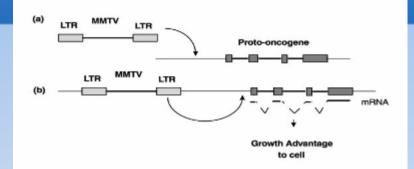
		Men	Women		
Lung & bronchus	31%	291,270	273,560	26%	Lung & bronchus
Colon & rectum	10%			15%	Breast
Prostate	9%			10%	Colon & rectum
Pancreas	6%			6%	Pancreas
Leukemia	4%			6%	Ovary
Liver & intrahepatic	4%			4%	Leukemia
bile duct Esophagus	4%			3%	Non-Hodgkin Iymphoma
Non-Hodgkin	3%			3%	Uterine corpus
lymphoma	00/			2%	Multiple myeloma
Urinary bladder	3%			2%	Brain/ONS
Kidney	3%			23%	All other sites
All other sites	23%			2070	

ONS=Other nervous system. Source: American Cancer Society, 2006.

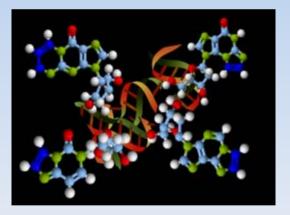
What is cancer?

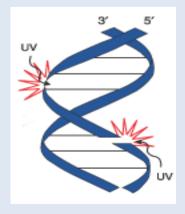
- Abnormal cell growth (neoplasia)
- Malignant as opposed to benign
 - **Benign:** slow growth, non-invasive, no metastasis
 - Malignant: rapid growth, invasive, potential for metastasis

Is cancer a heritable disease?


- There are heritable cancer syndromes
- The majority of cancers, however, are not familial
- Cancer is a genetic disease, but the majority of mutations that lead to cancer are **somatic**

What causes the mutations that lead to cancer?


- Viruses: HPV --> cervical cancer
- Bacteria: H. pylori --> gastric cancer
- Chemicals --> B[a]P --> lung cancer
- UV and ionizing radiation --> skin cancer


• What do these agents have in common?

Mutagens

• Viruses: insertional mutagenesis

• Chemicals: DNA adducts

• UV and ionizing radiation: single and double strand DNA breaks

What types of genes get mutated in cancer?

- Oncogenes are activated
 - Normal function: cell growth, gene transcription
- Tumor suppressor genes are inactivated
 - Normal function: DNA repair, cell cycle control, cell death

Phenotype of a cancer cell

The Six Hallmarks of Cancer

- Self-sufficient growth signals
 - Constitutively activated growth factor signalling
- Resistance to anti-growth signals
 - Inactivated cell cycle checkpoint
- Immortality
 - Inactivated cell death pathway

Phenotype of a cancer cell (cont'd)

The Six Hallmarks of Cancer

- Resistance to cell death
 - Activated anti- cell death signalling
- Sustained angiogenesis
 - Activated VEGF signalling
- Invasion and metastasis
 - Loss of cell-to-cell interactions, etc.

p53—a classic tumor suppressor

- "The guardian of the genome"
- Senses genomic damage
- Halts the cell cycle and initiates DNA repair
- If the DNA is irreparable, p53 will initiate the cell death process

Rb—a classic tumor suppressor

- Rb binds to a protein called E2F1
- E2F1 initiates the G1/S cell cycle transition
- When bound to Rb, E2F1 can't function
- Thus, Rb is a crucial cell cycle checkpoint

Tumor suppressors

- "Guardian(s) of the genome"
- Often involved in maintaining genomic integrity (DNA repair, chromosome segregation)
- Mutations in tumor suppressor genes lead to the "mutator phenotype"—mutation rates increase
- Often the 1st mutation in a developing cancer

Chromosomal Instability

Karyotype of a tumor cell

A highly abnormal complement of chromosomes (60 chromosomes instead of normal 46 chromosomes)

	2])	} {{			Ж	
21	111		IIIIII	N ^R	****	1131
ÍAC	12	***		8.38	83	-
88.6	86			-	6:8	2

HER2/neu—an oncogene

- A growth factor receptor
- 25-30% of breast cancers over-express HER2/neu
- Which hallmark of cancer does this lead to?
- Herceptin is used as a treatment

What can cancer therapies target?

- Classic cancer therapies target **rapidly dividing cells**
- Target the DNA
 - Ionizing radiation
 - Chemotherapy
- Many side effects
 - Hair loss
 - Weakened immune system
 - Problems with GI tract

What can cancer therapies target?

- A person's immune system will not target tumor cells because they appear to be "self"
- Some new therapies focus on activating one's immune system against a cancer

What can cancer therapies target?

- Modern, targeted therapies attack specific proteins that are abnormally expressed in a tumor
- May block over-expressed growth factor receptors --> Herceptin
- Generally, there are few side effects since these therapies are specifically targeted to cancer cells