Evolution of altruism

Altruism

- behavior that benefits a receiver at a cost to the actor

Examples:

- · Honey bee sting
- Alarm calls
- Blood sharing by bats

Evolution of altruism

Mutualism vs. altruism

Cooperation:

Displaying a behavior that benefits another individual. (If both benefit that's mutualism.)

Altrusim:

Displaying a behavior that benefits another individual at a cost to oneself.

'Social behavior' is NOT cooperative behavior

Group living vs. cooperation

Sociality-nocooperation and cooperationno-sociality

I define 'sociality' as living with other individuals of the same species at least semi-permanently.

Evolution of altruism

How can altruism evolve?

• If the recipient of the cooperative/altruistic act benefits, it is going to leave more offspring.

• The actor however is not going to leave more offspring, or even fewer offspring – fewer altruists in the next generation.

If such behavior is heritable, and it goes on over many generations, it will ultimately

die out.

Evolution of altruism

Selfish altruism?

If altruism was ultimately costly to reproduction, it would disappear in evolution.

- <u>Altruism can occur at the level of</u> <u>individuals, but if we see it today, we</u> <u>have to assume that it benefits</u> <u>reproduction at some level in the long</u> <u>run (of genes, individual, or group).</u> Evolution of altruism

Evolution of altruism

Helping somebody at a cost to yourself - where are the hidden benefits?

- Group selection rare, only if long-term assortment maintained
- · Kin-selection yes, if helping relative
- Sexual selection yes, if mating benefits
- Reciprocal altruism yes, if reciprocation likely and enforced
- Status yes, if indirect benefits

Kin selection

Kin-selection

Helping relatives increases your 'inclusive fitness':

Inclusive fitness: your own offspring ('fitness') plus your genes reproduced in others.

Kin selection

'r'

Kin-selection

Helping relatives increases your 'inclusive fitness' therefore means: The more of your genes are in a relative, the more interest you have in helping them.

Kin selection **Kin-selection** Helping relatives increases your 'inclusive fitness' therefore means: The more of your genes are in a relative, the more interest you have in helping them.

This is measured by r ('relatedness')

Relatedness 'r'

(also called coefficient of relationship)

Usually defined as:

The average proportion of alleles of an individual A that are identical by descent to those in individual B.

Or, the probability that A and B carry the same allele, derived from the same ancestor, at a particular locus.

'r' **Kin-selection** This means, if you sacrifice yourself for four nieces, 'your genes' have lost nothing.

Evolution of altruism

Kin-selection

Hamilton's rule:

An individual can be altruistic if

c b*r

The cost should be smaller than the benefit multiplied by relatedness.E.g. an individual may not reproduce in a given year

(c=1) to help its sibling (r=0.5) if this helps the sibling raise at least two additional offspring (b=2).

Computing relatedness

Relatedness can thus be computed using a family tree ('pedigree'). 'r'

Relatedness 'r'

However, the definition that really reflects the 'r' in Hamilton's rule is:

r is a measure stating how genetically similar the two individuals are relative to two random members of the population. This is on average the same as r calcutated by pedigree only in a large, randomly mating, outbred population. (Essentially, when inbreeding=0)

Relatedness as measure of genetic similarity

Essentially 'r' is similar to measures of population structure (such as the inbreeding coefficient F). F = (expected - observed)/expectedfrequency of heterozygotes in a population

r = (expected – observed)/expected
number of differing alleles between two
individuals

Evolution of altruism

'r'

Kin-selection

When it is demonstrated that individuals preferentially help kin rather than non-kin, this is taken as evidence for kin-selection. Evolution of altruism

'r'

Kin-selection

Examples for kin-selection:

- social insects
- prairie dog alarm calls to offspring & other relatives
- generally parental care
- cells in our body

Mechanisms of kin selection

Kin-recognition

Do individuals have to be able to

recognize relatives for kin selection to work?

Mechanisms of kin selection

Kin-recognition

NO - kin selection can operate,

and cause the evolution of altruism, as long as altruists are more likely to help kin than non-kin - for whatever reason.

Mechanisms of kin selection

Inclusive fitness theory vs. kin selection

In fact, that's why some argue that it should be called 'inclusive fitness theory' rather than 'kin selection' -

Altruism can evolve as long as altruists are more likely than chance to dispense help to other altruists.

(see John's recent model on segregation)

(chimpanzees, humans)

Kin selection in eusocial insects The case of social insects · Eusociality: some individuals sterile • Evolved > 10 times in Hymenoptera (haplodiploid)

 All members of a colony are usually highly related

Kin selection in eusocial insects Does haplodiploidy cause eusociality? However, workers are only related to

- М Q 0.5 0.5 м 0.25
- males by r=0.25 (less than to daughters) - thus average relatedness to reproductive offspring is still 0.5 (depending on sex ratio)
- Actual relatednesses measured in insect colonies are almost never 0.75 (multiple queens, polygamy)
- Recently more eusocial species without haplodiploidy have been discovered; and many haplodiploid species are not social

Kin selection in eusocial insects

Alternative hypotheses for the origin of eusociality

- Parental manipulation
- Predisposition to sociality because of high b/c ratio (underground nests, extended brood care)
- Group selection

Kin selection in eusocial insects

Wilson & Hölldobler 2005

Kin selection in eusocial insects

Wilson & Hölldobler 2005

- Superiority of colony life over solitary life (b may be much greater than c)
- Euociality arose among unrelated individuals first; then relatedness increased
- In many species nests are founded by unrelated individuals
- Real-existing relatedness low and counterproductive (?)
- Eusociality rare even in highly related groups

Kin selection in eusocial insects

Conclusions from the controversy

- · Haplodiploidy is not crucial to evolution of eusociality
- Ecological factors (high b/c) explain most of the variation between species in sociality
- Controversy arises over the definition of 'r' relatedness by pedigree or measure of genetic similarity?
- Complete worker sterility can only arise with positive r, whether by kinship or other segregation mechanisms
- However, many social insects do not actually have complete worker sterility

What you should remember (I)

Kin-selection

Hamilton' s rule: c b * r

- In a sense, kin selection is selection at the level of genes
- A behavior that is altruistic at the level of an individual could increase the representation of those genes in the next generation (increase inclusive fitness)
- Only works if altruism dispensed to genetically similar individuals

What you should remember (II)

Kin-selection

Hamilton equation: c b * r

- If studying the evolution of altruism, c and b are important!
- r should ideally be calculated as similarity relative to population variance
- If this is done, maybe it should better be called 'inclusive fitness theory'

Parental care & kin selection

Parental care – cooperation & conflict

- How is kin selection relevant to parental care?
- What predictions does kin selection make about parental care?

Kin selection or not?

Human altruism

• Is altruism in humans explained by kin selection?