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Can temporal environmental variability lead to coexistence of competing
species? Conclusions from equilibrium theory tend to say no (May 1973, 1974«,
1974¢). These conclusions are based on analysis of linearized versions of the
Lotka-Volterra competition equations. The intuition behind the analysis can be
paraphrased as: For two species to coexist there must be a stable equilibrium with
both species present in positive numbers. Environmental variability prevents
species numbers from 1emaining at equilibrium—the greater the variability the
further from equilibrium these numbers can get and the greater the chance that
one or more species will become extinct.

Hutchinson (1961) takes a different view: A stable equilibrium with all species
present in positive numbers is not a prerequisite for coexistence provided envi-
ronmental change is sufficiently frequent to change the order of competitive
superiority before extinction of any species can occur. In this view environmental
variability keeps species abundances away from equilibria in which one or more
species are extinct. From both points of view environmental variability acts by
keeping abundances away from equilibria. However, the equilibria are of different
kinds and the role of environmental variability in maintaining species diversity is
reversed.

In this paper we examine these two different points of view in relation to a
model of competition for space in a lottery system. In its simplest form a lottery
system requires that the available space is divided up randomly among the new
recruits to the competing populations. Sale (1977, 1978) suggests that this kind of
process might be operating in communities of coral reef fishes in which the species
involved are generalists who have widely dispersing larvae and tenaciously ter-
ritorial adults.

Sale argues that local diversity is maintained by random allocation of space. We
agree that local diversity can be maintained in this way provided diversity is
maintained on the large scale; but is random allocation of space sufficient to
maintain diversity on the large scale? To explain large-scale maintenance of
diversity Sale seems to rely again on random allocation of space, as it becomes
available in an unpredictable fashion in both time and space. To aid this explana-
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tion he observes that commercial fisheries statistics show little relationship be-
tween stock and recruitment to a fishery (but see Cushing 1975). As pointed out by
S. Levin (in Sale 1978, discussion), this latter observation is not an explanation for
species diversity, it is simply a possible outcome of the maintenance of species
diversity at the larval level.

A number of alternative suggestions for the maintenance of diversity in com-
munities of coral reef fishes have since appeared. Dale (1978) has suggested a
mechanism for maintenance of large-scale diversity that relies on different species
having exclusive habitats where only they survive—a possibility not allowed for
by Sale.

Anderson et al. (1981) question whether larval dispersal is a major factor in
these communities and they point to microhabitat and food specialization as a
possible alternative explanation for coexistence.

Our enquiry is not concerned with alternative explanations for coexistence, but
with the validity of the claim that random allocation of space can maintain species
diversity. Important considerations in our study are the effects of temporal envi-
ronmental variability and overlapping generations. In our models we assume no
microhabitat specialization or resource partitioning, but we do allow for differ-
ences between species in birth rates, death rates, and abilities of finding and
securing space.

MODELS FOR LOTTERY SYSTEMS

The essential features of Sale’s lottery system can be stated as follows.

1. Larvae establish territories in suitable places on the coral reef. An individual
holds its territory for the rest of its life. Individuals that do not establish territories
do not survive to reproductive age.

2. Space is limiting: There are always far more larvae trying to establish
territories than the available space can hold.

3. Allocation of space is on a first-come first-served basis: The first individual to
arrive at a suitable site for a territory can establish a territory there.

4. Larvae are highly dispersive so that the number of larvae of any species
seeking territories in any one locality is not directly related to the number of
individuals already present at that locality.

We do not include the assumption that total recruitment for the entire range of
the species is independent of stock, because, as pointed out above, it is best
regarded as a possible consequence of coexistence, not a reason for coexistence.

For greater generality the discussion below uses the word home instead of
territory. A home is an area occupied by an individual to the exclusion of others;
unlike a territory it may not require defense. An individual with a home will be
called an “*adult.”

The lottery system is formulated mathematically as follows. Consider a suitable
homesite at a time when there are L; larvae of speciesi (i = 1, . . ., k) seeking a
home. The probability that this site is taken by an individual of species i is

Li/i L, (1
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If the number of available homes is very large, then expression (1) is close to the
actual proportion of available homes that become occupied by speciesi. We make
the approximation throughout that expression (1) is actually equal to this propor-
tion. In effect this assumes that there are infinitely many homes sought by
infinitely many larvae. The implications of this assumption are discussed later. We
shall also consider the situation in which individuals of different species are not
equal in their abilities of finding and consolidating a home. In this case expression
(1) is replaced by

K
(‘,-L,-/Z c;L;, (2)
=

where the constants ¢; indicate the relative competitive abilities of different
species.

As Sale points out, island biogeography theory (MacArthur and Wilson 1967)
and models of competition in patchy environments (Levins and Culver 1971; Horn
and MacArthur 1972; Slatkin 1974) are similar to lottery systems in that random-
ness plays an important role in the processes being modeled. However, there are
also very important distinctions. The focus in a lottery system is on space for an
individual. The unit of space is exclusive: Only one individual can occupy a single
unit at any one time. In the models and theory mentioned above the situation is
quite different because the unit of space supports local populations of several
species and does not allow the level of detail necessary for the consideration of the
lottery mechanism. Thus we disagree with Sale’s suggestion that the models of
Horn and MacArthur (1972) and Slatkin (1974) provide a basis for the mathe-
matical treatment of lottery systems. Useful information might be provided by
considering patches made up of groups of homes with the competition parameters
varying between patches, as this possibility is suggested by Sale’s data (Sale
1978). However, in this paper attention is restricted to the case where there is no
spatial variation in the competition parameters. Random migration and random
allocation of space then make consideration of patches consisting of groups of
homes unnecessary.

THE POPULATION MODEL

We need the following definitions:

1. Pi(t) = total proportion of homes occupied by species i at the time ¢.

2. B;(t) = per capita net reproduction of species i during (¢,7 + 1];i.e., for each
adult at time ¢, B,(7) larvae reach the settling stage during (¢, t + []. The value B;(¢)
is assumed to be positive, which prevents any species from reaching a zero
population size in finite time. Most population models share this latter property
(Chesson 1978). In such models one says that a species ‘‘becomes extinct’’ or
““dies out” if lim,_,,, P;(t) = 0.

3. Bif (1) = ¢;B:(1). This is the **birth-competition’’ parameter and can be thought
of as an adjustment to the birth rate to take into account competitive differences
between species.

4. §,(t) = proportion of adults of species i dying during (7, t + 1].

5. K = total number of homes occupied by all species (assumed constant and
effectively infinite).
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During (7, 1 + 1], K§;(1)P;(t) adults of species i die and the total number of
homes becoming available for new recruits is K 3%, §;(7)P;(t). Applying expres-
sion (1), recruits of species i take up the proportion B;(1)P;(£)/2k, B,(t)P;(t) of this
space. Putting this together we obtain

k
Ru+n=u—wmmo+Pﬁﬁmm]—#ﬂﬂi—. 3)

= Bi(1)P(1)
=1

J

If we want to consider differences in competitive abilities between species we
must base our model on expression (2), and this yields

k $
Hu+n=n—&mwww[2@mam]—#ﬂEﬁL—. )
= > BHOP1)

Jj=1

Equation (4) is the same mathematical form as equation (3), and so it presents no
greater difficulty in analysis. Since results for equation (4) are readily translated
into results for (3) we base our analysis on equation (4).

As it stands equation (4) is very general, and it exhibits different behaviors
depending on the assumptions made about the §; and 8i. We analyze equation (4)
for four different sets of assumptions: overlapping or nonoverlapping generations
together with constant or random environment. Generations are nonoverlapping
when §;(1) = 1. When the environment is constant §,(t) and 3;*(¢) are constants (§;
and Bj) independent of 1. For a random environment §,(t) and B;(¢) are randomly
varying. We define the vector o(f) = [5,(f). B (1), . . ., §;(1), Bi(+)] and make the
usual assumption that the random vectors o(0), o(1), o(2), . . . all have the same
probability distribution and are independent of each other. In a later section,
where the environment process (o(r),f = 0, 1, . . . ) is discussed in more detail, it is
shown that this assumption is not essential for some of our conclusions. However,
our assumptions always imply that fecundity and death rates of adults are age
independent.

We shall see below that the stochastic case (random environment) can give
markedly different results from the deterministic case (constant environment).
These differences depend on overlapping generations because only in that case
does equation (4) have an important nonlinearity. We begin our investigation with
the much simpler nonoverlapping generations situation.

Some mathematical detail is given in the Appendix, but for the most part the
proofs of the mathematical results are too long and technical to be given here and
only heuristic justifications are presented. Complete proofs can be found in
Chesson (in press).

Nonoverlapping Generations

When generations are nonoverlapping equation (4) reduces to

Pt + 1) = —DABID m
> BHOP(1)
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This equation corresponds to that in Dempster's (1955) haploid selection model,
and our results parallel his. From equation (5) we deduce
P,(r + ¥ Pt
(D B P ©

P+ B (1) Pit)”’

i.e.. the ratios of species abundances change according to a linear equation.
The solution to equation (5) or (6) is easily seen to be

—

Py [] )

PAt) = o @
> PO ] Bis)
Jj=1 §=0
and in the deterministic case this reduces to
) H)
P(1) = _kpﬁ))_(ﬁi__ (8)

ST P0) (87
=1

To simplify our discussion we restrict attention to the two-species (A = 2)
situation; the extension of our results to the more general case is trivial. We define
p(1) = BF()/B5(1). In the deterministic case the following conclusions are obvious
from equation (8); if p < 1, species 1 dies out (lim,_,, P,(¢f) = 0) and consequently
species 2 increases in numbers to occupy all available space. If p > 1, species 2
dies out. Only when p = 1 do both species persist, and in this case their numbers
do not change with time—all possible population densities are neutral equilibria.
The p = 1 case represents an unlikely exact balancing of birth rates; moreover. it is
an evolutionarily unstable situation, since any genetic change resulting in a change
in p will lead to elimination of one species. For example, if species 1 increased its
birth rate or its efficiency at finding homes then p would increase in species 1's
favor and species 2 would be eliminated.

To analyze the stochastic model we note from equation (6) that log [ P,(t)/ Py(1)]
undergoes a random walk (see Feller 1971. p. 389ff). The following conclusions
are immediate (the symbol E is used to denote the expected or theoretical mean
value of the random variable following E):

If E log p(7) < 0 species 1 dies out.
If E log p(r) > 0 species 2 dies out.

These two cases correspond to the deterministic cases p < 1 and p > 1. The
qualitative results (extinction of one species) are the same as for the deterministic
model but it is also instructive to note from random walk theory that

log [P()/Py(1)] = tu + Z(1), 9)

where u = E log p(7) and Z(¢) is an approximately normal random variable with
zero mean and variance proportional to 7. In the deterministic model

log [P(1)/Py(1)] =y, (10)
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and so the population trajectories of the stochastic model are merely fluctuations
about the trajectories of the deterministic model. This result is a special conse-
quence of the fact that the model can be put in the linear form (6), and does not
occur in the overlapping generations model where a transformation to linearity is
not available (see below).

In the remaining case, where u(= E log p(¢)) equals 0, the qualitative results are
more complex. Random walk theory says that species proportions are subject to
drift: P,(r) oscillates between 0 and 1. Although P,(r) never actually reaches 0 or 1
it becomes arbitrarily close to both at different times. In a sense both species
appear to be persistent, but this persistence is very weak for two reasons. First, as
t increases P,(t) will tend to be found near 0 or 1 with high probability; that is,
lim;,., P[Pi(t) €E (e, | — €)] = 0 for all e > 0. Second, if P,(t) drops to some low
level x then the expected waiting time for return to a higher level y is always
infinite—the behavior of the process is highly unpredictable. In summary, most of
the time one species will appear to dominate. Which species is dominant will
change with time, but the timing of this change is highly unpredictable. Most of the
time one of the species will be at very low population levels, and if one combines
this with the stochastic effects of small population size (not included in this model)
then extinction must occur. Thus, from the population dynamic point of view
the situation E log p(1) = 0 does not give rise to a stable coexistence. From the
evolutionary point of view it has the same instability that is present in the
deterministic model with p = 1.

The conclusion from nonoverlapping generations models is that species diver-
sity cannot be maintained in a lottery system. This conclusion is independent of
environmental variability. As we shall see, the results from overlapping genera-
tions models are quite different.

Overlapping Generations

Again we restrict attention to the two-species case (kK = 2), but here the
extension to the more general case is not a simple matter. When & = 2 we have
Py(t) = 1 — P,(t) and equation (4) reduces to

{8.()P(1) + 8,(1) [1 — P, ()]} BF()P,(1)
BI(P,(1) + B5(1) [1 — Py(1)]

L1 = PyOILBE@8.) = BEWB0] | an
BFOP() + BE0O T — P,(0)]

Pt +1)=1[1-38(P) +

= P,@) {1 +

By inspection it is clear that P, increases or decreases depending on the sign of
Bi(1)8,(1) — Bi(1)6,(1), or equivalently, depending on the sign of p(r) — 1, where
we define p(r) = BF(1)8:(1)/B5(1)d,(1).

In the deterministic case there are three possible outcomes. (¢) If p = 1 then
P,(t)=P,0) forallz. (b) If p > 1 then Py(t) — 0 ast — o (i.e., species 2 dies out).
(¢) Ifp < 1thenP,(r) — 0 as7 — o (i.e., species 1 dies out). Since P,(t) + Py(t) =
1, when one species dies out the other species increases to occupy all available
space.

These results are the same as for the deterministic model with nonoverlapping
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generations. In particular, coexistence only occurs when p = 1, which requires an
unlikely and evolutionarily unstable exact balancing of birth, competition, and
deaths for the two species.

A rigorous analysis of the stochastic model is given in Chesson (in press), but
here we give a heuristic analysis based on the standard invasibility criterion for
stochastic population models (Turelli 1978b). According to the invasibility crite-
rion a species persists or becomes extinct depending on whether the mean instan-
taneous growth rate. at low population levels, is positive or negative. The invasi-
bility criterion is not completely satisfactory because it may say that a species
persists in situations where the probability of observing an arbitrarily small popu-
lation size at time ¢ increases to 1 as 7 — o (Chesson, in press). However in the
present model this problem does not arise. Here persistence according to the
invasibility criterion ensures that small population sizes have correspondingly
small probabilities of occurring at any given time. (See the section below on the
meaning of persistence.)

To see how the invasibility criterion works here, we note from equation (11) that

Pt + DIP,(1) = 1 + 8,(t) [p(t) — 1] (12)

for small P(t), and this shows that 1 + §,(¢) [p(¢) — 1] is the approximate finite
growth rate for small P, (). Thus when P,(¢) is small it will increase or decrease
depending on whether the geometric mean of (12) is greater than 1 or less than 1.
Equivalently P,(7) will increase or decrease depending on whether the arithmetic
mean of log {1 + &,(t) [p(¢) — 1]}. the instantaneous growth rate, is positive or
negative. This result heuristically justifies the invasibility criterion for our model.
To see its implications let A; be the mean instantaneous growth rate of species i
when low in numbers, i.e.,

A, = E log {1 + 8,(2) [p(?) — 11}, and
A, = E log{l + 8,(t) [p7'(+) — 1]}.

The invasibility criterion now gives the following four possible behaviors of the
model. (a) Both species persist (A; > 0, A, > 0). (b) Species 2 dies out (A; > 0, A, <
0). (¢) Species | dies out (A, < 0, A, > 0). (d) One of the two species dies out, but
which one is a matter of chance (A, < 0, A, < 0).

Situations b and ¢ occur for the deterministic model, but ¢ is unique to stochas-
tic models. Furthermore, in contrast to the deterministic model, case « occurs
here for a broad range of evolutionarily stable situations. We now discuss the
conditions favoring each of these four possible cases of the stochastic model. The
A-prefixed references below are to Appendix results.

Case a (coexistence).—Case « is favored by a tendency for p to take on both
small values (less than 1) and large values (greater than 1); that is, values of
birth-competition and death parameters that allow one species to be favored
sometimes and the other species at other times. In almost any situation it is
possible to make both A, and A, positive—indeed, arbitrarily large—by increasing
variability in p (AI). For example, we can increase the variance of log p, V log p,
while keeping the mean constant, by defining

B = n(log i — Elog gf) + Elog gf*, i =1,2.
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where the quantity # defines the level of variability. The value V log p, is asymp-
tomatically equal to n*V log B¥/B) while E log p, = E log p. As n increases both
A,; = E log[l + 8,(p, — )] and A,, = E log[l + 8.(p,' — 1)] tend to + = (AI).
In particular there is a level of variability (value of n) above which both A, and
A, are positive and the two species will coexist.

The example above increases variability in p by increasing variability in the
birth-competition parameters. Variability in p can also be increased by increasing
variability in the death rates. However, increasing variability in death rates need
not increase the values of the A;. When the §;’s are small we can make the
following statements (AII): If the §’s are independent of the 8%’s then variability in
the §’s has no effect on the chance of coexistence. If §; is positively correlated
with B§/B% then an increase in variability in §; will increase A;, making persistence
of species i more likely without affecting the value of A;. Thus, in a situation in
which one species tends to have relatively good birth-competition periods when
the other species has a high death rate, an increase in variability of death rates
favors coexistence. On the other hand, if the correlation between §; and Bi*/8; is
negative then exclusion is favored by an increase in variability in the death rates.

Recall that in the deterministic model coexistence cannot occur if log p # 0. In
contrast, in the stochastic model coexistence is possible with any value for E log p
provided variability is great enough. That is, the deterministic tendency for one
species to be driven out by another is overridden by variability.

We consider variability about the mean of log p because p is a ratio quantity and
only on the log scale do the numerator and denominator contribute to the mean in an
equitable manner. E log p measures the mean advantage that species 1 has over
species 2 as a result of its relative birth, death, and competition parameters. (If E
log p is negative then species 2 has a mean advantage over species 1.)

The discussion above says that for any mean advantage there is a level of
variability giving coexistence but does not say what this level is. When E log p =
0, i.e., when neither species has a mean advantage, any variability in p is sufficient
to give coexistence provided the §; are not too variable (AIII).

If E log p # 0, then the magnitudes of the §; become important. Coexistence is
favored by small values of 8, (AII); that is, coexistence is more likely to occur if
only a small proportion of the individuals are replaced each year. By letting §; — 0
we can find threshold levels of variability such that coexistence occurs for
sufficiently small but positive values of the §;. This threshold is sufficient var-
iability so that both Ep and Ep~! are greater than 1 (AII). In the special case that
log p has a normal distribution with mean u and variance ¢ this condition can be
expressed as g2 > 2|,u| . Note that u is the mean advantage that species 1 has over
species 2.

To see how much variability is necessary when the §; are not necessarily small
we have calculated a chart (fig. 1) by numerical evaluation of A; assuming that log
p is normal. For simplicity we have considered only the case where §, = §,. The
curves give threshold relationships between (p,[ and o2 for given §;. Coexistence
occurs for (| u|. o) points above the curve for a given value of §;. As can be seen,
there exist broad ranges of variability in which coexistence can occur.

Figure 2 plots A, as a function of w for §; = .1 and various values of o2. The case
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FiG. 1.—Thresholds of variability giving coexistence.

o? = 0 gives the boundary growth rates (A,) for the deterministic model, which are
a direct reflection of the mean advantage of species 1. For positive o2, species 1
can have a positive growth rate at low relative abundance even though it has a
mean disadvantage (u < 0). Furthermore, the range of negative u values for which
A, is positive increases with o2.

Figure 2 yields A, values when §, and p are read as 8, and —pu, respectively. The
corresponding curves for different § values can be found from the given curves as
explained in the Appendix (AV).

Case d (random exclusion).—In case d one species, determined by chance, dies
out. This situation is favored by a tendency for (§,. 8,) to take on values near (0, 1)
and (1, 0) at different times; that is, the death rates of the two species are variable
and negatively correlated. To demonstrate this we show (AIV) that the A; de-
crease as functions of how near (8,, 8,) comes to (0, 1) and (1, 0). If (§,, §,) comes
sufficiently close to (0, 1) and (1, 0), with some fixed probability, the A; will be
negative and can be arbitrarily large and negative. The special case where 8§ = 85
and §, — §, has a distribution symmetrical about 0 provides an explicit example of
case d. Here any variability in the §'s combined with any correlation less than +1
gives random exclusion. Negative correlation between the §’s and high variability
give rise to large negative values of A, and A,, meaning that rapid extinction can be
expected.

Cases b and c (exclusion of a particular species).—The remaining cases occur
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whenever one species has a sufficiently strong mean advantage over the other
species to override the effect of environmental variability. For example, if both A,
and A, are finite it is easy to see that by increasing the mean of log p(7) (the mean
advantage of species 1) while keeping the shape of the distribution constant, then
eventually A, will become positive and A, negative, producing case . Similarly,
decreasing the mean of log p(f) can result in case c.

In these cases of competitive exclusion the population trajectories cannot
simply be described as fluctuations about the trajectories of the deterministic
model. To see this note that A, is the average rate at which species 1 declines at
low population levels, and figure 2 illustrates the dependence of this rate on the
variance of log p. (It was explained earlier that the variance of log p is the natural
variance to consider.) Population decline is slower with higher variance, and so
the average rate of competitive exclusion is slower in the stochastic model. By
contrast we have seen that increasing the variance of log p has no effect on the
average rate of population decline in the nonoverlapping generations model be-
cause it can be put in the linear form (6).

Summary of Model Results

In the nonoverlapping generations model, randomness in the environment has
very little effect on the conclusions. This is not surprising because in this case the
model can be transformed to a simple linear model. When generations are
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nonoverlapping coexistence of two species can only occur in very special and
evolutionarily unstable circumstances.

When generations are overlapping, randomness in the environment has marked
effects because the model has important nonlinearities. With a constant environ-
ment the model gives essentially the same results as the nonoverlapping
generations model. When the environment is random, coexistence of two species
is possible under broad and evolutionarily stable conditions. Coexistence is fa-
vored by increased variability in the birth-death-competition parameter p. Extinc-
tion of a randomly determined species can occur in situations where the death
rates (8, and §,) are negatively correlated.

MEANING OF PERSISTENCE

In a deterministic model one is willing to say that a species persists if the
population size never gets below some positive lower limit L (P(¢) = L for all ).
This definition of persistence is not very useful in stochastic models because in
most cases there is no lower bound on population size; in most stochastic models,
given enough time, fluctuations to arbitrarily small population sizes will be seen.
This is not a weakness of stochastic models, for it is a highly plausible though
unfalsifiable hypothesis for real populations; but it does lead to difficulties in
defining persistence for stochastic models. There has been much discussion on
this problem (Botkin and Sobel 1975; Ludwig 1976; Chesson 1978, in press; Turelli
1978a. 1980a). Chesson (1978) suggested calling a population persistent if it is
stochastically bounded from below.

Stochastic boundedness is most easily understood in terms of the quantiles £,(¢)
of the probability distribution of population size. By definition of {,(#), the popu-
lation size at time ¢ will be greater than {,(7) with probability I — p or, equiva-
lently, the population will be less than {,(¢) with probability p. Thus ¢,(t) essen-
tially provides a lower ‘*confidence’’ limit or probability limit on the population
size at time ¢. The population is said to be stochastically bounded from below if
there is a positive lower bound L, on these probability limits, i.e., if {,(¢) = L, for
all 7. Thus the probability limits on population size are kept away from zero just as
the actual population size is kept away from 0 in the deterministic notion of
persistence. {,(f) can only be arbitrarily small for arbitrarily small p; that is, small
population sizes have correspondingly small probabilities.

The kind of persistence found in case a of the overlapping generations model is
indeed persistence in the sense of stochastic boundedness (Chesson, in press)
but even more can be said: Not only are the probability limits ¢, (1) bounded away
from 0, but as t — o the {,(¢) converge to definite numbers {,; i.e., the probability
distribution of P(#) converges to a stationary or ‘*equilibrium’" probability distri-
bution. This convergence to an ‘‘equilibrium” probability distribution is the
stochastic analogue of global stability of a positive equilibrium in a deterministic
model and is sufficient to ensure stochastic boundedness in the same way that
global stability of an equilibrium point ensures persistence in a deterministic
model.

In the nonoverlapping generations model with E log p = 0 we observed that
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P.(1) does not converge to 0 as t — . Nevertheless it is found near 0 with
probability approaching %, and we explained earlier that this situation does not
deserve to be called persistence. The criterion of stochastic boundedness supports
this earlier conclusion, for () — 0 asr — o for any p < %, and so the probability
of observing a small population at time ¢ is not correspondingly small. Indeed this
probability approaches 50%.

In most cases it is not possible to calculate the quantiles ¢,(r) explicitly;
however, some approximations are available in special cases (Chesson, in
press). As an illustration assume that P,(0) = ¢ and is nonrandom, death rates are
equal and nonrandom, and variability in birth rates is high. In this situation P,(z) is
approximately normally distributed with mean 3 + ¢~%(¢ — %) and variance §(1 —
e~2%)/8, Taking p = .025 and using tables of the normal distribution we find that

Los(t) = 3 + e7%(¢ — §) — 1.96 VB(1 — e 2)/8.

Note that as r — o, { o5(1) — % — 1.96 \/§/8, which is therefore the quantile { g,5; of
the equilibrium distribution discussed above. Notice also that £ ;,5(f) = min (¢, ¢
— 1.96 \V/8/8. This latter quantity is thus L ;. Clearly the same exercise can be
carried out for any value of p to give approximate numerical values for the
quantities involved in the concept of stochastic boundedness.

THE ENVIRONMENT

In our stochastic models we define a(t) = [5,(7), 8,(1), 8:(1), B(¢)] and made the
assumption that ¢(0), (1), o(2), . . . are independent of each other and all have
the same multivariate probability distribution. We do not make any assumption
about the distribution that o(¢) has for fixed r; we do not assume, for example, that
8,(7) and B,(t) are independent. We do assume that the value that o(r) takes at one
time has no influence on its value for the next time, or any later time. This
independence assumption is unlikely to be satisfied in the real world. However,
since our models are discrete time, we do not have to assume that the environment
takes on an independent value at every instant as is commonly done in continuous
time stochastic models. Models of this latter kind use the Gaussian white noise
environment process, whose interpretation is ambiguous and controversial
(Turelli 1977). We have at least avoided these difficulties.

An environment process more general than the kind we have considered is a
stationary environment process (Doob 1953). It is a model for the situation in
which there is no trend in the environment through time. A stationary process is
defined mathematically as a process o such that for every # the joint distribution
of o(t), ot + 1), ..., 0(t+n) does not depend onr. Note that it is the distribution
that does not depend on 7; the actual values taken by the environment will
certainly change with . The effect of a periodic environment can also be studied
conveniently using a stationary process: When observation begins at a random time a
periodic environment becomes a stationary one.

In practical problems stationary processes have a property called ergodicity
(Breiman 1969) which entails that the sample average t~! 3._, flo(s)] converges
to the theoretical mean Ef[g(s)] for functions f such that the theoretical mean
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exists. For ergodic stationary environment processes the conditions A, >0, A, >0
are still sufficient for coexistence; indeed, the heuristic argument given here for
these conditions is applicable to this more general case, and so our conclusions
concerning the role of environmental variability in promoting coexistence are still
valid. Hutchinson’s (1961) original discussion of the effect of environmental
variability was motivated by coexistence of planktonic species in lakes where this
variability has a strong seasonal component. Our results on coexistence do remain
valid with this kind of environmental variability.

INFINITE POPULATIONS AND SPACE FILLING ASSUMPTIONS

Our models assume that there are effectively infinitely many homes available
and that total reproduction always exceeds total death. From the latter it follows
that all homes are occupied at the end of each time period. As the number of
homes becomes large, these models are justified as limiting cases of fully stochas-
tic models with finitely many homes and individuals having finite capacities of
reproduction (Chesson, in press). To ensure that the limiting model will always
have all homes filled one has to impose the condition that 8,(f) = §,(1); i.e., for
every species, births always exceed deaths of adults. This will be satisfied if 3;(¢)
= 1, that is, the adults of each species produce an average of at least one potential
recruit each in each time period.

The major difference between the finite and infinite models is that the finite
models allow extinction in finite time; when P,(r) — 0 as  — « then there is a time
7 < such that P,(t) = 0 for t = 7. This is never so in the infinite models—extinction is
always asymptotic as it is in most models in population biology (Chesson 1978). In
spite of this qualitative difference the infinite models are still capable of yielding
useful information about the behavior of finite models with many homes. The
probability distributions for most random variables of interest in the finite model
are well approximated by the corresponding probability distributions given by the
infinite model, provided the finite model has a large number of homes (Ches-
son, in press). Examples of such random variables are P;(1), n~'3;_, P;(t), and the
number of times P,(t) drops below some level during the first n time intervals.

An important question is, How much need our conclusions be modified to apply
to the finite model? For the infinite model we know that increased environmental
variability in birth-competition promotes coexistence. Can we validly draw the
same conclusion for the finite model? The answer is ‘*yes™’ provided the number
of homes is large enough for the infinite approximation to hold for the range of
variability under consideration. This raises the question of whether, for a fixed
number of homes, the approximation of the finite model by the infinite model
breaks down as variability is increased. This would be true if increased environ-
mental variability results in a corresponding increase in population fluctuation so
that low population levels become more frequent with increasing environmental
variability. We are able to demonstrate that this is not so (Chesson, in press).
There is a definite upper limit on how much the population can fluctuate even
when environmental variability in birth-competition is arbitrarily large. For exam-
ple, if the death rates are equal and nonrandom then increasing variability in birth-
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competition, with the mean advantage fixed, produces a limiting model in which
P () has a mean of .5 and a variance of £5,/(2 — §,). Nonoverlapping generations
means that infinite variability in birth-competition does not lead to infinite var-
iability in population numbers (infinite variability corresponds to a variance of 1);
indeed, variability is strictly limited by the degree of overlap in generations. Thus
we can conclude that increased environmental variability will not lead to a di-
vergence between the finite and infinite models. In other words, for some fixed but
large number of homes, the infinite model will provide a good approximation to
the finite model over the entire infinite range of possible environmental variability.
Hence, provided the number of homes is large, we can conclude that increased
environmental variability in birth-competition promotes coexistence.

CONCLUSION

The deterministic models say that two species cannot coexist in a lottery system
unless the ratio of the birth-competition and death parameters are the same for
both species. This case is an unlikely, evolutionarily unstable situation and so it
appears that random allocation of space alone cannot maintain large-scale species
diversity. The deterministic model either has no stable equilibria with both species
having positive numbers or is evolutionarily unstable and has only neutrally stable
equilibria. The standard equilibrium approach to modeling would see no point in
proceeding further because of the assumption that the addition of environmental
variability can only lead to further instability and therefore would not alter the
conclusions. However we proceeded further to investigate Hutchinson’s idea that
environmental variability can lead to coexistence by keeping species abundances
away from equilibria in which one species is extinct.

If the stochastic analysis involved only the nonoverlapping generations model,
one would conclude that Hutchinson’s explanation does not work for this system.
In these models Hutchinson’s idea breaks down for intuitive reasons: Unless the
logarithms of the birth-competition parameters have equal means for different
species, the superior species will tend to make greater gains during its favorable
periods than the other species do during their favorable periods. These gains will
add up over time, which means that the superior species comes to dominate the
system.

The stochastic analysis of the overlapping generations model completely
changes these conclusions, and since most organisms do have overlapping
generations we are inclined to regard this model as the more generally applicable.
In this model the actual magnitude of the gains made by a species when favored by
the environment depends on its relative density. The gains are higher when it is in
low abundance and lower when in high abundance. This occurs as follows.

When a species is in high abundance it cannot increase much in an absolute
sense, because space is limiting, but it can increase relative to the other species by
an arbitrarily large amount if the other species decreases sufficiently. This is
exactly what happens in the nonoverlapping generations model where Pt +
D/Pt + 1) = [BF()/BF(t)1P(t)/P(t), which means that the change in the ratio of
population sizes is directly proportional to the ratio of the birth-competition



LOTTERY COMPETITIVE SYSTEMS 937

parameters for the two species. Here, if species i occupies most of the space and if
it experiences a relatively favorable period, then most of its relative increase is the
result of a decline in the other population. In the overlapping generations model
things happen differently because during each time period there are survivors
from the previous time period. Regardless of how unfavorable birth and competi-
tion is for a particular species, its new population must be at least equal to
survivorship from the previous period. This puts an upper limit on the relative
gains that can be made by a species in high abundance during a favorable period.
However, a species in low abundance has virtually unlimited opportunity to
increase and therefore can take full advantage of its favorable periods. Mathe-
matically this represents an essential nonlinearity in the overlapping generations
model that is absent when generations are nonoverlapping.

In this model the effect of increasing variability in the birth-competition param-
eter is to increase the gains made by the species, while at low density, during its
favorable periods. The losses will also be increased, but by a relatively smaller
amount. Hence environmental variability in the birth-competition parameter does
promote stability. Moreover, any mean advantage that one species may appear to
have can be overcome by environmental variability; that is, there is always a level
of variability in the birth-competition parameters which results in coexistence.

If the death parameters, §;, are small and §; is positively correlated with gi*/g}
(i.e., a relatively favorable period for species i corresponds to a higher death rate
for species j) then increased variability in death rates also promotes coexistence.
High values (near 1) of the §; do not favor coexistence because then the model is
close to the nonoverlapping generations model. If §; values can be both high and
low but §, and §, are negatively correlated, then extinction of one species can
occur, but which species becomes extinct is unpredictable. This situation is
favored by increased environmental variability in the death rates.

Our results are in general agreement with Hutchinson’s idea that environmental
variability can promote species diversity. Environmental variability can increase
the chance of coexistence, and in this sense environmental variability can be
stabilizing. The idea that environmental variability can destabilize a previously
stable equilibrium is borne out by our analysis; however, in our models, destabili-
zation occurs for equilibria in which one species is extinct. The result is coexis-
tence.

Although not part of Hutchinson’s original idea, nonlinearity is an essential
ingredient in our results; it acts by making the effect of the environment density
dependent. In our models nonlinearity has a mitigating effect on environmentally
unfavorable periods at low density. However, there are some subtleties involved:
What matters is not simply whether a model is linear or nonlinear but whether it is
possible to transform the model so that it is linear. For example, the nonoverlap-
ping generations model is described by the nonlinear equation (5), and yet we
observe agreement between the results of the deterministic and stochastic ver-
sions. On the other hand, if relative densities are expressed as ratios instead of
proportions, precisely the same model can be written in the linear form (6), and it
is clear that the existence of this linear form is responsible for the close agreement
between the deterministic and stochastic versions of the model. There is no such
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transformation to linearity for the overlapping generations model (Chesson, in
press), and so we say it has an essential nonlinearity. It is the presence of this
essential nonlinearity that causes the environment to act in a density-dependent
way.

In May’s analysis of stochastic Lotka-Volterra models (May and MacArthur
1972; May 1973, 1974a, 1974b, 1974c) nonlinear effects are ignored and the
analysis is based on linear approximation to the model about an internal equilib-
rium, and so there is no opportunity for the environment to operate in a density-
dependent manner. In this setting environmental variability does little more than
keep species abundances away from equilibrium, and May concludes that envi-
ronmental variability is generally detrimental to species coexistence. Moreover,
he suggests that a small amount of environmental variability may have a large
effect.

Turelli (1978a) has pointed out that one needs to examine the behavior of the
model near boundary equilibria (where one species is in low abundance) in order
to answer questions of persistence and coexistence. Turelli’s analysis of differ-
ence equation analogues to the stochastic Lotka-Volterra equations (Turelli
1978b, 1980, 1981) shows much milder effects of small amounts of environmental
variability: A small amount of environmental variability has at most a small effect
which can be either favorable or unfavorable to coexistence. Turelli and Gillespie
(1980) provide an exact analysis of the stochastic Lotka-Volterra equations for the
case of two competing species with any magnitude of environmental variability.
They find that environmental variability has no overall effect on the ability of
species to coexist because, in contrast to our model, the range of parameter values
permitting coexistence is no broader or narrower than in the deterministic model.

May’s approach involving linearization about an internal equilibrium inevitably
leads to the conclusion that environmental variability is destabilizing. The
analyses of Turelli and Gillespie have emphasized the deficiencies in May’s
approach, but they do not reveal a strong coexistence promoting role for environ-
mental variability.

The present model gives an example of coexistence without the benefit of a
stable equilibrium point. Thus it may be thought of as a case of nonequilibrium
coexistence as recently emphasized by Armstrong and McGehee (1980) and Lev-
ins (1979). Stewart and Levin (1973) and Koch (1974) have discussed examples of
nonequilibrium coexistence which, like ours, depend on temporal variation in the
environment, but these examples differ from ours in a number of essential ways.
First they emphasize deterministic population cycling, and the nature of the
environmental change is fundamentally different. In our models environmental
change is incorporated simply by making the parameters of the model functions of
time, while in these previous models environmental change involves fundamental
changes in the equations governing the species. For example, in Koch’s paper the
major effect of the environment is a periodic reduction in population size which
necessitates an extra equation to define the model. This reduction in population
size produces a reduction in competition, a condition which never occurs in our
models. Yet contrary to Koch’s expectations we obtain a strong coexistence. A
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reduction in competition also occurs in Stewart’s and Levin’s model but it is
achieved in a more complex way.

When Sale put forward his lottery idea (Sale 1977) he made two predictions. The
first of these is that selective removal of one species of a guild at any site should
not be followed rapidly by recovery of the original species composition to that
site. This prediction does agree with our model, but we can make a more precise
statement: If » individuals from each of two species are simultaneously removed
from the same site, then the vacated territories should be refilled independently of
the species formerly occupying the territory. This is not so much a prediction from
our model as a testable proposition upon which it is based.

The second prediction of Sale is that the diversity of reef communities should be
directly correlated with the rate of small scale unpredictable disturbances (in-
cluding predation) to the supply of living space. This prediction seems more in
keeping with the disturbance hypothesis (Paine and Vadas 1969; Connell 1978;
Fox 1979) than with the lottery idea. Our analysis suggests that if the death rate
increases with disturbance then diversity should decrease. However if distur-
bance has other effects such as increasing variability in birth rates, then no clear
prediction is available because the outcome depends on a combination of factors
working in opposition.

The clearest prediction from our model is that diversity should be positively
related to variability in birth rate. This might be tested by comparing different
regions or different guilds, but unfortunately the difficulty of measuring birth rates
precludes such comparisons at the present time.

SUMMARY

In deterministic approaches to modeling, two species are generally regarded as
capable of coexistence if the model has a stable equilibrium with both species in
positive numbers. Temporal environmental variability is assumed to reduce the
likelihood of coexistence by keeping species abundances away from equilibrium.

Here we present a contrasting view based on a model of competition for space
among coral reef fishes, or any similarly territorial animals. The model has no
stable equilibrium point with both species in positive abundance, yet both species
persist in the system provided environmental variability in birth rates is
sufficiently high. In general the higher the environmental variability the more
likely it is that coexistence will occur. This conclusion is not affected by one
species having a mean advantage over the other. Not all kinds of environmental
variability necessarily lead to coexistence, however, for when the death rates of
the two species are highly variable and negatively correlated, the extinction of one
species, determined by chance, is likely to occur.

The results in this paper are shown to depend on the nonlinearity of the
dynamics of the system. This nonlinearity arises from the simple fact that the
animals have overlapping generations.

When applied to the coral reef fish setting, our analysis confirms the view that
coexistence can occur in a system where space is allocated largely at random,
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provided environmental variability is sufficiently great (Sale 1977); but our expla-
nations and predictions differ in detail with those of Sale.
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APPENDIX

[. The effect of increasing variability in p.—Coexistence occurs if A, and A, are both
positive. Note that

A, =Elog(l —8,) + Elog([l + §(1 —8) pl

and there is a corresponding expression for A,. Clearly both A, and A, will be positive when
p varies in a manner that allows both §,p and §,p~' to take on sufficiently large values with
some given positive probability. We can be more precise about this as follows. Let €, M,
and K be positive numbers and suppose

PBp >M)=¢
PG,p~' > M) = €
and
E log (1 — §) = —K, i=1,2;
then
A =elogM - K, i=1,2. (Al)

Clearly the A; will both be positive if M is sufficiently large, indeed A, — © as M — «. To
see from this that increasing variability in p must eventually give rise to positive A;’s we
start with a random vector (§,, 8f, 8,, 8F) and modify it so that variability is increased as
follows.

Assume that §, and §, are strictly positive random variables and 8f/B5 is nondegenerate
(not a constant). Then there are positive numbers ¢, y, and ¢ such that

P(8, > v, log B/B5 — E log BY/By > () = ¢
and
P(8, > vy, log B¥/BF — E log B5/Bf > ) = e.

To increase variability we define log 8f;, = n(log B — E log 8f*) + E log Bi,i = 1, 2. The
variance of log 8} is an increasing function of n but the mean is fixed. Now

P(8, > v, log B},/B%, — E log B%/B% > n{) = e,
and defining 6 = exp(E log B,/3,) we have
P(8,p, > Oye™) = €.
Similarly

P(8:p, > 67'ye™) = €.
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[t follows that inequality (A l) applies here with M = e min(6,60~!) and K = —min(E log |
— 8,1, Elog[1 — 8,]). Clearly asn — w0, A;,, = %, i = 1, 2. In particular, for values of n above
some minimum level both A,, and A,, will be positive.

[I. Small death rates.—Coexistence is also favored by small values of the §;. To see
this we again start with some given (§,, 8§, 8,, 85). We define §;, = (1/n)§;,i = 1, 2, but do
not modify the Bi*. This leaves p unchanged also. Note that n log [1 + §,,(p — 1)] is an
increasing function of # with limiting value §,(p — 1). Applying the monotone convergence
theorem we see that

nElog[l + 8,(p — DITE8(p — 1)

asn — o, ie.,nA;, T E§ (p — 1)asn | «. Similarly nA,, T ES,(p~'—1) as n ] «. This shows
that small death rates favor positivity. Indeed if

Es,(p - 1D >0 (A2)
and
Edy(p~'-1) > 0, (A3)

then both A, and A,, will be positive for n sufficiently large. The LHS's of A2 and A3 can
be considered approximate expressions for A, and A, when §, and §, are small. If §, and §,
are nonrandom the approximate coexistence criteria become Ep > 1 and Ep~' > 1.

The approximate coexistence criteria (A2) and (A3) can be used to see how variability in
the §; affects coexistence when the §; are small. Write 6, for the correlation between g/85
and §,, and 6, for the correlation between B/8f and §,. We have

Es.(p — 1) = Ed,(B1/8%) — E8,
0,(V8,)H(VBFIBH): + (ES,) (EBY/BY) — ES,. (A4)

First of all note that variability in 8, has no effect on E8,(p — 1), which means also that
variability in 8, has no effect on E8,(p~'—1). Second, if §, = 0 then variability in §, also has
no effect on E§,(p — 1). However, if 4, is positive E§,(p — 1) increases as a function of V§,
and if 4, is negative E§,(p — 1) decreases as a function of Vg,.

Hence we can conclude that coexistence is favored by positive §'s and variable §'s and
exclusion is favored by one or two negative 's and variable §'s.

III. Zero mean advantage —When E log p = 0 it is possible to have A, and A, positive
with arbitrarily small variability in p. To see this note that since log is a strictly concave
function with log 1 = 0,

log(1 — 8, + 8,p) = §,log p (AS)
with strict inequality whenever p # 1. It follows that any variability at all in p must give
A, > E8/logp. (A6)

1f§, were nonrandom we would have E§,logp = 8, Elogp = 0 and hence A, > 0. Similarly A,
> (0 whenever §, is nonrandom. The same results hold if the §; and log p are uncorrelated or
8, and 8, have, respectively, positive and negative correlations with log p. In other cases A,
could be negative or zero. However if /85 is random then it can be shown that there is a
positive lower bound to the difference A, — E§,log p when the distribution of 8§/85 is held
constant, E§, and E§, are bounded above 0 and the variability in the §; is allowed to
decrease to 0. Since E§,log p — 0 as V§;, — 0 it is clear that the A, will be positive for V§;
sufficiently small.

IV. Random exclusion.—Here we show how variable and negatively correlated death
rates can result in case ¢, random exclusion.

Define K = max {E log(1 + Bf/B8}) |i =1,2,j =1, 2} and assume that there are positive
numbers y and € such that

PG <v,8,>1—y)=¢
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for i # j. Small y and high € imply that §, and §, are highly variable and negatively
correlated.
Now

A, = E log(l — &, + 8,8%/B%)

and when 8, <y and §, > 1 —y we have log(l — §, + 8,8]/85) <logy + log(l + B¥/B¥). Itis
always true that log(1 — 8§, + §,8¥%/8F) < log(1 + Bf/B8¥) and it follows that

A, < elogy + E log(l + BF/B¥)
< elogy + K.
The same inequality applies for A,, i.e., we have
A <elogy + K
fori = 1, 2. Thus if y is small enough both A, and A, will be negative. Indeed A; — —« as y

— 0.
It is instructive to consider a more specific example of random exclusion. Assume that 8
= B¥ and that the distribution of §, — §, is symmetric about 0. We have

A, + A, = Elog(l — 8, +8,) + Elog(l -8, + 8§,
Elog [l — (8, — 8]

Provided V(§, — §,) # 0 then A, + A, < 0. But here A, = A, and so both A, and A, are
negative. In this case ‘‘sufficient’’ variability is any variability and a sufficiently ‘‘negative’’
correlation is any correlation less than +1.

V. The relationship between A's based on different §'s.—The A; generally have to be
calculated by numerical integration. Here we show how a special identity can be used to
save computation and make the graphs given in the text more useful.

In the text A values are calculated for lognormal p and nonrandom §'s. In this case log p
= 0X + p where X is normal with mean 0 and variance 1. Writing A, as a function of §,, u
and o® the following identity is easily derived.

A8, pw + logl(1 = 8)8,(1 = 8,)7'8;7'], %)
= 4,8, p, 0*) + log[(1 — &)1 - §,)7'].

Using this identity, the curves given in the text for A, as a function of u for §, = .1 can be
converted into the corresponding curves for any value of §,.
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