Geometry, heterogeneity and competition
in variable environments

PETER L. CHESSON t
Department of Zoology, Ohio State University, 1735 Neil Avenue, Columbus, Ohio 45210, U.S.A.

SUMMARY

The effects of environmental fluctuations on coexistence of competing species can be understood by a new
geometric analysis. This analysis shows how a species at low density gains an average growth rate
advantage when the environment fluctuates and all species have growth rates of the particular geometric
form called subadditive. This low density advantage opposes competitive exclusion. Additive growth rates
confer no such low density advantage, while superadditive growth rates promote competitive exclusion.

Growth-rate geometry can be understood in terms of heterogeneity within populations. Total
population growth is divided into different components, such as may be contributed by different life-
history stages, phenotypes, or subpopulations in different microhabitats. The relevant aspects of such
within-population heterogeneity can be displayed as a scatter plot of sensitivities of different components
of population growth to environmental and competitive factors, and can be measured quantitatively as
a covariance. A three-factor model aids the conceptual division of population growth into suitable

componen ts.

INTRODUCTION

Do environmental fluctuations explain the high di-
versity of some animal and plant communities (Abrams
1984 ; Armstrong & McGehee 1976; Chesson & Huntly
1989; Comins & Noble 1985; Connell 1978; Grubb
1977; Sale 1977; Shmida & Ellner 1985; Woodin &
Yorke 1975)? Hutchinson (1961) suggested that
environmental fluctuations could favour different
species at different times, and that this would permit
coexistence of many species. Similar ideas form part of
Grubb’s (1977, 1986) conception of the regeneration
niche. These ideas are now supported by mathematical
models, with some provisos, as can be seen below.

It has also been suggested that environmental events
affecting all species similarly may promote coexistence
when they occur in the form of disturbance, causing
pulses of mortality (Connell 1978). This idea is best
developed for models of successional systems in patchy
environments (Hastings 1980).

Models argue against the common conception that
environmental variability promotes diversity by keep-
ing species’ densities at levels where there is little
competition (Chesson & Huntly, in preparation).
Diversity maintenance usually involves different spe-
cies being favoured at different times by environmental
or competitive conditions (Chesson & Huntly 1989).
Thus while the initial effects of disturbance may be
similar mortality for all species, diversity maintenance
involves differential responses to the ensuing sequence
of competitive conditions.
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It is also important to keep in mind that en-
vironmental variability need not have the same effect
in different systems. Models show a strong dependence
on the biological details of the component species,
including life-history properties, physiology and be-
haviour (Chesson 1988). Depending on these details,
environmental variability may promote diversity,
promote competitive exclusion, or have no effect at all
on diversity.

At least for the case of temporal environmental
variability, there is a general understanding of the sorts
of situations leading to these different effects of
environmental variability (Chesson & Huntly 1989).
It is the purpose of this article to explore this in two
specific-ways. First we consider a geometric approach
to stochastic competition that shows how geometric
properties of population growth rates can oppose
competitive exclusion in some circumstances, but
promote it in others. We will then explore the origin of
the important geometric relations in the biology of a
population. Heterogeneity within a single species
population is of special importance to the geometry of
a species’ population growth rate and therefore of
special importance in the outcome of interactions with
other species.

A GENERAL COMPETITION MODEL

Environmental effects in competition models are
usually represented through some population par-
ameter that is sensitive to fluctuating environmental
factors. The choice of an environmentally dependent
parameter depends on the actual ecological community
that one is trying to represent, but in general, it is
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something like a density-independent birth rate,
mortality rate, seed germination rate, or resource
uptake rate. A population can be expected to have
several environmentally dependent parameters (Ches-
son & Warner 1981), but for simplicity it is here
assumed that each species has just one key en-
vironmentally dependent parameter, denoted by the
symbol E,(¢), where i is the species and ¢ is time. Often
time, ¢, will be suppressed for notational simplicity.

A second important ingredient in stochastic com-
petition models is the competition parameter. This is
taken as a single number C,(¢) representing for the time
period ¢ to {+ 1, the effect of competition both with and
between species on the growth rate of the given species
¢. This competition parameter is presumed to depend
on the densities of the species in the system and also on
their environmentally dependent parameters. Thus, it
can be represent as

Ci(t) = ¢,(E, Xy, By, Xy . L E,, X)), (1)

where X, X,,..., X, are the population densities of the
n competing species in the system, and ¢; is some
function.

Environmentally dependent parameters can be
expected to affect the amount of competition occurring
through their effects on the abundances of competing
forms. For example, if the environmentally dependent
parameter is a germination rate, it will affect the
abundance of seedlings, which potentially strongly
affects the intensity of competition as these seedlings
grow. This indirect effect of £, through its effect on
competition depends on the density of the species, and
vanishes when the species’ density is 0.

With these definitions, population dynamics in
discrete time can be represented as:

X,(t+1) = G(E, C) X;(0), (2)

where the function G, combines E; and C; to give the
finite rate of increase of species ¢ from time ¢ to time
(+1. A particular example of a model within this
general class of models is shown in Table 1.

To analyse the model, we express population growth
on the log scale, writing

In X, (t+1) =In X;(1) = g,(£;, Cy), (3)

where g, is simply In G,. Changes in In population size
over any period of time can be found as the sum of g,

Table 1. Seed-bank model

X (141) = [(1=E,(0) 5,4+ E (1) Y,/C(1)] X,(0).

X,(0): size of seed bank of species 7 at the beginning of
year ¢ before germination.

E(1): germination fraction of species ¢ in year ¢.

5t yearly survival rate for ungerminated seeds.

Y, seed yield per germinated seed in the absence
of competition.

C,(1): Reduction in seed yield due to competition. A
function of the number of seeds germinating,
e.g. C,(1) = 1+ X1 a, E(t) X,(t), for constants
a;.

GE,C): [(1—E (1)) 5,4 E,(t) ¥,/C,(1)], the finite rate of

increase for species 1.
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over that period. Tt follows that the observed trend in
population growth over any period of time is the simple
arithmetic average of g, for the period. Thus, to predict
future trends in population growth, we average g,(E,,
C,) over the theoretical probability distribution of E;
and C,.

According to the standard invasibility analysis
(Turelli 1981; Chesson & Ellner 1989), a species will
persist in the presence of its competitors if its population
recovers after fluctuations to low density. Such recovery
is determined by the mean low density growth rate,
which is defined as the average value, A,, of g,(E,,C;),
with X,(¢) set equal to 0. This is expressed math-
ematically as

A, = E[g,(E, C)], (4)

where the E outside the square brackets is the
mathematical symbol for averaging the quantity inside
over its theoretical probability distribution. The
notation C’j means C; evaluated with X set equal to 0.

If A, is positive, we know that species ¢ will tend to
increase from low density, and thus avoid competitive
exclusion. Ifitis negative, species i will tend to decrease
from low density and may become extinct.

For two-species communities, under certain con-
ditions, Chesson & Ellner (1989) showed that positive
values for the As of both species imply coexistence in
the sense that both species show steady fluctuations,
and always recover from excursions to lower densities
(figure 1). Negative values for both species mean that
they have positive probability of converging to ex-
tinction and that one of them must eventually do so, a
situation that can be described as random competitive
exclusion.

Finally, if the As of the two species are of opposite
sign, the species with the negative A is driven extinct by
the other species. No such rigorous analysis has been
completed for the n species situation, but Turelli (1980)
and Ellner (1985) have found the invasibility approach
to be generally supported by computer simulations.

Invasibility analysis requires knowledge of the
probability distribution of C;. To get this, one assumes
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Figure 1. Competition between two species satisfying the
seed-bank model of table 1. The species with open circles is
competitive subordinate with Y value 80Y, of that of the
other species. The E, have independent rectangular dis-
tributions, s; =5, = 0.9, and a,; = 1 for all ¢, j.
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Figure 2. Change in log population size (‘growth rate’), as a
function of C, for different values of the environmentally
dependent parameter. (a) additive; () subadditive; (c)
superadditive.

that the other species in the system have settled down
to the sort of fluctuations that they achieve in the long-
run after the removal of species i. This means in
particular that the probability distribution of any
species j, say, has no further changes over time, i.e. is
described by a stationary probability distribution
(Turelli 1981).

Stationary distributions are difficult to calculate in
general, which means that we must resort to various
tricks to get enough information about them. One such
trick is recognizing that if species j is at its stationary
distribution, then E[In X,(¢+1)] and E[In X;(¢)] are the
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same because the probability distribution of X, used to
calculate these averages is the same at both times ¢ and
t+ 1. It follows that the difference between them is 0,
ie.

E[g(E;, C))] = 0. ()

By using these ideas it is possible to show that the
shapes of the functions g, are critical in determining the
effect of environmental fluctuations on coexistence.
Figure 2 shows the three possible shapes that growth
rates can have. These different general types of growth
rates are called additive, subadditive or superadditive,
depending on whether the plot of g,(E,, C,) against C,
for different values of E; gives parallel curves, con-
verging curves or diverging curves. These shapes are
generally associated with diversity neutral, diversity
promoting and diversity demoting effects of environ-
mental fluctuations (Chesson 1988), respectively. How
these different effects come about is best understood by
the geometric approach presented here.

COEXISTENCE AND THE GEOMETRY OF
POPULATION GROWTH RATES

To introduce this geometric approach, I make a
number of simplifying assumptions. I assume that the
species differ only in their responses to environmental
factors. Thus I shall assume that the g;s are all the
same, and so we can drop the subscript. Similarly, I
assume that the C; are all the same. Thus all species are
affected by the same, possibly composite, competitive
factor.

With these assumptions we can set about calculating
A, for any species, arbitrarily designated as ¢, within
this »n species system. We use the technique of
conditional expectations, which allows us to evaluate
A, in stages. We compare the growth rate of species ¢ at
low density with the growth rate of some other species
J, assuming that j and all other species are at their
stationary distribution. Thus species j has a mean
growth rate equal to 0 in accordance with equation
().

The environmentally dependent parameters of spe-
cies 7 and j, (£, E;), have some bivariate probability
distribution. Let (e,,€_) be one point chosen from this
distribution with e, > ¢_. We consider the effects of
(E;, E;) fluctuating between the two values (¢,,¢_) and
(e_,e,). This is equivalent to conditioning on the event
that (£, E,) takes one or the other of these two values.
We also condition on the environmentally dependent
parameters of all other species, and all species
population densities. Thus, we consider all these things
as fixed for the time being. The only uncertainty left is
whether (£, E;) takes the value (e,,e_) or (e_¢€,).
These restrictions let us focus on the most important
aspects of population dynamics geometrically (figure
3).

Under the imposed conditions, C can only vary with
E; as C does not depend on E, when X, =0, and
everything else is being conditioned on (is fixed for
now). Thus € can take just the values

c.=c(lky, X, Eyy Xy, o6, X, B X)), (6)
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Figure 3. The growth rates g(c._, @ (top curve) and gle_, C)
(bottom curve), as functions of C for the subadditive case.

and

6= o(Ey, Xy Eyy Xyy o6y, Xy oo, By X,). (7)

It follows that g(£,, C) fluctuates between the two
values g(e,,c_) and g(e_,c,), while g(£, C) Auctuates
between the values g(e_,c_) and g(e,,c,). Labelling
these values of g as g,_, g__, etc. these fluctuations can
be located on the figure 3 as fluctuations between the
point + — and — + for species ¢, and — — and + +
for species j. These points have the respective co-
ordinates (c—9g+—>> (C+u —+)s {C~9g——)a (C+’g++>‘

Their probabilities will generally not be equal. If p is
the probability that (£, E,) takes the value (e, €_),
then the points + — and — —, have probability p and
the points + 4+ and — + have probability ¢ = 1 —p.

The first stage in calculating A, is averaging g, for the
restricted conditions of figure 3. This average is found
atthe point M = (¢,g,) = (pc_+qc,, pg...+qg_,), which
lies on the line joining + — and — +, dividing it in the
ratio ¢:p. Depicted here is a situation where ¢ > p. If ¢
were equal to p, M would lie at the point 4 dividing the
line segment 4+ — to — 4 in equal portions. The
corresponding point (7, g;) for species j lies at the point
N, shown here below M.

Figure 3 shows that M lies above N, so that g, > g,
whenever these points are to the left of the point K. In
this situation species ¢ has a higher average growth rate
than species j for fluctuations between the two chosen
environmental states. Thus species ¢ has an advantage
in average growth rate. This advantage comes from the
fact that its growth rate fluctuates between + — and
— + while species j has fluctuations between — — and
+ +, which in turn comes from the fact that species :
is at low density (an invader) while species j is a
resident.

This low-density advantage means that species ¢ can
experience a sizeable disadvantage in frequency of
favourable environmental states (p < ¢), and vyet still
have a higher average growth rate than other species.
For example, in the specific geometry of the figure, K
divides the lines — — + + and + — — + roughly in the
ratio 6: 1, which means that species i would have to
have a greater than 6:1 disadvantage to species j in
frequency of favourable conditions, before it had a
lower average growth rate.

Phil. Trans. R. Soc. Lond. B (1990) [46]

Under what conditions does this low-density ad-
vantage mean that a species will be able to coexist with
its competitors? The low density average growth rate,
A,, is the average value of g, when all the variables that
were fixed to construct figure 3, are now varied over
their distribution of possible values. Because species j is
assumed at its stationary distribution, the average of g,
is 0. It follows that

4,= E[gi_gj]v (8)

which is the average of the difference between points M
and N in figure 3, when the environmentally dependent
parameters and species densities vary over their joint
probability distribution of possible values. Thus if
species ¢ is never at such a disadvantage to its
competitors that M and N lie to the right of K, then
species ¢ must persist in the system. If this is true for
each species considered individually in the low-density
state, then all species coexist together in spite of
potentially significant average disadvantages that some
species may have.

The situation just considered, however, is not very
realistic. It is more likely, when there are inequalities
between species, that the points M and N will lie to the
right of the point K for some values of €,, e_, for some
population densities and some values of the en-
vironmentally dependent parameters of other species,
which are held fixed to construct figure 3. The final
average value, A, of g,—g; is then an average of
situations in which M N is to the left of K and situations
where it is to the right of K. The geometry of the figure
biases the outcome such that positive values of g,—g;
will tend to predominate, leading to a positive result
for A, unless species ¢ is too greatly inferior to other
species. The situation is far from straightforward,
however, as is best understood through some specific
examples.

Consider a two-species model of strong competition
for space, such as the lottery model (Chesson &
Warner 1981). If reproduction is always sufficient to
fill the available space in spite of fluctuations in the
environmentally dependent parameters, then the popu-
lation density of the resident species j does not fluctuate
with time. The line — — + + is horizontal and g; = 0.
If the environment does only fluctuate between two
states, figure 3 tells the complete story, for then A, =
g;. If the inferior species is not so inferior that NM is at
or to the right of K, the species coexist.

How do we proceed to the more useful situation
where the environmentally dependent parameters take
on a continuum of values? This is surprisingly simple
for the lottery model if the birth rates are the
environmentally dependent parameters and the logs of
these are normally distributed, possibly correlated
between species, with equal variances but different
means. For low adult death rates, and any given set of
model parameters, it can be shown that MN is always
to the left of K or always to the right. This is also true
if one makes the assumption that the mean differences
between species and the variances are small, but that
the adult death rates have any value. In other cases, it
can be expected that some chosen values of (¢,,€_) will
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have MN to the left of K while for others it will be to
the right, leading to some positive values of g; and some
negative values. The final sign of A, in such situations
necessarily involves averaging the g values over the
distribution of (e, €_).

As a further illustration, consider symmetric com-
petition between species, as discussed by Chesson
(1988). This means in particular that the competition
function depends on all species in the same way, and
the probability distributions of environmentally de-
pendent parameters are the same [or all species. Until
now, we have not made the usual ‘white noise’
assumption that the environment process is inde-
pendent over time. Indeed, the forgoing results apply
for any colour of the noise process. However, it is now
important to make the white noise assumption that the
environment process takes values in the next time
period that do not depend on values it has taken in
previous time periods. This assumption means that
conditioning on population densities, whatever they
may be, does not upset the symmetric relation between
the environmentally dependent parameters of the
invading species ¢ and the chosen test species resident ;.
(The analysis can be done with any of the n—1 resident
species without affecting the results.)

In this setting, the symmetry of the relations among
the species means that p =1 MN coincides with AB
and divides the lines + — — 4+ and — — + + exactly in
half. In the subadditive situation of figure 3, K lies right
of AB, unless €, = €_, in which case the figure collapses
to a single point. Thus whenever ¢, differs from e_,
g,— g, is positive. It follows that if the species can have
different values for their environmentally dependent
parameters, i.e. show some differences in their re-
sponses to the environment, A, is positive for all species.
Thus these n species coexist.

Symmetry is not realistic, but the power of the
symmetric example is that very [ew assumptions are
needed along with symmetry to prove coexistence.
Thus, setting symmetry aside, it is very general indeed.
Moreover, the final result, coexistence of all n species,
can be expected to be robust to small departures from
symmetry, because the A, will usually change con-
tinuously with continuous deformation of the model.
Thus small departures from symmetry are unlikely to
make any of the A, negative or zero, and so coexistence
is likely to be preserved. Sufficient departures from
symmetry, however, will lead to competitive exclusion
of some species.

Our analysis suggests that the stronger the con-
vergence of the growth curves in figure 3, the more
asymmetry can be tolerated before exclusion occurs,
and this expectation is supported by approximate
formulae for the A; (Chesson 1989). The reason for this
is that K will then be a long way to the right of 4B, and
so quite small p-values, i.e. large disadvantages to
species i, can be tolerated before g —g, becomes
negative.

In some cases the growth rates do not merely
converge, but cross. This is the case with the seed bank
model of table 1, depicted in figure 4. Then it is
possible for fluctuations to occur between environ-
mental states that always lead to a greater growth rate

12
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Figure 4. Intersecting subadditive growth rates of the seed-
bank model.

for a species at low density, and g; —g; is positive even
when p = 0 (figure 4).

COMPETITIVE EXCLUSION

Figure 2 shows three possibilities for the growth rate
g;,(E;, C,). In addition to the subadditive case (figure 24)
discussed above, the growth rate could be additive
(figure 24) or superadditive (figure 2¢). The geometry
of the additive case means the sign of g,—g; is simply
the sign of p—¢. Thus additivity confers no advantage
on a species at low density that might offset other
disadvantages, and we cannot expect environmental
fluctuations to promote coexistence or competitive
exclusion.

The superadditive case is easily seen to confer a
disadvantage on a species at low density. This can
offset advantages that a species may have, allowing
dominance by other species, or promoting a situation
where all species have negative low-density growth
rates. The latter situation leads to random competitive
exclusion (Chesson & Ellner 1989).

GENERATION OF NON-ADDITIVITY BY
WITHIN POPULATION HETEROGENEITY

The simplest sorts of population models tend to be
additive (Chesson 1988). Additivity comes about when
the action of competition does not affect the action of
the environment and vice versa, given their values.
This means that the finite rate of increase, G(E, C),
takes the general form

G(E,C) = A(E)/B(C), 9)

where now I have dropped the species subscript for
simplicity of notation. Note that this assumption is
quite independent of the idea above that the actual
value of C depends on the value of E. Taking logs of this
gives

¢(E,C) = InA(E)—In B(C), (10)

which is the additive form giving the parallel growth
rates of figure 2a. Departures from the additive
Vol. 330. B
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situation can be measured by the quantity 7y, defined

b
Y g
Y= e

(1)

which is zero in the additive case.

The independence of action of E and C expressed in
(9) can also be thought of as meaning that competitive
and environmental factors operate uniformly across all
individuals in the population. Thus the fact that an
individual has been affected a certain way by the
environment does not alter the effect that competition
will have. The seed-bank model of table | gives an
obvious departure from this situation. The effect of
environment is to bring on seed germination or not. If
an individual does not germinate, it is assumed to
experience no competition. On the other hand, an
individual that germinates is exposed to competition
from other individuals as they grow. It follows that the
environmental factor and the competitive factor are far
from independent in action. If the environment
increases the germination fraction, it necessarily in-
creases the fraction of the population that is exposed to
competition.

Dependence of action comes about because the
population is subdivided into groups of individuals
that are doing different things at the same time, and
these different groups are affected differently by
environmental and competitive factors. Thus we can
represent the growth rate of the entire population,
subdivided into different contributions to population
growth, as follows:

k
G(E>C) = ZGZ(EaCL (12)
=1
where G,(E, C) simply represents a contribution to the
growth rate from the /th of £ possible sources. In the
seed bank model, for example, we have G,(E,C) =
(1—E)s, and G,(E,C) = EY/C.

It is important to note that the components of the
growth rate in equation (12) could each be additive;
that is within components, the action of environment
and competition could be independent, but the overall
effect when they are combined is interactive, not
independent (Chesson & Huntly 1988). To see how
this comes about, we define sensitivity to environment,
competition, and their interaction for each of the
components of population growth as follows:

9, g, g,
“ = E A oc V' T aEaC (13)
where g, = InG,.

We can now express the deviation of the total
population growth rate, g(£, C), from additivity by the

formula
k

(“z-‘i)(ﬂl_ﬁ) G/X G, (14)

1 =1

where G, is just a shorthand for G,(E,C), and &, f, 7,
are the weighted averages

M=

y=7-

k K
a=22o06G/% G, (15)
=1 1=1

etc.
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Equation (14) gives the measure of nonadditivity, v,
as an average of the nonadditivity that may occur in
each component by itself minus the weighted co-
variance between o, and f,. The weights in these
calculations, G, are each component’s contribution to
population growth.

This representation of non-additivity, 7y, is most
useful when the 7, are zero, meaning that the
components have been chosen such that within a
component, environment and competition act uni-
formly across all individuals. If the 7y, are not zero this
may mean that the components are themselves
heterogeneous with respect to the operation of en-
vironment and competition, and can be further
subdivided. In some cases, however, non-additivity
arises within a component as a behavioural or physio-
logical response that is not easily reducible (Chesson
1988).

In the case when the y, are zero, the population-level
nonadditivity is simply minus the weighted covariance
of the a; and the £,, which can best be understood by
means of a scatter plot of the a, and f,. For example,
the seed bank model of table 1 is shown as the two-
point scatter plot, figure 5. Point A is for the seeds that
remain in the soil. The fraction of seeds in this
component is 1 — £, where E, the germination fraction,
is the environmentally dependent parameter. The
number of seeds in this component is therefore
negatively sensitive to £. Dormant seeds do not
compete, and so the sensitivity of this component to
competition is zero. Thus the point 4 has a negative
value of , and a zero value of g,.

The point B in the figure corresponds to seeds that
germinated, and therefore grow and compete with
each other and plants of other species. This component
is increased by germination, and experiences com-
petition ; thus it represents positive values for both «,
and f,. The covariance measures common linear
variation among the two variables a, and f,, which is
perhaps best understood by appreciating that it equals
the correlation between them times the product of their
standard deviations. Thus it involves how closely they
lie on a straight line, the sign of the line’s slope, as well
as the amount of variation shown by each variable.

=B

=4

B, (sensitivity to competition)

a, (sensitivity to environment)

Figure 5. Two-point scatter plot for a population with two
distinct components to its growth rate showing positive
covariance of sensitivities to environmental and competitive
factors.



The relation between the covariance and non-
additivity can be seen intuitively, also. As the environ-
mentally dependent parameter is increased, com-
ponents with higher sensitivity to the environment
contribute relatively more to population growth
compared with other components. Positive covariance
of sensitivity means that these same components are
those with higher sensitivity to competition, and so the
population as a whole has more average sensitivity to
competition. Thus, the change from low slope to a
more negative slope shown in figure 25, which means
that y is negative.

The seed bank example is perhaps a further
worthwhile illustration. As E increases, more of the
seeds germinate, and are exposed to competition.
Thus, average population sensitivity to competition
increases. One can also view this from the perspective
that as £ increases, more of the population is at point
B in figure 5 (where there is high sensitivity to
competition) and less at point 4 (where there is low
sensitivity to competition).

One can use scatter plots like this to assess
nonadditivity whenever a population can be divided
into components with differing sensitivities to en-
vironment and competition. A few more examples will
serve to illustrate. In many organisms the juvenile
phase is especially sensitive to environmental and
competitive factors, compared with the adult organism.
Thus point B in figure 6 could represent these juveniles
and point 4 the adult phase. Thus, again there is
positive covariance of sensitivities, and a negative value
of y. Previously this situation has been discussed under
the heading of the storage effect (Warner & Chesson
1985), which now can be seen as a special case of the
more general concept, subadditivity.

Another example involves subpopulations in dif-
ferent habitats. Spatial variation in the quality of living
conditions occurs for all organisms, as has been
documented extensively in plants (Harper 1977 ; Gross
1984 ; Silvertown 1987). Are there places, however,
that are less sensitive to environmental factors than
elsewhere, and also less sensitive to competition? It
may well be that in plant populations, areas that are
relatively and permanently harsh may qualify. Such

B, (sensitivity to competition)

«, (sensitivity to environment)

Figure 6. Scatter plot for a population whose growth rate has
many components, showing positive covariance of sensi-
tivities. The line represents an ideal / factor causing a strict
relation between a, and f,.
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harshness may limit individual growth making it
unresponsive to other factors, including temporally
fluctuating environmental factors and fluctuating
competition.

An alternative example involves cases where re-
cruitment into especially favourable spots is limited,
thus keeping densities low. For example, considering
species that compete for moisture, small naturally
moist areas may never achieve densities high enough
for much competition if they are so small that most
dispersal is away from them (DeAngelis et al. 1979).
Lowered sensitivity to the environment must go along
with this lowered sensitivity to competition if y is to be
negative. In the situation just envisaged, lowered stress
might make individuals less sensitive to the environ-
ment. Clearly, this need not always be so, as removal
of moisture limitation might make individuals more
responsive to other factors. If that occurred, the
covariance of sensitivities would be negative, and the
measure of non-additivity, y, would be positive giving
the superadditive situation of figure 2¢.

In addition to spatial variation, variation with life-
history stage or population growth process, one could
also consider phenotypic variation. This is of particular
interest in relation to the seed bank model, because the
same individual plant may produce different pheno-
types of seeds with the potential for different ger-
mination properties and different competitive abilities
(Cavers & Steel 1984; McGinley e al. 1987; Fenner
1985; Venable & Brown 1988; Silvertown 1989).
Covariation in these traits might well be another
source of non-additivity.

THE THREE FACTOR SCHEME

There seems to be an endless variety of ways in
which populations could be heterogeneous and through
which non-additivities could occur. The purpose of this
section is to provide some general way of viewing the
possibilities to aid the investigation of the relevant sorts
of heterogeneity. In general, it can be expected that
there will be a host of factors contributing to individual
survival, growth and reproduction, and ultimately
population growth. Some factors are consumed, and as
a result of consumption become less available. More
generally, some factors create a negative feedback loop
for the affected species in the community (Andrew-
artha 1970). We associate such factors with com-
petition, and we refer to them as C factors.

Other factors may not lead to any kind of feedback
for the relevant biological populations. I divide these
into two sorts, £ factors and [ factors. The E factors are
those that vary over time. The [ factors are those that
do not vary over time, but instead vary within a single
species population (one member of a community of
similar species). For simplicity, we shall think of a
population as having just one of each of the three sorts
of factors. These of course could be composite factors,
but thinking of them as single factors will help sharpen
intuition. These three factors, C, E, and [, lead to
competitive parameters, environmentally dependent
parameters, and population subdivision respectively,
as discussed in the models above.
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The importance of the factor / is its effects on the
other two factors. For plant species it is known that
some factors (essential or interactively essential re-
sources) have strong effects on the sensitivities of the
organisms to other factors (Tilman 1988). An example
is perhaps shade as a factor in the dynamics of species
in the understory of forests (Dahlem & Boerner 1983).
Shade is an [ factor if we assume that understory
species are shaded by trees but do not shade each other,
and that tree canopy density varies.

Plant growth is sensitive to temperature (Larcher
1983), but light limitation through shade restricts a
plant’s ability to respond to warmer weather. Perhaps
more importantly, shade moderates temperatures.
Thus shade should affect the sensitivity of plant growth
to variation in the weather, which can be the E factor,
and would be measured in some standardized way such
as plant temperature in full sunlight.

Shade, through light limitation is also likely to affect
competition for resources such as nutrients (Tilman
1988), which might be the C factor. Thus we see that
shade, the [ factor, leads to joint positive variation in
sensitivity to the £ and C factors. A scatter plot such as
in figure 6 would be obtained. The different points in
the figure represent different places on the forest floor.
Ideally, if £, C, and [ were all truly single factors, and
there were no other factors present, these points would
all lie on the single curve through the points. In reality,
however, other factors varying from place to place
are likely to make it a scatter. The positive covariance
of sensitivities shown here means that growth rates for
the population encompassing the points in the scatter
plot, would be subadditive. Thus according to the
community theory presented here, we should expect
that a scatter plot like that in figure 6 should help
maintain species diversity in a fluctuating environ-
ment.

The factor / might in some cases be qualitatively
different from the other factors. In the seed bank
model, for instance, the factor { simply distinguishes
between the class of individuals growing above ground
and those remaining as seeds. Thus it is simply a label
for two somewhat incomparable components. In the
case of seed phenotypes, the factor / might be seed size,
and there is evidence that seed size affects response to
both environmental and competitive conditions (Mc-
Ginley et al. 1987; Fenner 1985; Venable & Brown
1988; Silvertown 1989).

While this theory involving E, C and [ factors may
have elements in common with Tilman’s (1982) theory
of plant competition, it nevertheless has important
differences. For example, in this theory coexistence can
occur if all species are limited by the same competitive
factor. In other words C can be identical for different
species. In contrast Tilman’s theory requires C to be
different for different species. In this regard, it is
important to note that the / factor here is not a
competitive factor and can affect all species similarly.
The environmental factor, E, however, must dis-
tinguish between species at least quantitatively. For
example, different species might have different abilities
to benefit from higher temperatures.
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CONCLUSION

The likely broad occurrence of non-additivity in
nature implies that temporal environmental fluctu-
ations quite gencrally modify the outcomes of com-
petitive interactions between species. However, the
actual effect of environmental fluctuations depends on
whether non-additivity is in the subadditive or super-
additive direction. How much environmental fluctu-
ations modify the outcomes of competition depends on
the strength of non-additivity as measured here by a
covariance of within-population heterogeneity.

Discussions with Nancy Huntly have been of great value in
developing the material in this article. This work was
supported by a grant from the National Science Foundation

(BSR-8615028).
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Discussion

P.J. Gruss (Botany School, University of Cambridge,
U.K.). Would Professor Chesson please show how his
analyses may be used to determine the limiting
similarity between species?

P. Cuesson. This paper explores just one of many
different ways that species may differ from one another.
Within this restricted context it shows how dissimilarity
of responses to environmental factors gives an ad-
vantage to a species at low density, opposing com-
petitive exclusion. This effect depends on growth rates
being subadditive (figure 24), and its strength depends
on the magnitude of subadditivity, or the rate of
convergence of growth-rate curves for different en-
vironmental conditions. How increased dissimilarity
increases the low-density advantage can be seen from
figure 3. More dissimilarity means that the points
labeled + — and — — will be further separated from
+ 4+ and — 4. lt is casiest to imagine these points as
shifted to more extreme positions on the depicted
growth rate curves, but in fact these curves also change
making the contrast in slope greater. However this is
viewed, the important outcome is the same: more
dissimilarity increases the contrast between the dis-
tances — — to + — and — 4+ to + +, with the effect
that the low density advantage given by the distance
MN is increased.

This geometric approach helps in understanding
how a limit to similarity arises in populations in a
fluctuating environment. Quantitative measurement
of the limit to similarity is best pursued by approximate
formulae for the mean low density growth rate that I
have presented elsewhere (Chesson 1989). These allow
classical niche dissimilarity involving resource use to be
considered in concert with dissimilarity arising through
differences of responses to fluctuating environmental
factors.





