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Summary. An infinite system of Markov chains is used to describe popula-
tion development in an interconnected system of local populations. The
model can also be viewed as an inhomogeneous Markov chain where the
temporal inhomogeneity is a function of the mean of the process. Con-
ditions for population persistence, in the sense of stochastic boundedness,
are found.

1. Introduction

Markov processes have long been used to model the dynamics of animal
populations (Bartlett 1973). However in the majority of cases the animals are
assumed homogeneously distributed in space. In contrast, Andrewartha and
Birch (1954) stressed that animal populations are not homogeneous in space,
but are made up of a number of partially independent local populations,
connected by migration. When this is recognized, a system of interacting
Markov processes is necessary for the description of population dynamics. Such
systems are mot easy to anmalyze and consequently models in population eco-
logy have involved restrictive assumptions to achieve analytical tractability
(Caswell 1978; Chesson 1978, 1981). Typically such models consider a finite or
Infinite system of “patches” (areas of suitable habitat) where each patch sup-
ports a local population. For analytical tractability, the number of patches is
usually infinite and migration is random, that is, any two patches are assumed
equally accessible to migrating organisms from any other patch. Most re-
strictive, however, is the assumption that a two-state Markov chain is sufficient
to describe local population dynamics. Essentially, one must assume that
simply knowing whether a local population is extinct or not, is sufficient.

To overcome the last and perhaps most serious problem with these popula-
tion models, Chesson (1978, 1981) introduced a model that retains the assump-
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tions of random migration and infinitely many patches, but allows local popu-
lations to be described by an essentially arbitrary Markov process on the
nonnegative integers. The model can be thought of as a infinite set of interact-
ing Markov chains. However because of the random migration assumption, the
interaction between these chains 1s very simple and an alternative description is
available: the population on any patch can be regarded as an inhomogeneous
Markov chain where the inhomogeneity is a function of the expected value of
process. Thus the transition probabilities are a functional of the marginal
distribution.

For this model, we study the fundamenial problem of population per-
sistence. Our definition of persistence uses the notion of stochastic bounded-
ness {Chesson 1978), which is a concept closely related to positive recurrence of
the states of a Markov chain. Both necessary and sufficient conditions for
persistence are found.

2. The Model

In the discussion below h is some fixed number (0<h<1), t is a non-negative
integer while 5 is a member of {0,4,1,1+h, ...}.

We deal with just the single species models in the class introduced by
Chesson {1978, 1981). In this class migration and population growth are as-
sumed separated in time. Migration occurs during the periods (0, 1], (1,1 +h],
(2,2+h]. During (h.1], (1+h,2], (2+5,3],... local populations are isolated
and local population growth occurs.

Let Z,(s) be a non-negative integer-valued random variable representing the
local populat:on size on patch j at time s and define Z()=EZ, ;(8) (it will not
depend on j). The population size Z(t+h), following a m1grat10n period, is
written Z;(t +h)=Z 1)+ 1 j(t+h)_Ej(z+k), where I; and E; respectively repre-
sent immigration to, and emigration from, patch j.

Define 4 to be the o-ficld generated by

{Zw,uss; L(t+h) Eft+h).t+h=s;j=1,2,..}.

The following assumptions are made.

1. Z,,Z,, ... are i.i.d. siochastic processes. _

2. Conditional on #, {I;(t+h), E;(t+h).j=1,2,...} is a collection of mu-
tually independent random variables, I. (t+h) is condltlonally Poisson with
mean uZ(r) and E, {t+h) 1s conditionally bmomlal with parameters Z;(t) and u.
{Note that £1, (t+h) EE(t+h) and so Zii+h=Z(1)).

3. P(Z}(r+ 1)=z|#, )=7(z, Z,(t+h)) where y is some transition function.

Heuristically condition 2 can be described as follows: For each patch, each
individual animal emigrates with probability y, independently of the other
individuals. The ernigrants from all patches join a common pool of migrating
individuals, which are redistributed at random to all patches to give the
Poisson distribution of immigrants.
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Condition 1 may seem a little odd since it appears that different patches,
though connected by migration, do not affect each other, In fact the effect of
all other patches on any given patch is deterministic, not stochastic. Any
mdividual patch is affected by the average population density of all patches,
viz

hm Z Zis)=Z(s). as,

n—oc M J=

and is nonrandom by virtue of the law of large numbers. Chesson {1981} shows

how the model described here can be obtained as a limit as k— oo of a model

with k< oo patches. In this latter model the Z;,j=1,....k, are not independent.
An important quantity is the conditional mean

(Zt+ M) =E[Z,(e+ )|, =Y z9(z, Z,(t+h)).

It must satisfy the condition g(0)=0 ie. a zero population has zero growth.
This is of course equivalent to the condition y(z,0)=1 w:(2). To avoid triviality
it is also assumed that Z(0)>0 and u>0.

3. Stochastic Boundedness

Stochastic boundedness (Chesson 1978) is closely related to tightness of a
family of probability measures which is sometimes also given the name sto-
chastic boundedness (e.g. Feller 1971).

Definition I. 'The population on the jth patch is said to be stochastically
bounded from above (sba) if for every &>0 there is an N< oo such that
P(Z,(s)> N)<e for all s.

Definition 2. The population on the jth patch is said to be stochastically
bounded from below (sbb) if the event {Z;(5)>0} occurs for infinitely many s,
a.s., and there is a positive number ¢ such that P(Z(s)>0)ze for all 5.

In this paper the Z; arc identically dlstnbuted and so either all local
populations are stochastlcally bounded or all local populations are not sto-
chastically bounded. Hence we shall speak of stochastic boundedness of local
populations rather than stochastic boundedness of the population on the jth
patch. While the set of processes Z,, Z,, ..., serves to motivate the model, the
mathematical structure of Z; does not depend on the presence of other stochas-
tic processes and it can be defined in isolation. Thus the subscript j will be
suppressed in all that follows.

Stochastic boundedness from below is one way of defining population
persistence and is the main subject of this article. Stochastic boundedness from
above can be dealt with very simply, for it is not difficult to see that the
population will be sba if and only if Z{r)< M, for all ¢, for some finite constant
M. Moreover the following simple condition on g is easy to derive: the
population will be sba if there are positive constants p<1, and N <, such
that g{z)< pz for all z>N.
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3.1. Sufficient Conditions for Stochastic Boundedness from Below

For convenience, in this subsection we assume stochastic boundedness from
above so that there is an M <cc, with Z(1}< M, for all ¢. In the presence of this
condition, sbb reduces to a simple condition on Z:

Lemma 3.1.1. Local populations are sbb if and only if there is an e>0 such that
Zit)ze forall ¢

Proof. The “only if” part follows from the inequality P(Z(5)>0)ZZ(1). To
prove the “if” part assume Z(f)=e>0. Then P(Z{t+h)>0)=1—e**. More-

over
P(Z{t+h)=DZEux*Ov,

where v,=inf {(uz)'e #*/ille<z< M}, and using Jensen’s inequality it follows
that P(Z(t+h)=1)z uMv, Defining p,=P(Z{t+1)>0|Z(t+h)=1) we have

PZit+1)>0)z z wivip,.

The RHS above is positive because v,>0 and p, must be positive for some 1,
since Z(z)>0 for all £. Thus we have proved that P(Z(s)>0) is bounded away
from 0.

To complete the proof we must show that {Z{s) ) >0} occurs infinitely often,
as., whenever Z()=e>0 for all r. If Z(t}=¢ then P(Z(t+h)>01%’ Lenzl
#e““ It follows that

2 P(Z{t+h)>0|#_, )=

and hence, by the extended Borel-Cantelli lemma (Breiman 1968, p.96) Z{t
+h) >0 infinitely often, a.s.
We now come to general sufficient conditions for sbb. In order to define
them we need to introduce another model.
Let Y be a Markov chain with index set {0,k, 1,145, ...} and state space
{0,1,2,...} such that
PY(t+1)=jlY(t+h)=7(, Y(¢+h)

and, given Y(f), Y(t+h) is conditionally binomial with parameters (Y(z), (1 — ).
The process ¥ behaves like the population process for an individual patch with
immigration excluded, i.e. with I{z+h) set equal to 0.

Define f(t)=E[Y{1)| Y(h)=
Theorem 3.1.2. If

(&)

Zf(t)u>1

then local popularions are sbb.

In order to prove the theorem we need some lemmas. We shall assume that
at least one p,=P(Z(t+1)>0[Z(z+h)=1) is positive, as must be so if any of
the f(f) are positive. Define A{.u)={Z(®)>0,...,Z{t~u+1)>0, Z{t—~u}=0,
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Zi—u+h)=1}, u=1,2,..., A, 0)={Z(®)=0, Z({t+h)=1}, Blt,w)={J({t+h)
— . =I(t—ut1+k)=0} and C(t—u)={Z({t~u+hy=1, Z({t—u)=0}.

Lemma 3.1.3.
u—1
E[Z{t+ 1)Lyl C(r~un;f(u+1)exp{—u Y Z(r~v)}_ (1)
=0
Proof. The conditional distribution of Z(t+ 1) given B(t, u) C(t —u} is equal to
the conditional distribution of Y(u+1) given Y(h)=1. Hence
E[Z(t+1)|B(t,u}n Clt—w)]=F(u+1).

Note also that on B(t,u)n C(t—u), Z(t +1}=Z(t+1)1,, , because, in the ab-
sence of immigration, an extinet population remains extinct. Hence

E[Z{t+ 1)1, Blt,)n Clt—u)]=f{u+1) {2)
and since Z(t+1)=0 we have
E[Z(t+ 1) 44,0 CE—w)]2 f e+ 1) P(B(t, W) C{t —u)).

The lemma is now proved by the observation

P(B(, w)| C(t—u)):exp{— S Ze-nl.

—r—

W\

Lemma 3.1.4. Suppose that for some given value of 1,0<e£Z{)S M, then there

is a number & >0, independent of t, such that Z(t+1)=¢.
Proof. As in Lemma 3.1.1
def

P(Z(t+1}>0)2 Z v,0, %6 >0,

and it is clear that Z (t+1)>a As a corollary we can conclude that Z(t)+0
for any t when Z(0)%0.

Lemma 3.1.5. If im Z (t)=0 then, for every ¢>0 and every positive integer N,
there is g t >0 such that Z(t), ..., Zf—N+1)<a.

Proof. For ¢ and ¢ as in Lemma 3.14 define s(e)=min{e, ¢). Let ¢ be the
Nth composition of ¢ with itself. If

Z(t+1)<o™(g) (3)

then Z(t), ..., Z(t— N+1)<e. Since ¢ is a positive function lim Z(1)=0 implies
that (3) is satisfied for infinitely many r and so the lemma is proved.

N
Proof of Theorem 3.1.2. Let N be a positive integer for which > f{w)u>1. Let
' =1

¢>0 be such that

N
Y S - p>1 )
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By Lemma 3.15 either the population is sbb or there is a ¢ such that
Z(t—uy<e for u=0,...,N—1. Assume the latter and define Z i, N)
=min {Z(1), ...,Z(t—N+1)}. The sets A(r,u), u=0,1,... are pairwise disjoint
and so

N-1 N-—1
Zt+Dz Y EZ(t+1) 1, 4= Y E[Z(t+1) 1, ;1 Ct—w)] P(C(t —u)). {5)
u=0

u==0

Since P(Z(t—uw)=0)=1-Z(t—u), PiZ{t—u+R)=1|Z(t—u)=0)=pZ(t—u)exp
(—pZ(t—u) and Z{—u)<e, we have P(C(t—u))>pZ({t—u)e”** (L —¢). Com-
bining this with (1), (4) and (5) we obtain

Zit+ 1)z Z f@ue™ 1 —8) Z(t—u+1)

=pZ_. (t. N).

min

Clearly Z(t+1),....Z(t+N)z pZ. . (t,N), provided none exceeds & Hence
Z . (t+N, N)>pme(t N). This means that Z,,(t+rN, N) will increase as a
function of r until sup{Z(t+v), v=1,...,rN} exceeds & It is then possible that
mm(t-}—rN N) may decrease but it must remain above gt =gV {z).

It is now clear that lim Z()=&*>0 and by Lemma 3.1.1 this proves the
theorem.

Note that the asymptotic lower bound, &*, is independent of the distribu-
tion of Z(0).

3.2. Necessary Conditions for Stochastic Boundedness from Below

Throughout this subsection we assume that there is an M < oo such that
E[Z+D|Z(@+1)=0,5_ 1< M. (6)

Thus there is an upper bound on the conditional mean population size of
positive populations. From (6) it follows that E{Z(t+1)|# 1= M, ZWEM
for all t=1, and hence that local populations are sba. We have the following:

Theorem 3.2.1. If

18

flu<1

T=1

3

then there is an &>0 such that lim Z(t)=0 whenever Z(0)<e Hence local

t— 00

populations are not sbb for such values of Z(0).
To prove the theorem we need several lemmas.

Lemsma 3.2.2.

u—1

E[Z{t+1) 1, ] Cle—w]= ST u+1)+;,LMZZ(t—U). G

p={
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Proof. Using Z, A, B, C respectively for Z{t+1), A{r, w), B(t,u) and C(1—u) we
have
E[Z|C1=E[Z1, gl C]+E[Z1,, 5| C]

SEIZ1,|BNCY+E[Z) B~ C]P(BY C).

By Q) E[Z1,iBnCl=f(u+1). Moreover E[Z|H#, <M and since
B n Cedt,, it follows that E[Z]Bn C1< M. Finally

u—1 u-1

P(B|C)=1 *exp{_,u Y Z—(_r—v)}gy ¥ Z(r—u)

v=10 t=0

Putting this together we get the stated result.
For the next result we need to define the event
D, Ny={Zu}>0,u=t—N+1,...,1}

Lemma 3.2.3. There is a number y <1 such that

P(D(t, N)=x"

for all Nt
Proof.
P(Z(t+1)=01#)2 P(Z(t+ h)=0{H)

> 70 g 120

guZ(t)e—ﬂM
Thus .

P(Z{t+1)>0| )51 — e MO p(Z (). (8)

Now

< T ELp(Z(t—u— 1) Dit—u~1, N=u~1)]
=0

< 1] pETZ—u—)|Dl—u~1, N ~u—1}])
u="0

(The last inequality is Jensen'’s.) Using (6) we see that the conditional expec-
tation is <M and so P(D(t, NY£p(MP " with y<1.

Lemma 3.2.4. For u=0
Ez(t+1)1{Z{I~u=0,2(tku+h]> 1}§M[#Z{f—1‘)]2- @)
Proof. The LHS of (9) equals
E{ELZ(t+1)#, )1 Z(t—w)=0,Z(t—u+h)> 1} P(Z(t —u)=0. Z({t —u+h) > 1)

SMP(Z(t—u+h)>11Z(t~1)=0)
=M{1-[1+pZt—uw]exp[—pZ(t—u)l}
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and the desired result follows from the inequality e*—1—x<x?e" for all
positive x.

Lemuna 3.2.5. Let {z,} and {¢.} be sequences of non negative numbers such that

I~1g

¢, <1, (10)

t=1

and for all N<t

N w—1

zz+1§ Z [Qbu-i-ﬂ Z Zrﬁn:l Zrmu+1+*MxNa (11)
#=1 v=1{

where a, M,y are positive constants with y<1. Then there is an ¢>0 and an

N < oo such that

Zy, s 2Zy<é  implies z, -0 as t-00.

7
Proof. Define z(t, N)=max {z(t), ..., 2( = N+1}}, p= Y ¢, and assume that for
t=1
some fixed t and N, z(t, NYXN~* From (11) we obtain

5, Spzlt, N)+aN~*+My". (12
If
aN *+ My <i(1—p)N—?3 (13

then z, ; SN~ which means z(z+1, N)SN >, indeed z(t+7, N)y=N-?% for all
rz0. As a consequence (12} holds for all ¢ greater than or equal to the given r.
Since lim z,=1m z{t, N} it follows that

hm z,€p lim z,+aN~*+ My"
Hence
aN~*4+My"

lim z,< <1/8N"3. (14)

Now choose N, so that (13) holds for Nz N, and let e=Ng*. If z,, ..., zy, <¢
then lim z,<1/8N; 3. Define N,=2"N,. If t, is given and z, <N, * for 121,
then it follows from (14) that there is a ¢, , such that z, SN, 3 for rzt
Choosing 7,=1 it now follows inductively that ﬁfﬁ"zthn‘:* for every n, which
proves the lemma.

Proof of Theorem 3.2.1. First of all

n+ 1

N

N—1
Ze+)= Y EZ{+Dl .,

0
+EZ({t+ Dy, n

N-1

+ E(J EZ{II + 1)11)({, {23~ w=0,L—u~> 1} (]‘5)

We have EZ(t+1)ly40=ELZ0+ D1, Clt wIP(CEu), PICEu)=pZe
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—u} and using Lemma 3.2.2 we obtain

uw—1
EZ(t+1)1Am)_S_[f(u+1)+,uM ¥ Z_(t—v)]uZ(r—u). (16)
t=0

Also EZ(t+Dlp o =EE[Z(@+ DI, 1150 a0
Using Lemma 3.2.3 it follows that

EZ(t‘i'l)ID(:,N)é-MZN- ‘ (17}
Finally, using Lemma 3.2.4, we have

EZ{t+ 1)} 1p6 wnizu—w=o, 2i—wsms n=EZ{t+ Wizt we0.20-21 5 13

SMIpZE—ul? (18)
Combining (15)-(18) we obtain
ZiE+ 1= i [f(u)+,uM ui Z(t—v)]uZ(t—u+l)+MxN. (19

Using Lemma 3.2.5 we now deduce that there is an &' >0 and an N < oo such
that Z(0), ..., Z(N —1) <&’ implies that Z(f) »0. Given such N and ¢ choose ¢
=¢&//M". Then Z(0)<e implies Z(0), ..., Z(N —1)<¢ because

Z+D=EE[Z(+1)/Z+hH#_ JZ(t+h)
SEE[Z(+ 1) ] Z(t+h)
<MEZ(t+h)
=M Z{t).

Hence Z(0)<e¢ implies Z(t) — 0.

4. Interpretation and Application

The condition for sbb given in the previous section has a natural interpretation
in terms of the expected number of emigrants from a patch that is begun with
one individual, and to which subsequent immigration is excluded. The expected
number of emigrants from such a patch during (t,¢+h] is E LY(o) | Y(R)=11n

=f()u. It follows that » f(r)u is the expected total number of emigrants
t=1

from a patch treated in this way. We have shown that stochastic boundedness
from below depends on whether this quantity is greater than 1 or less than 1.
The intuitive strength of these results suggests that they are likely to hold in a
much broader class of models than is considered here.

[ now give a simple example of the application of the results in Sect. 3 to a
particular model.
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Example. Suppose
. {0}( ) ¢ =0
(@ 8= { (@, &>0.
Then

E[Y(t+DY(+h)>0]= f 2y, ()=

P(Y@+h)>01Y(t+h—1)>0)= z 9, (2)(1— )

=—¢>()

where ¢ is the probability generating function of y,. It follows that P(Y(
+h)>0|Y(h) D=[1-¢@T and E[Y@+D|YW=1]={[1-¢)] and so

Z f(Op=pl/d(). Thus local populations will be sbb for all possible Z{0)>0
t=
if ,uC/r,b(u)>1 If v, is Poisson with parameter 2 this criterion reduces to

Ap ettt b,

Despite the ease of interpretation of the condition for sbb, in situations
more complex than the example above the f(t) are not readily calculated
except for small t. Clearly sufficient conditions can be found by considering
partial sums of the f(t). In addition the example above can be used to find
both necessary and sufficient conditions for any particular example. For an
arbitrary transition function y, y, can be defined generally by the equation

71l2)= lnf y(2 )

0

for z>0, and 7, {0)=1— ) 7,{z). { and ¢ are defined in terms of y; as above.

z=1
Clearly E[Y(¢+ 1) Y(t+h)=>0]={ and P(Y(t+hA)>01Y(t+h—1)>0=1—a(u)
It is now easily seen that

> fOuzul/ow)

and that pl/¢{(u)>1 is a sufficient condition for sbb for any Z{0)>0.
Now define I(z)=inf > y(z,,¢). If I is a proper distribution function

then define y,(2)=I,(z)—TI. 2(:z—l). With {* and ¢+ defined in terms of y, in
the same way that [ and ¢ are defined in terms of y,, we can say that local
populations will not be sbb for all possible Z(0)> 0 if

ul™ T (<.
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