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The advent of functional genomics has enabled the
molecular biosciences to come a long way towards
characterizing the molecular constituents of life. Yet,
the challenge for biology overall is to understand how
organisms function. By discovering how function arises
in dynamic interactions, systems biology addresses the
missing links between molecules and physiology. Top-
down systems biology identifies molecular interaction
networks on the basis of correlated molecular behavior
observed in genome-wide ‘omics’ studies. Bottom-up
systems biology examines the mechanisms through
which functional properties arise in the interactions of
known components. Here, we outline the challenges
faced by systems biology and discuss limitations of
the top-down and bottom-up approaches, which,
despite these limitations, have already led to the dis-
covery of mechanisms and principles that underlie cell
function.

Early beginnings: molecular biosciences and systems
sciences
The successes of the molecular biosciences – boosted by
bioinformatics, genome-sequencing and high-throughput
genome-wide experimentation (‘omics’) – have led to some
characterization of most components of an appreciable
number of organisms. This success has shifted the focus
of research from molecules to networks [1]. Molecular
bioscience studies molecules one by one with the aim of
elucidating how molecules work, not to predict the con-
sequences of particular biological mechanisms for the
organism as a whole [2,3]. In characterizing the molecular
basis of life, the molecular biosciences have become one of
the most successful branches of science of the previous
century, culminating in determination of the human gen-
ome sequence in 2001 [4,5]. However, the function of living
organisms cannot be addressed satisfactorily by looking at
molecules alone, not even if all molecules are studied. Such
studies would not elucidate supramolecular functional
properties such as the cell cycle, metabolic steady states
and cell (dys-) function. They would not enable the under-
standing of multifactorial diseases nor would they
empower white (industrial) and green (agricultural) bio-
technology. To address the function and dysfunction of
organisms, a systems approach is needed.

Until recently, systems analysis was not part of main-
stream bioscience; most of the technology required for
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systems-level analysis of organisms was not yet available,
mathematical equations were not used in molecular biol-
ogy journals and experimental biologywas frowned upon in
the mathematical literature. In the past, other sciences
developed systems perspectives, for example: (i) the devel-
opment of nonlinear dynamical systems theory (bifurcation
and chaos) in mathematics; (ii) understanding stochastic
phenomena and self-organization using non-equilibrium
thermodynamics and statistical physics; (iii) the use of
biophysics and biochemistry in understanding cooperative
enzyme kinetics, motor proteins and ion channels; and (iv)
the use of engineering to develop control theory, system
identification and metabolic engineering [6]. Systems per-
spectives taken in biology were mostly limited to ecology.

Systems biology approaches did not connect to the more
rapidly expanding experimental molecular biosciences,
largely because of the lack of sufficient quantitative mole-
cular data. Worthwhile exceptions were developments in
metabolic control analysis [7], biochemical systems theory
[8], kinetic modeling (of metabolism and genetic circuitry)
[9–11] and mechanistic non-equilibrium thermodynamics
[12], with genomics, bioinformatics and metabolic engi-
neering [6] all considered among the roots of systems
biology [13].

The molecular biosciences deliver lots of data that
require systems approaches to understand their implica-
tions for cell function. The more systems-oriented sciences
avail of several systems approaches that have worked well
for inanimate systems. Not all molecular bioscientists are
familiar with current mathematical methods, nor are all
mathematicians aware of acceptable biological mechan-
isms. Of course, implementation of mathematics to large
datasets will deliver results that might look remarkable
enough to be published. However, unless the systems
biology is carried out correctly, it might not deliver an
understanding of cell function that is based on molecular
interactions. Therefore, in this review, we outline the
challenges faced by systems biology and discuss two
approaches that are helping to address such challenges:
top-down and bottom-up systems biology. We outline the
limitations of these approaches but also describe how they
have already led to discoveries concerning themechanisms
and principles that underlie cell function.
Challenges faced by systems biology
The complete sequencing of the genome of an organism or
the determination of the crystal structures of all of its
proteins might constitute the biology of that system, and
ed. doi:10.1016/j.tim.2006.11.003
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Figure 1. Diagram portraying the top-down and bottom-up approach to systems

biology. The molecular properties, deriving from experiments carried out in the

molecular biosciences and from bioinformatics, lie at the basis of the construction

of various network descriptions (models). Three types of models that are often

applied in systems biology are shown. Bottom-up systems biology starts with the

molecular properties to construct models to predict systemic properties followed

by experimental validation and model refinement. By contrast, top-down systems

biology is systemic-data driven. It starts with experimental data to discover or

refine pre-existing models that describe the measured data successfully. In this

way, previously unidentified interactions, mechanisms and molecules can be

identified. Contemporary bottom-up systems biology often considers kinetic

models whereas top-down systems biology predominantly typically focuses on

regulatory models to analyze data. Molecular species such as enzymes,

transcription factors or metabolites are shown as colored shapes. Reactions are

displayed as full arrows. Dashed arrows depict regulatory influences (e.g.

inhibitory allosteric feedback interactions).
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the processing of the data can require lots of mathematics.
However, this does not contribute much to understanding
how the interactions of the individual components lead to
function and, thus, it does not constitute systems biology. A
complete systems biological approach requires: (i) a (com-
plete) characterization of an organism in terms of what its
molecular constituents are, with which molecules they
interact, and how these interactions lead to cell function;
(ii) a spatio–temporal molecular characterization of a cell
(e.g. component dynamics, compartmentalization, vesicle
transport); and (iii) a thorough systems analysis of the
‘molecular response’ of a cell to external and internal
perturbations. In addition, information from (i) and (ii)
must be integrated into mathematical models to enable
knowledge-testing by formulating predictions (hypoth-
eses), the discovery of new biological mechanisms, calcula-
tion of the system behavior obtained under (iii), and finally,
development of rational strategies for control and manip-
ulation of cells. To accomplish all of these challenges,
systems biology must integrate methods and approaches
developed in other disciplines, which did not previously
interface much with each other.

Microbiology: the haven of systems biology
The sheer number of unknown components of organisms
made the falsification or verification of hypotheses in vivo
virtually impossible. Functional genomics now enables the
experimental analysis of complete sets of molecules at the
mRNA level. In multicellular organisms, however, average
expression levels are determined over various cell types.
Moreover, the number of proteins in most multicellular
organisms is so large that their identification through
proteomics is still incomplete. Accordingly, notwithstand-
ing the pressure towards human systems, systems biology
should now be ready to prove itself in microbiology or with
well-defined cultures of mammalian cells.

Top-down systems biology
With the introduction of the ‘omics’, the top-down approach
emerged as a new and dominant method. It starts from a
bird’s eye view of the behavior of the system – from the top
or the whole – by measuring genome-wide experimental
data, and aims to discover and characterize biological
mechanisms closer to the bottom – that is, the parts and
their interactions (Figure 1). In this ‘top-down’ systems
biology, the main objective is to discover new molecular
mechanisms using an iterative cycle that starts with
experimental data, followed by data analysis and data
integration to determine correlations between concentra-
tions of molecules, and ends with the formulation of
hypotheses concerning co- and inter-regulation of groups
of those molecules. These hypotheses then predict new
correlations, which can be tested in new rounds of experi-
ments or by further biochemical analyses. The major
strengths of top-down systems biology are that it is poten-
tially complete (i.e. genome-wide) and that it addresses the
metabolome, fluxome, transcriptome and/or proteome [13]
(Figure 1).

Any top-down systems biology study is faced with large
experimental datasets (typically thousands of data points
[14]) for a single organism subjected to a few perturbations.
www.sciencedirect.com
These perturbations can be genetic (e.g. resulting from one
ormoremutations or protein overexpression), environmen-
tal (e.g. changes in nutrients, growth factors or stress
levels) or induced by RNA interference, by intrinsic
dynamics such as the cell cycle, or by the administration
of drugs. These studies aim to obtain a large enough view of
system behavior to enable the discovery of behavioral
patterns that are sufficiently generic to have predictive
power about biological mechanisms present in the system
[15–17], and to discover functionally related processes
(modules) that might be under the control of a common
set of transcription factors [18–20]. However, no matter
how large the dataset, it remains difficult to bring about
the large number of truly independent perturbations that
are needed to disentangle the many mechanisms that
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operate in living cells; the claims of the published studies
can seem impressive but they cannot reveal more than the
tip of the iceberg.

Most top-down systems biology uses differentmodels at
different phases of the characterization of the system. In
the early stages, the experiments aim to discover the
identity of the components, the model being that compo-
nents correspond to DNA sequences. In the phase inwhich
occurrences or concentrations of the identified compo-
nents are correlated, mathematical models of sets of lin-
early dependent and independent variables can motivate
principal component analysis, or Bayesian models can
produce regulatory trees. The results suggest dependen-
cies that guide new experiments, which leads to the dis-
covery of new proposed interactions and mechanisms in a
further iteration (for an example, see Ref. [21]). This
iterative process can even be accomplished computation-
ally [22].

The models used in top-down systems biology are phe-
nomenological – that is, they are not based on mechanisms
and, mostly, they do not even employ knowledge about
relationships between molecular components. It should be
noted that correlations are mapped onto virtual mechan-
isms, which might well describe the correlations but, none-
theless, can still be far from reality. This type of systems
biology is mostly undertaken with cellular (sub-) systems
that have not yet been characterized to a high level of
mechanistic detail and in which much remains to be dis-
covered (e.g. elucidation of protein–protein interaction
networks or genetic networks). The approach is useful
but only if its pitfalls are appreciated. One example is
the use of Bayesian networks (which assume the absence
of feedback) for those biological regulatory networks that
are known to abound in feedback.

A second example is the frequent description of cellular
regulation only in terms of gene networks, although it is
clear that proteins, signal transduction and metabolism
are involved in this regulation in addition to mRNAs [23].
The ‘integrative’ studies of ‘-omics’ datasets that simulta-
neously measure transcriptomic, proteomic and fluxomic
data address this issue properly but offer major challenges
to data analysis [21,24–26]. One obtains ‘vertical genomics’
in which the change in the rate of a process can be traced
back quantitatively to the various underlying causes (i.e.
changes in the levels of its substrates, products, effectors,
enzyme and mRNA) [26–30]. Such developments offer a
new approach to cell biology by studying the extent to
which various regulatory routes inside the networks of
organisms contribute simultaneously to a particular beha-
vior. In the study of adaptive responses of cells, consider-
able potential is seen for the application of methods
derived in control theory in combination with detailed
kinetic models of the associated networks [31–35].

Top-down systems biology concerns the identification of
the structure of the molecular network that underlies
system behavior, that is, ‘reverse engineering’ from system
data alone. This can concern the ‘real’ mechanistic struc-
ture, a phenomenological structure such as a gene network
(see earlier) [23,36,37] or merely the determination of the
values of its parameters [38,39]. Proposed interaction
structures of, for example, protein–protein interactions
www.sciencedirect.com
or gene networks can be tested by direct experimental
measurement provided the proposal is explicit enough to
mention proteins as the modes in the network [40–42]. The
issue of how to choose the most informative experiments
impinges on experimental design, standardization and
system identification [17,43].

Bottom-up systems biology
In this article, systems biology is described as it has
developed, in the perspective of what is needed to under-
stand the functioning of living organisms in terms of
molecular interactions. Whereas top-down systems biology
gives insights through induction, bottom-up systems biol-
ogy deduces the functional properties that could emerge
from a subsystem that has been characterized to a high
level of mechanistic detail using molecular methods. Bot-
tom-up systems biology starts from the bottom (the con-
stitutive parts) by formulating the interactive behavior
(rate equation) of each component process (e.g. enzymatic
process) of a manageable part of the system. It then
integrates these formulations to predict system behavior.
The ultimate aim of this approach is to combine the path-
way models into a model for the entire system level – the
top or the whole (Figure 1). As research and understanding
progresses, such models are typically enlarged by the
incorporation of more processes at high mechanistic detail.
Examples of this approach include the series of combined
modeling and experimental papers by Kholodenko and co-
workers concerning the signaling network downstream of
the epidermal growth factor receptor [44–47], and the
modeling of central carbon metabolism in Escherichia coli
[48–50] and Trypanosome brucei [51–53] (Box 1).

Bottom-up systems biology studies rely on: (i) experi-
mental studies that determine the kinetic and physico-
chemical properties of the components (e.g. enzyme
kinetics, diffusion properties) either by studying enzymes
in isolation or by using parameter estimation strategies;
(ii) data concerning responses of the subsystem to pertur-
bations while it is in the context of the cell; (iii) the
construction of detailed models to calculate the data from
(ii) (for model validation and improvement) and to improve
experimental design; and (iv) the development of tools for
model analysis and representation. These models are
mechanism-based rather than phenomenological.

The determination of kinetic parameters using para-
meter estimation strategies [38,39] suffers from an inher-
ent risk. Because the kinetic models are often simplified, a
parameter estimation strategy would not yield the ‘true’
kinetic parameters. As soon as the model is enlarged and
the same data are again used for parameter estimation, the
parameters will assume different values. In addition, gaps
in our knowledge can be missed by falsely fitting them to a
model (‘fitted away’). However, in some cases (e.g. for
eukaryotic signaling and eukaryotic gene expression), it
is extremely difficult – if not impossible – to measure
kinetic parameters in vitro, which leaves parameter esti-
mation as the only option. One possibility to overcome this
problem would be the development of technology to mea-
sure enzyme kinetics in vivo. Such an approach is now
more feasible since the development of high-resolution
imaging techniques.



Box 1. Models in systems biology

Various models are used in systems biology. Bottom-up systems

biology is mostly concerned with kinetic models whereas top-down

systems biology often considers structural or regulatory models.

These three types of models are distinguished on the basis of the

resources required to construct them and are compared in Table I.

Table I. Three different types of model used in systems
biologya

Models Structural Kinetic

Stoichiometric Regulatory

Model input

Reaction stoichiometryb + + +

Effectors of reactionsc � + +

Kinetic mechanismsd � � +

Model output

Steady-state fluxes +e +f +g

Steady-state concentrations � � +

Modules, motifs, small world + + +

Control coefficients (MCA) � +h +i

Dynamic rates of reactions � � +

Dynamic concentrations � � +
aAbbreviations: MCA, metabolic control analysis; +, incorporated in model; �,

not incorporated in model.
bReaction stoichiometry (e.g. hexokinase: glucose + ATP$ glucose-6P + ADP).
cEffectors of reactions (e.g. AMP is an activator of phosphofructokinase).
dReaction mechanism. For example, for hexokinase:

VHK ¼
VMAX ;HK

GLC½ � ATP½ �
KM;GLCKM;ATP

1� ½G6P�½ADP�
½GLC�½ATP�KEQ;HK

� �

1þ ½GLC�
KM;GLC

þ ½G6P�
KM;G6P

� �
1þ ½ATP�

KM;ATP
þ ½ADP�

KM;ADP

� �

eWith flux balance analysis, an optimal flux distribution can be calculated

provided that an optimality criterion is supplied [67].
fBy application of flux balance analysis (the effector interactions are now

redundant information).
gThe numerical values of the fluxes can be calculated without use of optimality

criteria.
hQualitative distribution of control can be determined for particular systems

[71].
iQuantitative distribution of control can be calculated.
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One approach to bottom-up systems biology is the sili-
con cell program (http://www.siliconcell.net) [54]. In this
program, the explicit aim is to make computer replicas of
actual pathways, including the experimentally determined
properties of all the molecular components [55]. Systems
behavior is not fitted but calculated. If the calculated
behavior does not correspond to experimentally observed
system behavior, then this is seen as a falsification of the
proposed silicon cell model and is not ‘fitted away’. The
silicon cell program is the combined effort of a global
consortium of groups that construct precise biological
models. After reviewing by associated journals, the models
are made available through the web-based model JWS
online, which enables online in silico experimentation such
as the overexpression of an enzyme in the pathway to see
whether that should increase productivity. JWS online is
not about software development: its aim is to provide real
precise models that are inclusive of the experimentally
determined parameter values and that have been refereed
by collaborating scientific journals. JWS is unique in that
online experiments can be carried out without any knowl-
edge of computer programming. Several other model data-
bases now exist but they require downloading and the
integration of models and modeling software.

Although all bottom-up systems biology studies have a
common aim to obtain mechanism-based descriptions of
subsystems of organisms, they often differ in the resources
www.sciencedirect.com
they use for model building (Box 1). Typically, the model
structure is taken to reflect the ‘real’ stoichiometric struc-
ture and the structure of allosteric regulation accurately.
However, whereas some modeling studies put experimen-
tal effort into precisely determining the kinetic parameters
and enzyme mechanisms for the organism they are study-
ing, others might take that information from the literature
or fit kinetic parameters to simplified catalytic mechan-
isms. Thus, some bottom-up studies can be more accurate
than others.

General principles of system behavior
Many efforts in biology are inspired by the observation that
different species have many systemic properties and mole-
cular mechanisms in common. This might be the result of
ancestral relationships, convergent evolution, comparable
evolutionary constraints (implicit in the organization of
organisms and their niches) or the general character of
evolutionary dynamics. Such interspecies commonalities
lead to general principles that offer predictive power and a
fundamental understanding of living systems that trans-
cends single species. This has already resulted in exciting
developments in the analysis of genomes and protein
structures by bioinformatics.

One success story of systems biology is the general
principles that have already been discovered; metabolic
and hierarchical control analysis [7,12,56–58] and bio-
chemical systems theory [8] were among the systems
approaches that led to the discovery of such principles.
These include the fact that the control of a function need
not reside in a single ‘rate-limiting’ step but can be dis-
tributed over network components, provided that the sum
of control equals 1 for the control of flux, zero for the control
of transient concentrations, and minus 1 for duration, area
under the curve and frequency [33,59,60]. Likewise, meta-
bolic and gene-expression regulation must sum to 1 [61].
Distribution of control over gene expression and metabolic
levels has been documented quantitatively for DNA super-
coiling in E. coli [58]. Control is the system inverse of the
interaction properties of the molecular components. All
these principles lead to invariant relationships between
network structure and control properties that transcend
single species and, in this respect, they resemble the laws
of physics. Many biological networks share structural
characteristics with each other but also with networks of
a non-biological origin: for example, a small-world and
modular organization [1] and bow-tie organization [62].
Similar principles underlie the robustness of networks to
intrinsic fluctuations and external perturbations
[12,63,64]. Analyses of the fluctuations are especially excit-
ing because they combine single-cell experimentation with
theory and modeling [65,66]. The analysis of flux distribu-
tions through metabolic networks within the framework of
‘constrained-based modeling’ is an example of a popular
(predominantly) theoretical framework for the analysis of
certain general properties of molecular networks [67].
Other studies focus on the modular organization of net-
works [68] or the presence of network motifs [69]. It seems
that this aspect of systems biology could lead to the devel-
opment of appreciable fundamental insights into the prin-
ciples that underlie biology.

http://www.siliconcell.net/
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Concluding remarks and future perspectives: challenges
for systems biology
Systems biological studies on ill-characterized cellular
(sub-) systems frequently take the form of top-down sys-
tems biology to identify correlations between the various
variables of the systems. These are then formulated in
terms of empirical relations between properties. This
rarely (if at all) leads to the formulation of relations
between properties in terms of molecular mechanisms.
Although the emphasis formally lies on inductive discovery
science, such discoveries rarely lead to molecular knowl-
edge. We feel that these studies must either transform into
or associate with the more mechanism-based systems biol-
ogy associated with bottom-up systems biology. Given the
scale of its daunting tasks, systems biology is still in its
infancy, and it is important that it is done correctly to
ensure meaningful results and to avoid ending up with
another type of ‘stamp collecting’.

Likewise, bottom-up systems biology should be kept to
its proper mission. The aim should not merely be to see
whether certain molecular interactions might cause a
functional phenomenon – it is crucial that a phenomenon
is actually demonstrated to occur. Therefore, much effort
needs to go into the experimental determination of the
actual interaction parameters and in the corresponding
precisemodeling. It should then be realized that bottom-up
systems biology cannot tolerate possible unknown factors
and, hence, will need to integrate with top-down, genome-
wide systems biology to ensure completeness.

Furthermore, one should not forget that systems biology
is a science and, hence, should discover generic principles.
Consequently, silicon cells should not be seen as an aim but
as a tool that can help to discover such general principles.
In addition, systems biology should not be limited to find-
ing principles of metabolic networks without taking gene-
expression regulation into account, nor should it project
the entire cell biology onto ‘gene networks’. Principles that
relate to all the dimensions of cellular organization should
be discovered.

It seems that systems biology is here to stay just as
much as molecular biology. The combination of synergistic
application and further development of quantitative
experimentation, modeling and theory is a promising
approach that will bring biology to the next systems level.
Further innovations include synthetic biology, which
focuses on the experimental synthesis of pathways pre-
dicted by systems biology to exhibit new, exciting and
useful properties (see Ref. [70] for an example).
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