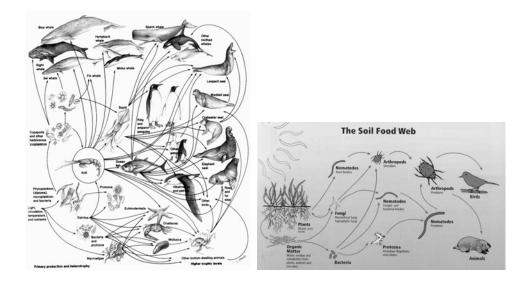
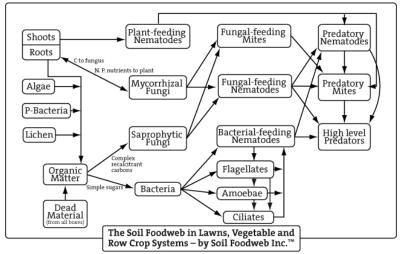
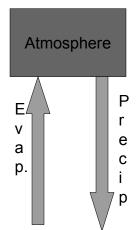

Energy flow in the ecosystem

Educational Goals


- History and fundamental concepts pertaining to energy flux in ecosystems
- Ecosystem Concept and thermodynamic underpinnings
- Primary production and its measurement, limiting factors, and global patterns
- Secondary Production
- Intratrophic transfers of energy
- Ecological efficiency


Background: Organizing Concepts

- Charles Elton 1920's revolutionary concept:
 - Organisms living in the same place have similar tolerances of physical factors AND
 - Feeding relationships link organisms


Food Webs

Conceptual Organization Focus on compartments and fluxes of energy and materials

A Simple Compartment Example

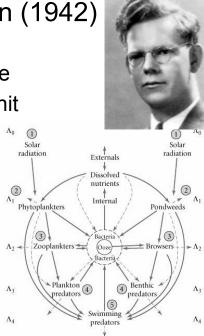
- Pool size
- Flux rate (input = output)
- Residence Time
- Turnover Rate

Ecosystem Concept

- A.G. Tansley (1935) built on Elton's
- · Coined the word "ecosystem"

A.J. Lotka and Thermodynamics

The ecosystem as an energy-transforming machine:


 Set of equations representing exchanged of matter and energy

First law of thermodynamics

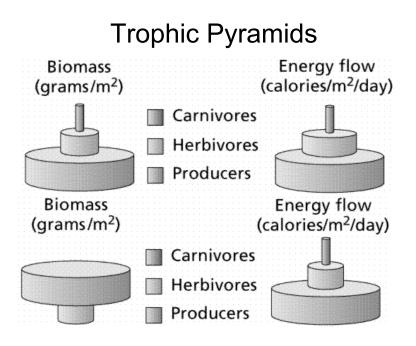
Second Law of Thermodynamics

Synthesis – Lindeman (1942)

- Elton food web structure
- Tansley fundamental unit
- · Lotka thermodynamics Λ_0

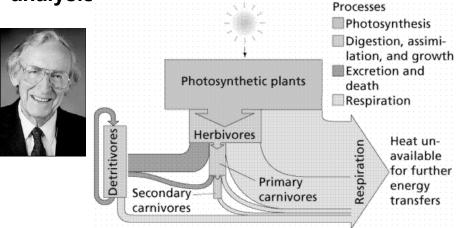
 Λ_3

 Λ_4


Lindeman's Foundations of Ecosystem Ecology

- The **ecosystem** is the fundamental unit of ecology.
- Food chain
- Trophic level
- Pyramid of energy

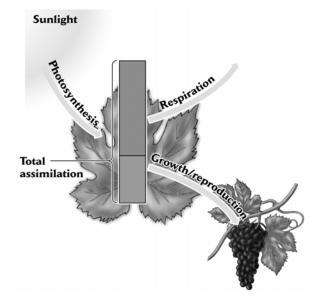
Trophic Structure


Functional Classification:

- **Producers** (autotrophs)
- Reducers (heterotrophs)

Odum's Energy Flux Model

 Used energy as currency in compartment analysis

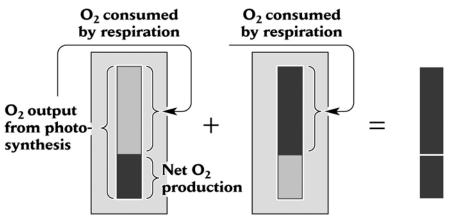

Primary Production

- Primary producers capture light and transform it to energy
 - $-6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$
 - for each g of C assimilated, 39 kJ energy stored

Components of Primary Production

- gross primary production
- net primary production
- gross net = respiration

Components of Primary Production

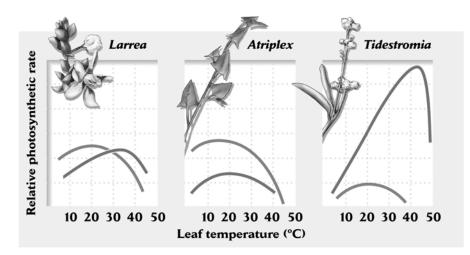


Measurement of Primary Production

- harvest techniques
- gas exchange techniques
- Radioactive carbon (¹⁴C) may also determine net uptake of carbon by plants

Application of Odum's Approach

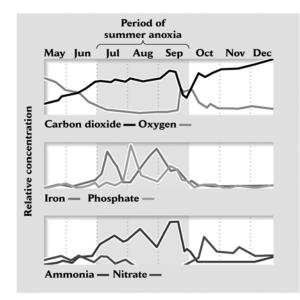
Gas Exchange in Aquatic Systems



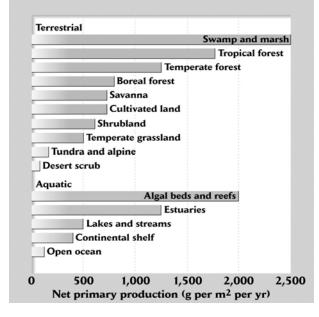
Algal suspension

Limits to primary productivity?

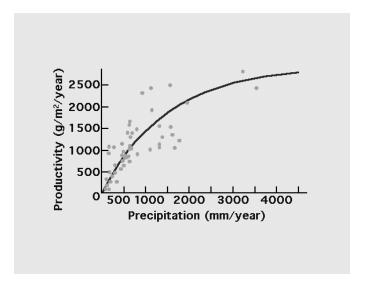
- Photosynthetic efficiency 1-2%
- Limits:
 - Light
 - Temperature
 - Water
 - Nutrients


Photosynthesis and Temperature

Water limits primary productivity

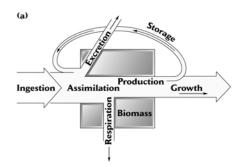

Nutrients stimulate primary production

- Terrestrial systems may be nutrient limited
- Aquatic systems often strongly nutrient limited

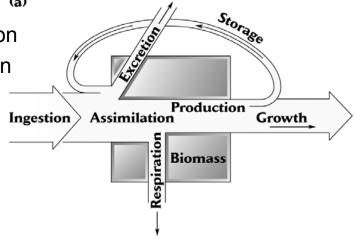


Primary Production varies among ecosystems

Global Primary Productivity


Global Productivity

More terminology.....


- Herbivore, carnivore, omnivore
- Trophic link
- Decomposers

Ecological Efficiency

- Ingestion
- Egestion
- Assimilation
- Excretion (a)
- Respiration
- Production

Fundamental Energy Relationships

Limits to Secondary Production?

Correlated with Primary Production

• Biotic interactions - Predation, etc.

Net Ecosystem Production

Is there anything left over?

Ecosystems support two parallel food chains

- herbivore-based (relatively large animals feed on leaves, fruits, seeds)
- **detritus-based** (microorganisms and small animals consume dead remains of plants and indigestible excreta of herbivores)
- herbivores consume:
 - 1.5-2.5% of net primary production in temperate forests
 - 12% in old-field habitats
 - 60-99% in plankton communities

Energy moves through ecosystems at different rates.

Indices of energy cycling speeds

residence time

Energy moves through ecosystems at different rates.

Indices of energy cycling speeds – biomass accumulation ratio

Ecosystem Energetics

Compare systems with different inputs:

- Autochthonous produced within the system
- Allochthonous produced outside the system

Biomass Accumulation Ratios

- Become larger as amount of stored energy increases:
 - humid tropical forests have net production of 1.8 kg/m²/yr and biomass of 43 kg/m² = 23yr
 - forested terrestrial communities >20 yr
 - planktonic aquatic ecosystems <20 days

Residence Time for Litter

• Decomposition of litter is dependent on

Residence time

humid tropics	–3 mos
dry and montane tropics	–1-2 yr
southeastern US	–4-16 yr
boreal ecosystems	–>100 yr

Stream study.....

- Assimilation of energy by herbivores indicates subsidy
 - autochthonous
 - allochthonous