THEORETICAL POPULATION BIOLOGY 45, 227276 (1994)

Multispecies Competition in Variable Environments
PETER CHESSON

Ecosystem Dynamics Group, Research School of Biological Sciences,
Institute of Advanced Studies, Australian National University,
Canberra, ACT 0200, Australia

Received March 16, 1992

A general model of competition between several species in a variable environ-
ment is presented and analyzed using a general method that unifies treatment of
different specific models. This method yields broad conclusions that are independent
of the details of a model. It is used here to show that mechanisms of coexistence
and competitive exclusion are largely restricted to three broad categories. One of
these categories includes classical mechanisms that do not depend on fluctuations
over time. Another category includes mechanisms which may be referred to collec-
tively as the storage effect. These mechanisms involve species-specific responses
to environmental fluctuations, a relationship between fluctuations in competition
and fluctuations in the environment, and an interaction between environment and
competition. The final category depends on fluctuating competition and nonlinear
responses to competition that differ between species. These general results are
illustrated with analyses of several specific models, including a Lotka—Volterra
model, a model of nonlinear resource consumption, and models of recruitment
fluctuations for iteroparous organisms and for annual plants. € 1994 Academic

Press, Inc.

1. INTRODUCTION

Fluctuations over time are one of the most striking features of natural
ecosystems. Fluctuations occur in the densities and relative densities of
organisms and in the environments in which they live. In this article, T ask:
How do fluctuations over time affect the outcomes of interactions between
species? More generally, 1 ask: How is community structure affected by
fluctuations ? There has long been a belief that fluctuations must have a
major influence on the structure of communities (e.g., Hutchinson, 1961;
Connell, 1978), but until recently there was no satisfactory theory
addressing this question. Models providing a theoretical framework now
exist. Commonly, these models assume that fluctuations in population
densities originate with environmental fluctuations. Hence the resulting
theory might be called variable environment theory.

There are two main sorts of variable environment theory. First is theory
based on simultaneous fluctuations in space and time of equal magnitude
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(spatio-temporal models). Most models of disturbance are in this class
(Slatkin, 1974; Caswell, 1978; Hastings, 1980; Hanski, 1983). More
recently, models have been developed in which local immigration rates or
competitive conditions fluctuate in time for unspecified reasons (Comins
and Noble, 1985; Chesson, 1985; Ives, 1988).

Second is theory emphasizing fluctuations over time alone (e.g.,
Abrams, 1984; Chesson and Huntly, 1988). For this class of theory, which
is the focus of this article, it has been possible to show that a few general
principles permit understanding of a variety of different particular systems
(Chesson, 1988, 1989). In essence, there is a unified theory of temporal fluc-
tuations. This unified theory deals mostly with models having stochastic
environmental fluctuations, but some models with deterministic fluctua-
tions also have been fitted into this framework (Chesson and Huntly, 1989;
Ebenhoh, 1992; Loreau, 1992). Moreover, this unified theory can be
extended to cover a class of spatio-temporal models (Chesson and Ives,
unpublished manuscript).

The unified theory has continuity with classical community ecology
based on a point equilibrium. In particular, the idea that species must be
sufficiently ecologically distinct to coexist is preserved in the unified theory
(Chesson, 1991). The unified theory, however, considers a much broader
range of ways in which species can be ecologically distinct than was
ever considered in the classical point-equilibrium approach to community
ecology.

This success in finding general principles governing community dynamics
suggests that further gains can be made. In this article, I develop a general
model of a multispecies system of competitors in a temporally varying
environment, and [ use it to develop a general quantitative criterion for the
persistence of a species in the presence of its competitors. This criterion
provides a quantitative understanding of mechanisms of coexistence and
competitive exclusion (“coexistence-affecting mechanisms™) in a fluctuating
environment.

This quantitative criterion extends the two-species results of Chesson
(1989) to the multispecies case. Its main limitation is that it depends on a
quadratic approximation of the model. Nevertheless, it provides a broadly
applicable beginning to the quantitative understanding of some very
general phenomena (Chesson, 1990). It points to a method of under-
standing the operation of mechanisms on different timescales, and
demonstrates a way of assessing the relative contributions of various
mechanisms to species coexistence.

These general findings are illustrated with analyses of several specific
models, including a Lotka—Volterra model, a model of nonlinear resource
consumption, and models of recruitment fluctuations for iteroparous
organisms and annual plants.
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2. OVERVIEW OF MODELS AND MECHANISMS

To study coexistence-affecting mechanisms, we must first formulate
population growth mathematically and decide what we mean by coexistence.
Let X,(z) be the population density of some species ¢ at time ¢, and express
its population density at time ¢+ 1 as

X(t+1)=4,(1) X, (1), (1)

where A,(¢) is the finite rate of increase of species i, for the time interval ¢
to ¢+ 1. (For the convenience of readers, a list of general notation is given
in Appendix I.) On the log scale, Eq. (1) becomes

Z,(t+1)=Z;()=r.(1), (2)

where Z,(t)=1In X,(z), and r;(t)=1In 4,(¢t). Note that r;(¢) is the rate of
change of log population size. We refer to it simply as the growth rate.

The log scale is important because averages of r;(¢) over time determine
long-term population growth and form the basis of the standard
invasibility approach to species coexistence (Turelli, 1981; Chesson and
Eliner, 1989; Eliner, 1989). Invasibility analysis identifies one particular
average of r;(7), denoted by F,, as especially significant. The average 7, is
the mean low-density growth rate, which is the average of r,(z) for the case
where species i has been introduced to the system at very low (effectively
zero) density while other species have been present for an essentially
indefinite period of time. We refer to it as the long-term low-density growth
rate because the invasibility approach to coexistence identifies it as the
growth rate that applies in the long term at low density.

A positive value of 7, means that species i can invade the system if intro-
duced at low density, but more importantly, the value of 7, measures
the rate at which the species recovers from fluctuations to low density.
A negative value of 7, means that the species cannot invade the system.
A negative value means also that when species i is present and can attain
low densities, e.g., as a result of an accumulation of chance fluctuations,
it is likely to go extinct. For a fuller discussion of these issues see
Chesson (1990).

In the two-species variable environment theory (Chesson, 1988, 1989),
which is generalized here, the growth rate r;(z) is expressed as a function
of environment and competition. Therefore, the long-term growth rate
F; can be expressed in terms of a mean environmental effect, 4E, a mean
competition effect, 4C, and a mean of their interaction, 47, as follows:

Fi=AE—AC + Al (3)
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(cf. two-factor experimental models, Sokal and Rohif, 1981, p.329).
However, each of these mean effects is not an absolute effect but a com-
parison of an effect on species i with an effect on species i's competitor
(Chesson, 1989), hence the notation 4.

The term AE compares average effects of the environment. The term AC
consists of two parts. The first part is a difference between interspecific
competition and intraspecific competition that does not depend on environ-
mental fluctuations. Together with AE, this difference would completely
determine the value of 7, under constant environmental conditions, and
hence whether the two species could coexist in the absence of fluctuations
over time. The first part of AC therefore can be thought of as incorporating
coexistence-affecting mechanisms operating on timescales shorter than the
unit of time considered in the model.

The second part of 4C depends on fluctuations in competition from one
unit of time to the next. It depends also on different nonlinear responses to
competition by the two species (Chesson and Huntly, 1989). Different non-
linear responses to competition occur, for example, if species compete for
the same resource but have curves of different shapes describing the
dependence of their growth rates on that resource (Fig. 1). Armstrong and
McGehee show how such relative nonlinearity can result from species
having different functional responses to a common prey {the resource).
We shall see here that relative nonlinearity can result from as simple a
difference between species as a difference between their longevities in some
particular stage of the life cycle—see Subsection 5.4, below.

Relative nonlinearity, coupled with fluctuations in competition, leads to
a decrease in AC if species i has the more convex response to competition
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Fic. 1. Population growth rates of two species showing relatively nonlinear responses to
competition or a commeon limiting factor.
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(curve [#] in Fig. 1); otherwise there is an increase in AC. The reason is
simple: extreme values of competition (high or low) associated with high
variance put the growth rate for species i above that of its competitor.
Intermediate values of competition associated with low variance reverse
this situation. Levins (1979) and Armstrong and McGehee (1980) pointed
out that a decrease in AC generated by fluctuating competition and
relatively nonlinear responses to competition can permit an otherwise
inferior species to coexist with its competitor. As we shall see here, depend-
ing on the circumstances, these factors can also be a mechanism of
competitive exclusion. We shall refer to this coexistence-affecting
mechanism as relative nonlinearity.

The interaction term, 47, in the two-species theory depends on three
ingredients (Chesson, 1989; Chesson and Rosenzweig, 1991), which can be
measured quantitatively and combined to give the actual value of 47 The
first ingredient is species-specific responses to the environment. For example,
if temperature fluctuates and the species have different temperature optima
for growth, then some increases in temperature will be good for some
species but bad for others. Thus, responses to a fluctuating environment
will be asynchronous between species, and the correlations between species
responses to the environment will be less than 1. The A7 term can be non-
zero if responses to the environment are positively correlated between
species, but 47 increases in magnitude as such correlations decrease.

The second ingredient is covariance between environment and competition,
which measures how much fluctuations in competition covary with fluctua-
tions in the environment. For example, an improvement in environmental
conditions for a species may increase its density or the density of one of its
life-history stages, and increase the demand on resources. Evaluation of this
covariance is discussed below. The important point for the present is that
a nonzero value for 4] requires a nonzero covariance.

The third ingredient is the way the growth rate of a species responds
jointly to environmental and competitive conditions. This is illustrated in
Fig. 2. In the additive case (a), the response of the growth rate to competi-
tion does not depend on environmental conditions—the environmental
state alters the vertical position of the growth-rate curve without affecting
its slope. In the subadditive case (b), there is a stronger response to
competition when environmental conditions are good, while in the
superadditive case (c) the stronger response to competition occurs when
environmental conditions are bad. Only the subadditive and superadditive
cases (collectively nonadditive cases) lead to nonzero values for Al

Chesson (1988, 1990) and Chesson and Huntly (1988) discuss a variety
of ways in which nonadditivity arises in nature. Nonadditivity results com-
monly whenever a population can be subdivided into different classes of
individuals with different responses to environment and competition.
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FiG. 2. Population growth rates illustrating interactions between environment and
competition. The two curves in each panel are for the same species under different environ-
mental conditions. (a) No interaction: additivity. (b) Negative interaction: subadditivity. (c)
Positive interaction: superadditivity.

Subadditivity occurs when classes of individuals that are more sensitive to
environment than the average for the population are also more sensitive to
competition than average. For example, juveniles in a population often are
much more sensitive to both environment and competition than are
adults in a population of long-lived iteroparous (multiply reproducing)
organisms. In general, the different classes of individuals in a population
need not be defined by life history, as in this example, but instead might
be defined by phenotypes or even the micro-environments over which a
population is spread. There are so many ways in which nonadditivity can
arise that it seems doubtful that any real populations could be additive,
although approximate additivity might be common.

Nonadditivity combines quantitatively with the other two ingredients,
species-specific responses to the environment and covariance between
environment and competition to give A4l For example, Chesson and
Huntly (1989) explain how subadditivity means that a species can have
periods of exceptionally strong growth when competition is relatively low
and environmental conditions are relatively good. In the same population,
the reverse situation of poor environmental and competitive conditions
does not lead to exceptionally poor growth rates.
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Covariance between environment and competition determines the
pattern of fluctuations in environmental and competitive conditions affecting
the growth rate. Species-specific responses to the environment mean that
this covariance, or pattern of environmental and competitive fluctuations,
depends on the density of the species. Chesson and Huntly (1989) explain
how the dependence of this pattern on density, coupled with subadditivity,
can lead to more periods of relatively high growth rate as the density of a
species decreases. While there may also be more periods of low growth
rate, these low growth rates are of lesser magnitude and cannot cancel the
benefits of the periods when the growth rate is relatively high. As a conse-
quence there is an increase in the average growth rate, which is measured
by 41, and which promotes coexistence. Negative values of 4/, promoting
competitive exclusion, can also arise, for example from superadditive
growth rates, or different patterns of covariance between environment and
competition (see, e.g., Chesson, 1988, 1990).

The coexistence-affecting mechanism measured by 47 can be referred to
as the storage effect. Previously (e.g., Chesson and Rosenzweig, 1991), the
term storage effect has been used to refer to just a subset of mechanisms
contributing to AL The model of Subsection 5.5 below provides a good
example. In that model, favorable periods of growth can markedly increase
the amount of seed stored in the soil seed bank. Unfavorable periods,
however, can only slowly reduce the seed bank. Coexistence depends
critically on the storage of the benefits of favorable periods in this seed bank.
More generally, mechanisms leading a positive 47 value involve storage of
the benefits of favorable periods in the population, whether this storage can
be traced to a seed bank of something else. The term storage is a metaphor
for the potential for periods of strong positive growth that cannot be
canceled by negative growth at other times. We can think of a negative
value of 47 as measuring a negative storage effect where positive growth
cannot be of sufficient magnitude to cancel strong negative growth.

In summary, general models of two-species competition in fluctuating
environments have yielded three general coexistence-affecting mechanisms
that we can call fluctuating-independent mechanisms, relative nonlinearity,
and the storage effect. In the rest of this manuscript, our task is to achieve
a similar understanding in quantitative terms of general mechanisms of
coexistence in multispecies models. This is based on a general model to
which a general method of quadratic approximation is applied.

3. THE GENERAL MODEL

To develop the multispecies theory we must express the growth rate,
r;(t), for each species j in a community of n competing species in terms of

653/45/3-2
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environmental and competitive effects. (We use the symbol j for an
arbitrary member of the community, reserving the symbol i for an
“invader”—a species at effectively zero density.)

To incorporate environmental effects in a population model, one does
not deal with the environment directly, but in essence with a bioassay of
the environment, an environmentally dependent parameter (Chesson, 1988).
An environmentally dependent parameter is a population parameter such
as a birth rate, survival rate, or seed germination rate that depends on the
environment, but not on the population densities of any of the species in
the community. An environmentally dependent parameter could depend on
other species provided these other species are not affected by the densities
of the n species that make up the community under consideration. The
key point is that an environmentally dependent parameter should not be
affected by the densities of any of the n species in the community.

The notation E;(t) means the environmentally dependent parameter of
species j for the period f to 1+ 1, and the notation E(¢) means the vector,
(E, (1), ..., E, (1)), of all species’ environmentally dependent parameters.

Comopetition is incorporated through a competition parameter, C,(7),
which is a measure of the total amount of competition experienced by
species j. More general density-dependent effects such as apparent competi-
tion (sensu Holt, 1977) could also be measured by this competition
parameter.

We generally assume that the amount of competition is affected by the
environmentally dependent parameter of a species. For example, if E;(?) is
a species’ germination fraction, and competition occurs between seedlings
as they grow, the value of E;(r} will affect the number of competing
seedlings and determine the intensity of competition. We assume that the
effect of E;(r) on competition depends on the value of X,(¢), and that E;(r)
has no causative effect on C,(r) if X,(¢t)=0. This does not, however,
prevent E;(¢) from being correlated with C;(¢), which is likely when E;(z)
is correlated with environmentally dependent parameters of other species
or with other factors on which C;(r) depends.

The parameters E;(¢) and C,(r) are combined to yield the growth rate
according to some function g;:

ri()= g,(E;(1), C;(1)). (4)

This expression incorporates the idea that the environment will have a
direct effect on population growth through the first argument of g, and
an indirect effect through the dependence of the second argument, the
competition parameter, on environmentally dependent parameters.
Naturally, g; decreases in the second argument, C,(¢): competition is
detrimental to population growth. Although not strictly necessary, we
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generally assume that g, increases in the first argument, E,(¢). While we
would not expect population growth to depend monotonically on an
environmental variable such as temperature, it is quite likely to depend
monotonically on an environmentally dependent parameter such as a
survival rate or birth rate, which we think of as a bioassay of the
favorability of the environment for a species. By appropriate definition of
E;(t), eg, as a survival rate rather than a mortality rate, it is usually
possible to have g; an increasing function of E,(¢).

3.1. Assumptions and Standardization

As given above, the model is very general indeed. Before we can draw
conclusions we must introduce a few restrictions, which we list as
numbered assumptions below. Alternative forms of assumptions, that apply
only when specifically indicated, are marked with a prime (’).

First, we need some assumptions concerning the functions g;. In general
we expect the value of g;(E;(t), C,(t)) to fluctuate about 0, as positive
values correspond to population increase and negative values correspond
to population decrease. It is not unreasonable to expect therefore that

(al) There exist values E* and C* of E;(¢) and C;(¢) such that
g(EF, CF)=0. (5)

The pair of values E* and C* will generally not be unique, but choosing
one of the pair will fix the other. The values E* and C} serve as a point
about which we can approximate the function g;. We therefore choose E}*
somewhere in the middle of the range of fluctuations of E;(z). Other
assumptions below then assure that C* is within the range of fluctuations
of C,(1).

Because the values E£* and C} specify a situation of no population
growth, they can be thought of as defining an equilibrium for each species
individually. It is important to note, however, that we make no assumption
that these individual equilibria are stable, although it is not an
unreasonable expectation for each of the species living in a single-species
setting. Most importantly, we do not assume that all species can come to
equilibrium simultaneously in the multispecies setting, nor do we assume
that any such equilibrium would be stable.

We use the values £* and C}* to define parameter transformations that
unify the treatment of different models. One difficulty in obtaining unity is
that the parameters E;(¢) and C,(¢) can refer to different things in different
models. For example, in one model E,(r) might be the fraction of seeds that
break dormancy, but in another it might be the rate of nutrient uptake
(Abrams, 1984). These quantities are not only very different, but are
measured in different units, making any kind of unified treatment difficult.
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To overcome these problems we introduce new parameters, &,(¢) and %;(¢),
which we shall call standard parameters, as transformations of the original
parameters:

&=g,(E;, C}) (6)
and
€=—g,(E}. C). (M)

Provided g, is monotonic in each of its arguments, the standard parameters
contain the same information as the original parameters but are expressed
in units of growth rate. In all models they express the effect of environment
and competition directly in terms of the growth rate, and thus have the
same meaning in different models. These standard parameters take on both
positive and negative values. Indeed, in most circumstances they fluctuate
about 0. To calculate their variances and covariances we need the linear
approximations

gj:aj(Ej_E/*)'*'0((E;’_EJ*)2) (8)
and
%=0,(C;—CF)+0((C,— C})*), 9)

where o, and f; are respectively 06;/0E; and 0%,/0C; evaluated for
equilibrial values of the environmentally dependent and competition
parameters, and we use the standard order notation (Appendix II).

Some assumptions about environmental fluctuations are needed. For
unambiguous meaning to the notion of long-term averages, we have to
assume that the environment, as measured by the vector E(7) of environ-
mentally dependent parameters, has some long-term repeatability. The
mildest form of this assumption, which encompasses all the usual sorts of
“environmental noise” (Nisbet and Gurney, 1982), is the following:

(a2) The sequence of vectors E(z), t=0,1, 2, .., forms an ergodic
stationary stochastic process (see Karlin and Taylor, 1975).

For some of the examples we will need to assume that environmental
fluctuations are independent from one time to the next, and in that case we
specialize assumption (a2) to the usual white noise assumption,

(a2’) The environment process E(r), t=0,1,2,.., takes on
independent values at every point in time, and the distribution of E(¢) is
the same for every ¢.

Readers unfamiliar with ergodic stationary processes can simply assume
(a2’) without affecting the correctness of the results given here. Note that
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while (a2’) means that the environment at one point in time is uncorrelated
with the environment at other points in time, in no case do we
assume environmentally dependent parameters of different species to be
uncorrelated.

In order to approximate the function g; appropriately, it is necessary to
restrict the range of fluctuations of E;(¢), but at this point it is more useful
to shift attention to &;(t). We introduce the symbol ¢ as “a small
parameter” indicating the magnitude of variation in the environment. We
write

(a3) &(t)=0(o).

We say that & fluctuates in a finite range of order 6, and we can assume
that the standard deviations of the &; are proportional to a.

We assume that ¢ is small enough to enable quadratic approximation of
the function g;. This requirement is not necessarily restrictive because for
the two-species lottery model, it is known that quadratic approximation is
adequate for variation that is in fact quite large (Chesson, 1989; Hatfield
and Chesson, 1989). However, at present there is no general theory on the
adequacy of such approximations for large environmental fluctuations.

It is important also to consider the meaning of large in the context of
environmental fluctuations. The idea that environmental fluctuations in
nature are large is not an absolute judgment but a claim that environmen-
tal fluctuations are large relative to other factors. We have several ways of
incorporating this idea in the model. First, we make the range of environ-
mental fluctuations large relative to their mean effects. Thus, we have

(ad) E&(1)=0(c%),

where “E” means expectation or theoretical mean value, and we have
suppressed ¢ for notational convenience.
It follows from (a3) and (a4) that

V(&(1))=O0(a?), (10)

where the symbol V' means variance.

Restricting the range of environmental fluctuations has the effect of
restricting the range of fluctnations in competition under some general
circumstances. This conclusion is discussed in detail in Appendix I1, where
order o? restrictions are imposed on the competitive differences between
different species. These restrictions mean that competitive differences
between species are of similar magnitude to the means and variances of
environmental fluctuations, allowing the relative effects of competitive
differences and environmental fluctuations to be assessed in a situation
where they can all be expected to contribute to long-term population
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dynamics. It is then shown in Appendix II that the following proposition is
justified:

(a5) %(1)=0(o), and E%(1)=O(c?).

Note that this proposition implies that V(%,(r)) = E(%,(1))* = O(s?).

To understand the effects of competition on coexistence, it is necessary
to be able to relate interspecific and intraspecific competition. A species at
zero density (or a density low enough to make negligible contributions to
the competition) experiences only interspecific competition. It therefore
seems not unreasonable to suppose that the competition parameter of an
invading species can be represented as a function of the competition
parameters of other species. Indeed, this is commonly the case in competi-
tion models. We can formally state this assumption by introducing the
notation € j’i for standard competition parameter of some arbitrary species
j in the community, with species i as an invader, ie., a species whose
density is set at zero. Then we state that

(a6) There is some function f jointly of the €/, for r # i, such that
€, =f€,",..€,") (11)

with £(0, ..., 0) = O(a?).

Note that the condition f(0, .., 0) = O(¢?) means that when the resident
species experience equilibrial competition, the invading species experiences
competition of order ¢2. This is consistent with the imposition of order ¢2
competitive differences between species imposed in Appendix II to obtain
proposition (a5).

In general, it is helpful to think of the €, as functions of species densities
and their environmentally dependent parameters,

@7) G)=c,(Ei (1), X, (1), ... E,(1), X, (1)), (12)

where ¢; is some function. Many of the examples given in Sect. 5, below,
have competition parameters in this form, and this form is used in the
derivation of (a5), above. However, the development below permits much
more general dynamics for competition including situations where separate
dynamical equations are necessary for resources. In general, the develop-
ment here depends much more on the relationships between competition
parameters of different species and their dependence on the environment
than it does on the details of the dynamics of the competition parameters.

. 4. ANALYSIS OF THE GENERAL MODEL

To simplify notation, we shall suppress time, ¢, in our notation, unless it
is needed for clarity or emphasis.
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The restrictions &= O(s) and %,= O(o) (a3 and a5 above) allow qua-
dratic approximation of the growth rate r; in &; and %, with an error equal
to o(a?). The definitions, (6) and (7), of the standard parameters lead to an
especially simple form for this quadratic approximation. First, note that
zero values of & and %; correspond to the equilibrial values E* and C* of
the original parameters E; and C;. Second, note that r;=¢;, when €,=0,
and r;=—%, when &=0. Defining the symbol “~” to mean an
approximation error equal to o(o?), it follows that the full quadratic
approximation of r; in terms of & and €, is

rx&—%+7y,6%, (13)
where
62rj
= . 14
Ty (14)

The parameter y; measures nonadditivity. It defines the change in slope
of the growth rate as a function of competition as the environmentally
dependent parameter is varied, as discussed in Section 2, and illustrated in
Fig. 2. For y;=0, the additive case (Fig. 2a), there is no interaction. For
7; <0, the interaction is subadditive (Fig. 2b) and for y,> 0, the interaction
is superadditive (Fig. 2c).

Given this approximation to r;, how do we determine the long-term low-
density growth rate, 7;, of a species? As discussed above, according to the
invasibility criterion, the sign of the long-term low-density growth rate
determines whether a species can persist in the presence of its competitors,
and in case it is positive (persistence), the magnitude measures the strength
of that persistence.

The standard procedure for invasibility analysis (Turelli 1981) is to set
the given species (the invader) at zero density and calculate 7, as the
theoretical mean growth rate, Er;, under the assumption that the state
variables for the system consisting of the remaining n— 1 species (“the
residents”) have converged on a unique stationary distribution and form an
ergodic stationary process. Note that these state variables are the species
densities, their environmentally dependent parameters, and other variables
such as resource densities, depending on the details for a specific version of
the general model. We shall use the term resident distribution to refer to the
stationary distribution that these state variables achieve.

To make the calculations easier to follow, we reserve the use of the
subscript i for the invading species, and use subscripts r and s to refer
“resident” species. The subscripts j and & refer to arbitrary species. The
superscript —i is attached to a variable to indicate that it is calculated
under the assumption that species i is an invader, the other n — 1 species
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are residents, and the resident stationary distribution has been achieved.
The —i superscript on a vector means additionally that the component
corresponding to species / has been deleted.

In this notation, we can now express the long-term low-density growth
rate of an invader as

Fi~E6—E€ ' +y,E&%, . (15)

The quantity E&%, ' is approximately equal to C(&,%; ). It is a
covariance between environment and competition for which we use the
notation

1i'=E(&—E&)%, ' —E€, )] (16)
Because E6 and E€,‘ are both O(c?), we have
(i~ EEE L (17
and therefore
FREE—EC " +y.x:'. (18)

Expression (18) represents the growth rate in terms of mean environmen-
tal effects, mean competition effects, and the mean of their interaction.
However, it is not by itself very useful. Much more is to be gained by com-
paring each of the terms in the equation with the corresponding terms for
resident species. This comparison is made as follows.

We note first that a resident species r must have a zero value for
Er,=E[In X,(t+1)—1n X, (¢)], because at the resident stationary dis-
tribution, Eln X,(¢+ 1)= EIn X,(¢). Any linear combination, Y, g, Er,,
for constants, g,, will also be zero, but the components of the linear
combination will not be; thus we can write

Fi=AE— AC + 41, (19)
where
AE=E&-Y q,E8, (20)
AC=E%¢;'-Y q,E%. ", (21)
and
Al=y,EE€ 7 =3 q,v,EE% " (22)

T D I TR (23)
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The significance of partitioning the mean low density growth rate, 7,
into the components 4E, AC and Al stems from the fact that with a
suitable choice of the g,,, these components measure the contributions of
different coexistence-affecting mechanisms. The choice made here is

T
T 0"

9; (24)
evaluated for 4, '=0, r+#i. With this definition of the g,,, resident species
are weighted to reflect the relationship between competition experienced by
the residents and that experienced by invaders, under assumption (a6).
This choice is justified by the results that it gives. It leads to a clear parti-
tioning of mechanisms of coexistence, as shown in Subsection 4.2, below.

Each component of the mean low-density growth rate, ;, can now be
examined in a meaningful way. By exploring these three components we
can come to a general understanding of quantitative contributions of the
three general mechanisms of coexistence discussed above, namely, fluctua-
tion-independent mechanisms, relative nonlinearity, and the storage effect.
Note, however, that AC consists of the combined effects of the first two
mechanisms, and that AE summarises not a mechanism but differences
between species in the average effects of the environment. We now examine
in detail each of the terms AE, AC, and A[ contributing to r;.

4.1. The storage effect, A1

Section 2, above, explained that the coexistence-affecting mechanism
called the storage effect consists of three ingredients. How are these
ingredients measured quantitatively, and how do they combine to yield 47?7

The first ingredient, species-specific responses to the environment, can be
measured by a diagonal matrix P, whose rth diagonal element is given by

r) =X;i/\/_@=cor[‘(é’},(g:i) o
v X;X/W COl'r(é”r, (g:i)’

where “corr” means correlation. If species i and species r have perfectly
correlated responses to the environment, ie., & is an increasing linear
function of &,, then (P;), =1. In other cases, species / and r have specific
responses to the environment, the relevant aspects of which appear in the
comparison of the correlations of & and & with € “

Usually, &; will be less correlated with €, ‘ than is &, because €' is a
function of &,, but not of &,. Low or negative values of (P;), reflect high
specificity, as they indicate that & and &, have distinctly different patterns
of fluctuation in response to common environmental fluctuations. This is
clearest in the case of just a single resident species with a white noise
environment (assumption (a2’)), for then it can be seen from Chesson
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(1989) that (P,;), is just the ordinary Pearson correlation between &; and &,,
which is an unambiguous measure of the relative patterns of responses of
the two species to environmental fluctuations. The multispecies case is
more complex. In particular, the ratio of correlation coefficients, (P;),, is
not always a correlation coefficient and it is possible for (P;), to exceed 1
if &, contributes little variation to competition compared with the environ-
mentally dependent parameters of other resident species, and &; is more
strongly correlated with these than is &,.

The second ingredient of the storage effect, covariance between environ-
ment and competition, is quantified by the vector x={(x', ., x5’ of
covariances between environmentally dependent and competition
parameters of resident species. The difference between resident and invader
covariances is important, but this difference results from species-specific
responses to the environment and is summarised in the matrix P,.

The third ingredient of the storage effect, nonadditivity, is measured by
the diagonal matrix I' = diag(y,, .., 7,) of y values of resident species.

To combine these ingredients and to take account of average asym-
metries between species, especially between residents and invaders, we need
the row vector q;=(q,, ... §), Of ¢, values, and the diagonal matrix &,
with rth diagonal element

Ve
(=), =1 &) (26)

7. V()

Now, the definition of ¢, (Eq. (24)) entails
€ '=q, € "+0(c?), (27)

where €7 is the column vector (€[, .., %, ‘) of resident standard com-
petition parameters with the resident stationary distribution. It follows that

Li =4’ ot (28)
and
vixq 2~ qEP. Ty
We can now rewrite the storage effect as
A~ —q,(1-E,P)TIy, (29)

where 1 is the » — 1 dimensional identity matrix.

To understand expression (29), note that I'y is simply the product of
nonadditivity and covariance for each of the individual resident species.
This product affects coexistence to the extent that the value for an invader
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differs from these. The diagonal elements of the matrix 1 — E,P, determine
such resident-invader differences. Most importantly, this matrix incor-
porates species-specific responses to the environment which determine
how the covariance between environment and competition compares
between the residents and invader. The vector q; then combines individual
resident-invader comparisons.

We shall see examples below where the term A7 has the same sign for all
species in a community. Therefore, it can simultaneously add or subtract
from all species growth rates. When it is positive, it promotes coexistence
by making it more likely that all species recover from perturbations to low
density. Conversely, negative values of 4] promote competitive exclusion.

42. The AE and AC Terms

The mean enviromental term (4E) and mean competition term (4C) of
the mean low-density growth rate are best understood in relation to each
other. To understand these terms, we first consider linear and additive
cases where environmental variation does not have a role.

42.1. Linear Additive Models. Populations that have a very simple
structure are often modeled in the following additive way (Chesson, 1988):

g,(E, C)=E,~C, (30)

Specific examples are given in Section 5, below. Although a seemingly more
general additive model is

gj(Ej’ )= Aj(Ej) - BI(C./')’

for arbitrary functions 4; and B;, the form (30) can always be obtained by
redefinition of the parameters. Additive models are characterized by
parallel curves for plots of the growth rate against competition for different
values of the environmentally-dependent parameter (Fig.2a). The inter-
action coefficient, vy, is 0.

The standard parameters of the model (30) are simply changes of origin
of the original parameters: §=£,— E*, ;= C;— C*. Thus, the standard
form of the growth rate is just the same as (30):

g(E;, C))=6—1%

e

(31)

The competition parameters of a model are linear if they can be
expressed linearly in terms of common quantities, F,, which we shall call
limiting factors (Levin, 1970), as follows:

Cj= Z ¢j1F1 (32)

=1
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for constants ¢,. The F, may, for example, represent measures of resource
shortage. However, Levin (1970) pointed out that such limiting factors can
include predation and therefore we can regard “competition” in our model
as covering apparent competition (Holt, 1977). The Lotka-Volterra model
discussed in the Section 5, below, provides a familiar example of an
additive model with linear dependence on limiting factors. In the
invasibility analysis, the actual set of limiting factors in question may
depend on which species is the invader; for example, this is the case in the
Lotka—-Volterra model of Section 5, where F, is a function of the density of
species /.

The linear structure (32) leads to explicit formulae for the coefficient ¢,
relating competition experienced by an invader to that experienced by
residents. Let ® be the matrix with jith element ¢,. Define ¢, to be the ith
row of @, let ® ' be ® with ith row deleted, and let the superscript “—7
mean generalized inverse (Rao, 1973). (See Appendix II1 for examples
and useful information on generalized inverses.) Assumption (a6é) that the
invader’s competition parameter can be expressed in terms of the
competition parameters of the residents is satisfied whenever ¢, is linearly
dependent on the rows of ® ~* Defining C ' to be the vector of resident
competition parameters, C; ', and q, to be the vector of ¢, values, we have

C7i=q,C7', (33)
where g, is given here by the special formula
q,=6¢,(®7). (34)
Now AC is by definition
AC=E[%;'—q,€ '],

where €' is the vector of standard competition parameters. For the
additive model (30), €,=C,— C}*, and so

€ '—q,¢ '=[C;'—q,C]-[CF—q,C*'],

where C* ' is the vector of resident equilibrial competition parameters.
Relation (33) means that the first term in brackets on the RHS is zero, and
S0

€7'—q, 6 '=q,C* - CF. (35)

The RHS of this equation is the value of the competition parameter of
species i, when the parameters of its competitors are at their equilibrial
values, less the equilibrial value of the competition parameter of species i.
Thus, with species i as an invader and the residents at equilibrium, it is the
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difference between the amount of competition that species i receives and its
equilibrial value. We shall use the notation %, ‘" for this amount of com-
petition, as the relation 4,= C; — C* means that the RHS of (35) is simply
the standard unit value of competition that species i receives as an invader
with the residents at equilibrium.

As AC is just the expected value of (34), and this is a constant, AC is
simply

AC=qC*~ —CFr=%" (36)

I

Thus, for additive linear models, AC is just the difference between the
amount of competition that the invading species i receives from the
residents at equilibrium, and species i’s equilibrial value of competition.

For this additive model, the 4E value also takes a simple form. In
general, the 4E value consists of a comparison of the mean value of the
standard environmentally dependent parameter, &, of the invading species
with that of its competitors, 4E = E&,— q,E€ ', where & ~' is the vector of
resident standard environmentally dependent parameters. But in the
additive model (30), §;=E;— E*, and so E&; represents the deviation of
the average environmental condition from that needed to maintain the
species at equilibrium. Thus, 4F is positive if the mean of species i’s
environmentally dependent parameter exceeds equilibrium to a greater
extent than do mean environmentally dependent parameters of resident
species, as measured with the standard of comparison q;.

For additive models, the mean low-density growth rate is just AE — AC,
and for this linear case, it specialises further to

Fo=AE—%". (37)

Thus, overall population increase from low density is determined by devia-
tions from equilibrium due to the environmental state, and deviations from
equilibrium due to a difference between the equilibrial amount of competi-
tion for species i and the competition that species i actually receives with
the residents at equilibrium.

There are two important points to be made. First, in this linear additive
model, fluctuations have no role in coexistence, as the long-term growth
rate (37) just depends on means of the environmentally dependent
parameters and the equilibrial values of the environmentally dependent and
competition parameters.

Second, some care is needed in the interpretation of the partioning of 7,
into 4E and 4C, as this partioning is not necessarily unique. Different
choices for E* and C* can lead to different values for 4E and 4C. In
general, the only constraint on E* and CF is the relationship
g, (EF, C¥)=0, which allows (E}*, C¥) to vary on a one-dimensional con-
tinuum. For example, in the linear additive model, this constraint reduces
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to C¥=E}¥. If we choose E¥=E[FE,], then we find that 4E=0, and
F.= —%7"", so that the long-term growth rate is interpreted in terms of
deviations from equilibrium competition. On the other hand, if it is
possible to choose C¥ =q,C *, then AC =0, and 7, = 4E, so that the long-
term growth rate is interpreted in terms of environmental deviations from
equilibrium. When such different choices are possible, we should be aware
that they can lead to different interpretations.

This interpretational ambiguity results from the fact that changing an
environmental state commonly alters a competitive equilibrium. The
competitive equilibrium and environmental equilibrium spoken of here are
not really separate things, which means that separate interpretation of 4AF
and AC is not advised without an independent rationale for the choice of
the equilibrial values of the environmentally dependent and competition
parameters. However, in Section 5, below, we shall see that natural choices
often arise which limit such ambiguity, and Subsection 4.3 demonstrates an
alternative partitioning of 7, in which this ambiguity is absent.

In these linear additive models, the calculation of A4E and A4C is a
straightforward exercise. However, such ease is associated with the fact that
fluctuations play no role. Hence, the mechanisms measured by 4E and AC
in this subsection are classical mechanisms that can operate on a short
timescale. To go beyond such classical mechanisms, we must study models
that are nonadditive or nonlinear.

4.2.2. Nonlinear and Nonadditive Situations. In the general case of the
model, the standard competition parameter takes the form

6= —g,(E}, C)). (38)

The relationship between %; and a vector of limiting factors F may be non-
linear because C; depends nonlinearly on F or because %; is a nonlinear
function of C;. We begin our discussion with the case where the additive
form (30) continues to hold, but C; depends nonlinearly on F,

Cj=¢j(F)s (39)

where ¢; is some nonlinear function.

To understand the effect of nonlinearity, we expand the functions ¢; to
quadratic terms of F, omitting o(c?) terms. To do this we assume that F
can be expressed as a smooth function of C ~' for then fluctuations in F,
like fluctuations in C~/, would have an amplitude equal to O(g)
(Appendix II). Such a situation is possible in general by redefinition of the
limiting factors, if necessary. For example, under assumption (a6), the
invader’s competition parameter can be expressed as a smooth function of
the resident’s competition parameters. Hence the resident’s competition
parameters qualify as limiting factors with the desired properties.
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We specify an F* value in terms of the equilibrial values of the competi-
tion parameters of the residents by the relationship

Cr=¢.(F%), (40)

for resident species r, which may constrain the possible values of the C*.
See Appendix ITI for the situation when this is not possible.
The matrix ® = (¢;) is defined by the equation

aC)\*
(¢,,>=(5}—1) : @1)

where the superscript * means evaluated at F*. The vector g, is defined in
terms of @ as before (Eq. (34)). With nonlinear dependences, however, we
must expand C, to quadratic terms in F. Thus, we define

0%, (F)\*
o= L , 42
y (6F ) 6F,,,> (42)
where the parentheses mean the matrix over rows /=1 to p and columns

m=1 to p.
With these definitions, the comparison between invader and resident
competition becomes

€ '—q6 'xg,(F*)— Ct+ (F—F*) ¥(F —F), (“43)
where
vei(or- 3 a0t w
r#i

Like the linear additive model, linear terms in competition do not appear
in this comparison, but unlike the linear additive model, there is a
quadratic term in addition to the constant term. The constant term has the
same interpretation as before: It is the difference between the amount of
competition that species ¢ receives from residents at equilibrium and species
i’s equilibrial value of competition.

As € " =¢,(F*)— C¥, we can write

AC~€; "+ E[(F—F*) ¥(F—-F*)]. (45)
But because £F — F* = O(s?), (Appendix I} AC can also be written
ACx%[""+ E[(F —EF) ¥(F — EF)]. (46)

These expressions show that the AC term reflects variation in
competition in addition to equilibrium aspects. This is so whether we view
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variation about the mean (46) or about equilibrial values (45). Indeed, we
can see that expression (46) is a function of the variances and covariances
among the F; by applying the result commonly recognized in multi-
variate statistics (Rao, 1973) that trace{E[(F— EF) ¥(F - EF)]}=
trace{ E[W(F — EF)}(F — EF)']} =trace{¥YV(F)}, where V(F) is the
matrix of variances and covariances among the F,. Expression (46) can
thus be rewritten as

AC=€,"" + trace{YV(F)). (47)

It is not difficult to generalize these results to nonadditive models.
Expression (39) is simply replaced by

C,=¢;(F), (48)
for some function ¢;(F), and the function ¢, is then defined as
¢ =¢;(F)=—g,(E}, ¢;(F)), (49)

and €, '* = ¢, (F*). With these modifications, the formulae associated with
AC remain the same as in the additive nonlinear case. As remarked above,
the resident competition parameters qualify as limiting factors. This means
it is always possible to express the general model, as defined in Section 3,
above, in terms of limiting factors. Formula (47) therefore applies to the
general model without restrictions.

4.3. Mechanistic Partitioning of the Growth Rate

The representation of 7, in terms of 4E, AC, and AI follows naturally
from the quadratic approximation of g,. However, it is apparent from the
above analysis that the separate 4E and 4C terms are not entirely satisfac-
tory. First, there is a degree of arbitrariness in the 4E and AC terms
depending on the choice of the equilibrial environmentally dependent and
competition parameters, such that only 4E— AC is unique, not their
separate values. Second, 4C combines fluctuation-dependent and fluctua-
tion-independent coexistence-affecting mechanisms, which are more
usefully considered separately. These problems can be solved by splitting
the AC term into its two component parts and combining one of these
with AE.

We define

Fl=AE—€ " (50)
and
AN=AC—% "
~ E[(F — EF) ¥(F — EF)]
=trace{ ¥V (F)}, (51)
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which give the alternative representation of the long-term low-density
growth rate as

Fix Fl— AN+ Al (52)

Here, 7! represents fluctuation-independent coexisting-affecting mechanisms
or, alternatively, mechanisms operating on a shorter timescale than the
unit of time considered explicitly in the model. The term 4N measures the
contribution of relative nonlinearity and A7 continues to express the
storage effect. Thus, the representation (52) of 7, segregates the contribu-
tions of the three general coexistence-affecting mechanisms that this work
identifies. Hence, it shall be referred to as the mechanistic representation of
the long-term low-density growth rate.

5. EXAMPLES

5.1. A Lotka-Volterra Model

The Lotka—Volterra model has figured much in discussions of the effects
of variable environments (see, e.g., Turelli, 1981). However, the common
linear and additive formulation of the model in a variable environment
makes its behavior rather special. To understand this special behavior, we
first express it in the discrete time form

rj(t)=bj<l — Z aijk>+Ej, (53)
k=1
which we can rewrite in our framework as
ri(t)=b,—C,+ E; (54)
with
C;=b; Z oy X (55)
k=1

This formulation deviates slightly from (30) but nevertheless it is a linear
additive model to which the results of Subsection 4.2.1 apply. As such, the
results obtained here are exact for any level of environmental variability.

Zero is a natural choice for the E* when viewing environmental varia-
tion as a perturbation of an otherwise deterministic system. With this
choice for E¥, C*=b;. The species densities, X;, can be the limiting
factors, F,, remembering that for the invasion analysis X, is not a limiting
factor because it is fixed at 0.

653/45/3-3
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The coefficients ¢, (Eq. (32)) take the values b,a;,. Let A~' be the matrix
of competition coefficients (a;) after deletion of the row and column for
species #, and let B be the matrix with diagonal elements b, ..., b,,, with ith
element missing. Then the matrix ® ' equals BA %, 1f, further, A ¥ is of
full rank, then ® ~‘ is invertible with inverse (A ~‘)~! B~ L. It follows from
Eq. (34) that

q.i:bi(aila it} <xin)(Aii)_l B¥19 (56)
and so
qu*ﬂi_ Cl'* =bi(ai1’ seey ain)(Aii)¥l (1, “rnsy l)l —bi

=b, Z o, X¥~b,, (57)

r#i

where the X are solutions of the equations }°, ., a, X*=1 for s#i. Note
that this means the X* (= F}*) are the deterministic equilibrium values for
the residents. Because this is a linear additive model, expression (57) gives
the full value of A4C.

If environmental fluctuations are mean zero perturbations of the growth
rate, ie., E[E;]=0, then E&=0 also, and 4E=0. As A4/=0, in this
additive model, F, just reduces to —AC, i.e.,

F,-=b,-<1 -3, oz,-,X;“), (58)

r#&i

which is the value of the growth rate that we would obtain using the
standard deterministic invasibility analysis (MacArthur and Levins, 1967).
Note that in expression (58), 7,=7;, the fluctuation-independent compo-
nent, reiterating Turelli’s (1981) conclusion that environmental variability
has no effect on coexistence in this discrete-time Lotka—-Volterra model.

The case considered so far with £* = E[ E;] =0 is for unbiased perturba-
tions of the growth rate. However, in the context of disturbance (e.g.,
Huston, 1979), we might want environmental variation to have a negative
average effect on the growth rate, so that E[E;] <0. Then AE is given by
the formula

AE=E[E]—q,E[E"'], (59)

where E~' is the vector of resident environmentally dependent parameters.
It follows that 7, takes the form

r',-=E[E,-]+b,(1 -y cx,-,(X:"+AX:*)>, (60)

r#i
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where the 4X* values are solutions of the equation ., o, AX*=
E[E,}/b,. Note that the X+ AX}* are the equilibrium densities for the
deterministic case of a fixed nonzero environmental perturbation corre-
sponding to E[E;]= E #0. Thus, Eq. (60) represents effects on the long-
term low-density growth rate that are the same whether the environment
fluctuates or remains fixed at its mean—it comes down again to just the
deterministic invasion criterion.

While Eq.(53) or similarly behaved expressions have been popular
models of Lotka-Volterra competition in a variable environment, the
Lotka-Volterra model of de Mottoni and Schiaffino (1981) is outside our
framework because the competition parameter of the invader cannot be
expressed as a function of the resident. L.e.,, assumption (a6) is violated. In
their Lotka—Volterra model it is possible for the variance of environmental
fluctuations to affect coexistence, in contrast to (53), where only the mean
of the environmentally dependent parameter is important.

5.2. An Additive Model with Relative Nonlinearity

Additive models with a common limiting factor frequently arise in the
literature, for example, as modeis of several predator species competing for
a common prey (Armstrong and McGehee, 1980) or phytoplankton
competing for a limiting nutrient (Grover, 1990). In such models, the
growth rate takes the form

ri(8) = E;(1) — ¢,(F(2)). (61)

In the predator—prey context, F(¢) is the density of the prey species and
— ¢, is proportional to the functional response of the jth predator species
to the common prey. As Armstrong and McGehee (1980) point out, the
functional responses, or more generally the rates of resource consumption,
are often nonlinearly related between species. In the predator-prey case,
this can come about simply by the different predators having different
handling times for the same prey species.

In this model it is most natural to define the E* and C* in terms of a
choice of a common F* value: EX = C* =¢,(F*). The fact that all species
have equilibrial competition at the same value of F means that € '=0,
and therefore 4C=AN. To calculate AN we note that ¥ reduces to the
scalar expression

pet (6 3 a?) @
r#&i

With a single competitive factor, the ¢, are not uniquely defined, but a
natural choice is g, =(4!"/$\"")/(n—1), where ¢\"=dp,/dF at F=F*
Defining t,=¢'*/2¢\", u, = E&,/¢}", we find that

AC=AN=¢"(z,—7) V(F ), (63)
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where T is the average of the 7 values for the resident species and the super-
script —i has been added to F to emphasize that the variance is calculated
at the resident distribution. As 47 is necessarily 0, the analysis is completed
by the observation

AE = ¢, — 1), (64)
and therefore
Fi= i — ) — 1z, T) V(F ). (65)

For this particular example, it is possible to calculate the variance of the
limiting factor whenever there are at least two resident species using the
fact that the average growth rate of resident populations must be 0. We
find that

Eg,(E,, C,)/¢!" — Eg (E,, C)/$\" = (u, — ) — (t,—1,) V(F ). (66)
As this must be 0,
V(F~ )= (u, — p,)/(t, — ). (67)

A little algebra now shows that when (67) is substituted in (65) it is
impossible for more than two species to have positive 7; values, i.e., in this
additive model with a single nonlinear limiting factor, at most two species
can coexist.

Applying formula (65) to the case of a two-species interaction, we can
deduce some relationships for two coexisting species, j and k, say. Let
7,> 1, (they cannot be equal for coexistence); then coexistence also implies
that u; > u,. Indeed, a necessary and sufficient condition for both species to
have positive long-term low-density growth rates is

VIF ) < (= )/ (5 — 1) < V(F 5). (68)

This condition shows that the variance of the limiting factor in each of the
two single-species systems must bracket the variance that would apply
under coexistence. In addition, the species with the greater positive non-
linearity (larger value of t) must cause greater variance in the limiting
factor and must have a higher value of the mean of its environmentally
dependent parameter, scaled by ¢'*), (i.e., higher u).

Competitive nonlinearity thus provides a mechanism of coexistence of
two species. This mechanism relies on species differing in the degree of non-
linear dependence on a common competitive factor, and also differing with
respect to how much variance they generate in the dynamics of the limiting
factor. The clearest example of this mechanism in the literature is given by
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Armstrong and McGehee (1980). In their example, however, the fluctua-
tions are purely deterministic in origin. Ellner (1987) provides an example
involving competition between annual plants with a seed bank that is non-
additive but has zero covariance between environment and competition.
Thus, in Ellner’s example, the nonadditive terms do not contribute to
coexistence. Differences between species in the survival rates of dormant
seeds give different nonlinear responses to competition that promote
coexistence in some circumstances, but promote competitive exclusion in
other circumstances.

The quantity ¥ in the analysis of relative nonlinearity is not easy to
grasp in general but in this situation of coexistence between two species on
a single limiting factor, it is not so difficult. The 7, are simply rates of
change of slope per unit slope times one-half-—a kind of curvature if you
like—for the graph of r; against the limiting factor. The difference 7, — 7, is
just the difference in these. Referring to Fig. 1, one in effect adjusts the ver-
tical scales for the two species to give them slope 1 at the chosen value of
F* (= C*, there) and then takes the difference in rates of change of slope
on the resulting diagram. The quantity W is similar. For it, one adjusts only
the resident’s slope, but makes this slope equal to that of the invader before
taking the difference between rates of change of slope for the two species.

As we have shown here, relative nonlinearity, when acting alone, can
only explain coexistence of two species. However, it may well be able to
explain a larger number of species when acting in concert with other
mechanisms by providing the needed additional amount to make the 7,
values positive. It is also possible that this mechanism might negate the
effects of other mechanisms in some circumstances by subtracting enough
from some 7, values to make them negative. As we see from expression (65),
competitive nonlinearity will add to the 7’s of some species and subtract
from those of others. It will only promote coexistence when it increases low
r’s while not decreasing high #’s too much.

Nonlinearities more complicated than quadratic could alter this conclu-
sion that only two species can coexist by this mechanism when there is just
a single limiting factor. It seems likely that coexistence of arbitrarily many
species would be possible from higher order nonlinearities together with
higher order moments. The analysis here suggests, however, that
coexistence of more than two species will at best be weak because the
values of 7, will be quite small, except in highly nonlinear situations with
large fluctuations in the competitive factor.

Further opportunities for coexistence by relative nonlinearity could come
with more limiting factors. With p limiting factors, there are p(p+1)/2
independent components of the critical quantities ®{* and V(F ), for
each species j. While such cases are yet to be explored, they would seem to
promise the potential for many species to coexist.
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5.3. Symmetric Nonadditive Models

The examples above have illustrated the terms 7; and 4N. We now turn
our attention to A7 Unlike 4N, the quantity 47 has the potential to permit
coexistence of many species affected by a single limiting factor. Moreover,
Section 2 explains that nonadditivity should be the rule in nature. To gain
a better understanding of the 47 term, we study the special case of a single
limiting factor so that there is a single measure of competition that is good
for all species:

Ci(ty=C(1)= F(2). (69)
The model takes the form
ri(1) = g,(E;, C).

The special case of competition for a common resource, which may be
a composite resource, is important as it provides the most difficult case for
coexistence by classical mechanisms. It has also been argued that the situa-
tion where the number of species greatly exceeds the number of distinct
resources commonly arises for terrestrial plant species (Silvertown and
Law, 1987), and space holding marine organisms (Sale, 1977). This means
that we should expect to be able to quantify resource availability by a
single measure that is suitable for all species.

To simplify further calculations, we make some assumptions about
environmental variation. We choose a symmetric variance structure. We
assume that each E; has the same variance ¢, that there is a common
correlation p between the environmentally dependent parameters of
different species, and that environmental fluctuations over time are
independent (assumption (a2’)).

Although the C; are all the same, the ¥, differ between species, unless the
g; are equal. However, this difference is simple, provided we choose a
common equilibrial value of competition: C* = C*. Then by relation (9)

% =p,(C— C*)+0(c?). (70)
Thus,
L' = BLEE(C~ = C*), 7h

where the superscript —i on C means the resident stationary distribution
applies to C. If C~' is twice continuously differentiable in the standard
environmentally dependent parameters, we can write

Ci)—C*x Y A, (1)&(t)+b(1), (72)

r#i
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where A,(t) and the variable b(z) are independent of &(¢) because of
assumption (a2')—independence of the environment over time. Moreover,
(a5) implies that b(t) = O(o).

We define a,= EA, and a to be the simple average of the a,. Equa-
tion (8), relating the standard environmentally dependent parameters to
the original environmentally dependent parameters, means that

EE(CT'~C*)x Y Ea (E,—EX)o(E,~E¥) A,

sHEI

xa0’[pn—1)aa+(1-p)a.a,l, (73)

where we use the general bar notation for averages of combinations of
parameters of resident species:

S 1
abcpq:;:_l_ z arbrcr“'prqr'

r#i

A similar calculation yields
E&(C™ - C*)~a,0%p(n~1)7a (74)
These expressions imply that the rth diagonal element of P, is

paa(n — 1)
pln—1)aa+(1-p)a,a,

(75)

Recall that this quantity incorporates species-specificity of response to the
environment. Lower values of p mean greater species-specificity and lower
values of P,.

Note also that (73) and (74) imply that the covariances (elements of y)
are given by the formula

i~ B.a [(n—1)aap+(1—p)a,al. (76)

To complete the calculation of the storage effect, 41, we must calculate
the vector g, defining the relative responses to competition of the different
species. In the case of a common competition parameter, the g, are not
unique. However, it seems reasonable to treat the resident species in an
equivalent manner, and then we can write

fg."'=ﬂ.-n—i— Y B+ 00, (77)

i
r¥i

which leads to the expression

q.-,=( : )ﬂ (78)
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The matrix Z; has rth diagonal element «;y;/a.7,, and we can now
calculate A7 as

Al= —B;0”[(1 = p) a’ay + pad(n — 1)(@ — ,7,)]- (79)

We shall see applications below where the functions g; are all the same,
in which case it follows that the a;, ;, and y; do not vary with the
species, j. Expression (79) then reduces to

Al = fa(—y)(1 —p) a’c™. (80)

In this case, there is no relative nonlinearity in competition. Indeed, the
standard competition parameters are the same for different species. Thus,
AC=AN =0, and we see that

Fi=AE+ A= AE + Ba(—y)(1 — p) o’c?, (81)

where here AE is just the expected value of the standard environmentally
dependent parameter (or « times the original environmentally dependent
parameter) of species / less the average value of this expectation for resident
species.

With this assumption of common growth rate functions g;, the three
ingredients of the storage effect, 41, are manifested in a simpler form than
in the general expression (29). Nonadditivity is still measured by y, but we
can think of 1—p as quantifying species specificity of response to the
environment because the total variance of E; consists of a proportion p
that it has in common with other species and a proportion (1 — p) that is
independent of other series. Covariance between environment and competi-
tion is reflected by two components, @ and «°s’. The quantity g is the
average responsiveness of competition to changes in the environmentally
dependent parameters, and «’c® is the variance of these environmentally
dependent parameters. While the product ax?s? is not the covariance
between environment and competition as defined earlier, is nevertheless a
different quantification of the same idea. Likewise, (1 — p) and P, are not
the same but they quantify the same concept.

Note that the A7 term in expression (81) is the same for all species. Thus,
it adds or subtracts the same amount from the long-term low-density
growth rate of all species in the system. We shall see several examples
below where A7 is positive, which has the effect of raising the 7, of every
species and promoting coexistence. Many species can coexist by this
mechanism because there is no constraint preventing A7/ from exceeding
—AE for all species and giving all species positive values of 7,. This
outcome is clear in the more specific examples that follow.
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Negative values of Al can occur, especially in cases of superadditivity
(Chesson, 1988). In such cases, this resulting “negative storage effect”
lowers the F; values. Crudely, we may think of this as promoting com-
petitive exclusion. However, in the present situation with common
functions g;, there is no diversity-maintaining mechanism, and only one
species would persist in the system without the 47 term. Lowering the 7,
values may have the effect of increasing the rate at which competitive
exclusion occurs. More interestingly, the situation can arise where every
species has a negative value of F,. In this case the order in which extinctions
occur and the identity of the surviving species are subject to chance
(Chesson and Ellner, 1989).

5.4. The Lottery Model

What form does Al take for particular systems and how might it
compare with the other terms of the 7; in such systems? In iteroparous
populations, reproduction and juvenile survival are often more sensitive to
environmental and competitive factors than is adult survival and this
commonly leads to subadditivity (Chesson, 1984, 1988). The lottery model
of competition for space (Chesson and Warner, 1981) gives a simple
illustration of such situations. The dynamical equations are

n B(1) X;(1) ]
Y —(1—5)X. 6, X 82
1+ 1)=(1 5})X_,(t)+|:k§1 & k:”:ZZ:] B,(0X. ()] (82)

where X is the number of adult organisms in the system, J, is the death
rate of adults, and B,(¢) is a parameter combining the birth rate and
juvenile survival rate up to stage where the organisms begin to compete for
the space that they hold as adults. The quantity B;(¢) can also incorporate
a factor reflecting a species’ relative competitive ability (Chesson and
Warner, 1981).

The quantity B;(¢) is an environmentally dependent parameter, but to
analyze the model it is simpler if it is transformed to the log scale to reflect
the fact that ratios of B,(r) values are more important than absolute values.
Thus, we define

E=In B, (83)
The quantity
[ 5 wk(z)] (84)
k=1

represents the amount of space available for settlement of juveniles as a
result of death of adults. Competition for space can then be assessed by
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comparing the available space with the demand on space (the number of
juneviles competing for the available space):

Z B (t) X, (2). (85)

k=1

Again, it is simplest to express this on a log scale, and so we define the
competition parameter as

con {Ela BOL) 36)

2i-1 0 X, (1)

which is independent of the species.
In our framework, the growth rate can be expressed as

g(E, CO)=In{(1 —5,)+e% “}. (87)
The standard environmentally dependent and competition parameters are
&=In{(1-8,)+e% "}
and
%= —In{(1—-6,)+e5 “}.

Table I gives the important quantities for the model analysis.
Defining E"=E;,—E* and noting that by Taylor expansion
&=08,E" +58,(1 —8)(E/)?, we see that

J

AE= Ecé’}—;i—i— Y E&/6,

r#i

~8,(E[E/ 1~ E[E"])~10,(8,—d) o, (88)

which in this case is equal to 7, as the common choice of C* means
%;'" =0. In addition, we have 4C = AN, which can be written simply as

AC=AN=L1V(C~)5,(6,—J). (89)

TABLEI

Parameters of the Lottery Model

@ d;

ﬂ/z; %
D) -6,(1-46))
¥ 1-97!
9ir 3,/[d,(n—1)]

¥ 16,(5,~ 8)
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This nonlinearity term involves species differences in adult death rates,
reflecting the fact that different adult death rates lead to relatively non-
linear responses of species’ growth rates to competition.

To calculate the storage effect, we assume that the environment satisfies
the same assumptions as the general symmetric model of Subsection 5.3.
The lottery model is then a special case of that model. Applying expres-
sion (79) and Appendix IV we conclude that

Al=03,[(1—p)(1 = 8)/(n—1)+p(6,— )], (90)

where & is a weighted mean of the resident &’s with weight given to 8, equal
to the expected fraction of the total pool of competing juveniles coming
from species r (Appendix IV).

To develop an understanding of these results, we first consider the spe-
cial case where the adult death rates, §,, do not differ between species.
Then we have AC=4AN=0 and AE=F,~3(E[E;]— E[E]). Noting that
an adult death rate of § means an expected longevity of 1/d, we can express
the long-term low-density growth rate in per generation units as

F,/6 =~ E[E;]] —E[E]+c¢*(1 —p)(1 —8)/(n—1). (91)

Note that for fixed values of the other quantities, the magnitude of the
storage effect declines as the number of resident species increases, making
it increasingly difficult for new species to invade the system.

Expression (91) can be rearranged to give a condition for all species to
coexist. First, we recall that E[E] is the average of n— 1 values of E[E,]
for resident species. Defining E[E"] as the average of the E[E]s for all
species (including the invaderi), and noting that E[E]}—E[E]=
n(E[E.]—E[E"])/(n—1), we obtain the coexistence criterion

6*(1—p)>nmax,(E[E"] - E[E;])/(1 - 6), (92)

which agrees exactly with a formula derived by Hatlield (1986) using a
diffusion approximation.

Note that the left hand side of the coexistence condition (92) is the
variance of the species-specific response to the environment. The term
max;(E[E"] — E[E;]) can be regarded as the maximum average disadvan-
tage conferred on any species by the environment. This term shows that
coexistence is easy if species are very similar in average properties. As
expected intuitively, coexistence becomes more difficult as the number of
species n, is increased, and easier as the value of 6 is decreased. Note,
however, that J has little effect on this coexistence condition once it has
become small—the criterion quickly approaches a finite limit as ¢
approaches 0.
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In the case where the ¢, differ between species, the expression for 7,
requires a knowledge of fluctuations in population density in order to
calculate V(C ') and hence a nonzero value for AN (Eq. (89)). For this we
need the resident stationary distribution. For the two-species case
(Chesson, 1989), this is trivial, as there is a just a single resident, which
occupies all space and is unaffected by environmental fluctuations—they
are cancelled exactly by fluctuations in competition. For the three-species
case, we can make use of the two-species resident distribution determined
by Hatfield and Chesson (1989). Appendix V shows that for the case
E[E]=E,

(1-p)1-9) ) (93)

— 8 +5(1-9)
It follows that for the case where E[E;]=E}*,

— Y o~ 2
V(C)~c (p+2(1

;= az(l_p)5i<(1_5i)+(5—5)_2 (6.-"_6)(1—5) ) (94)

1
2 (1 =8)*+6(1—9)
Expression (94) differs very little from (91), when specialized to the case
E[E;]=E}. The similarity occurs because in the three-species lottery
model, the nonzero AC (4AN) term arising when the §’s are unequal is
largely canceled by additional terms in 4] and AE. Indeed, if the &'s are
small (the situation when these nonadditivities and nonlinearities assume
the most importance in the lottery model) there is negligible error
using (91), with & interpreted as d;, in place of (94).

5.5. Seedbank Model

Annual plants with a seed bank provide another example where sub-
additivity results from differing sensitivities of different life-history stages to
environment and competition. While such annual plant communities have
been discussed qualitatively in within this general framework several times
(Chesson, 1988), this is the first quantitative analysis. The equations
defining population growth are

X(t+ ) =5,(1-E; () X;()+ E;(1)[ Y;/C'()] X;(1), (95)

where X(z) is the density of seeds of species j in the soil seed bank at
time 1, E/(t) is the fraction of these seeds germinating in the period ¢ to
t+1, Y; is the field of seeds from each germinating seed with competition,
C'(#), at the value l, and s; is the survival rate of seeds that do not
germinate during ¢ to £+ 1 (assumed constant).

Note that the first term of the sum in (95) is number of seeds that do not
germinate but survive from time 7 to time ¢+ 1. The second term is produc-
tion of new seeds from plants that do germinate. All species are assumed
to be affected in the same way by competition.
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TABLE I1
Parameters of the Seedbank Model

% 1—s5;=19,
8, 1—s5,(1—eB)
P —B,(1-8)
¥ 1-4!
qir B:/[B,(n—1)]
4 %ﬂl(ﬂl_ﬂ)

Equation (95) is not a full description of dynamics, as we have not
specified C'. A model for competition is

n
C'=3% ¢EX, (96)

i=1
where the c¢; are constants. In essence, the model assumes that the
reduction in seed yield due to competition is proportional to a linear
combination of the numbers of seeds germinating for each species. This
model has been discussed elsewhere in the literature (Levin er al., 1984),

and enjoys considerable empirical support.
The log scale once again proves beneficial and so we define

E()=InEi(r) and  C(1)=InC(1). (97)
Thus
G/E;, C)=s;(1 —e®)+ Y, e®~ € (98)
and
g(E;, C)=In[s;(1 —e®)+ Y,e5 “]. (99)

The form of g is now very similar to that in the lottery model, and it
should not be surprising that the results take a similar form. The important
quantities for analyzing the model are in Table II. Making the environmen-
tal assumptions of Subsection 5.3, the results of that subsection and
Appendix IV now yield the components of 7,—Table III. Note that § is
again a weighted average of resident § values with weights being expected
proportionate contributions to competition (Appendix IV).

TABLE III
Results of the Seedbank Model

AE(F;) Eé”l_Zr;éiqlrEgr
AC(AN) NC) BB~ B i
a1 a2, L(1 —p)1 = 8)/(n—1)+p(3,~ )]
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As in the lottery model, the 4C term contains the unknown V(C "), but
again this term vanishes when all the 8; are the same. Equal seed mortality
rates &;, and equal yields Y, together give equal f’s. However, this outcome
can occur in other circumstances too. The formula for §; (Table II) shows
that species with larger values of s must also have larger values of E* if the
B’s are the same for all species. To understand this, note that relation (5),
defining equilibrial values, implies that the E* values must obey the
formula

Yiexp(—C*)=1+0,(exp(—E})—1), (100)

which means that Y, must decrease if both s, and E* increase for fixed C*.
It follows that invariance of the §; implies a tradeoff between Y, and 6, with
increased yields corresponding to higher seed mortality, which is not an
unreasonable qualitative form for such a tradeoff in nature.

With a zero 4C term (following from equality of the f's), we obtain
(Appendix V)

~

o= AE+ %, (1= )=+ 06~ 9)). (101)

In this model, a zero AC term does not require species to have the same
growth-rate function g. Differences between g's show up in the 4f term as
p(8,— &), which adjusts the average growth of the invading species i due to
its deviation from the average seed mortality rate. The sign of the 47 term
may differ between species if the J; vary too greatly, and p is not small.
However, the main messages of the lottery model are retained: Large
variance in the species-specific component of response to the environment
can permit coexistence of many species, and the benefit of this variance to
the 7, decreases in inverse proportion to the number of resident species.

5.6. Simultaneous Recruitment Variation and Resource Partitioning

The general theory discussed here represents the mean low-density
growth rate 7; in terms of several mechanisms that do not depend on the
fluctuations and mechanisms that do. In this subsection these two sorts of
mechanisms are combined in one specific model. As in Subsection 5.4,
we envisage an interoparous population with environmental fluctuations
leading to variation in recruitment to an adult population. We use the
same growth rate equation with the same meanings, except that we modify
the competition term to represent differences between intraspecific and
interspecific competition among juveniles. The formula for the growth rate
in terms of environment and competition is

g(E, C)=In{(1—0)+e% “}, (102)
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where it is assumed for simplicity that the adult death rates are the same
for all species.
The competition parameter takes the form

Cj= Z (ijeE"Xk, (103)
k=1

where exp{E;} represents the juvenile production rate, and we can define
the “limiting factors” in this case as the numbers of juveniles of the different
species, F,=exp{E,} X,, and in the terminology of Section 4, above, we
have

C,i=®|(F)= 3 «,F, (104)
{=1
For the invasion analysis, however, F; is omitted as a competitive factor
because it is fixed at zero.

To simplify analysis, we assume that all intraspecific coefficients are the
same, a;= o, and all interspecific coefficients are the same, a; =, for j # k.
In order to satisfy the assumptions of O(s?) differences between com-
petitive effects experienced by different species, we specify o — = O(s?).
We make the same environmental assumptions as in the two previous
models.

Although the competition parameters are here unique to a species, we
specify a common equilibrial value, C* = C*, which fits with the symmetry
assumptions of the model. This means that the E* have a common value
E* =C* +1n 6. The vector g, is calculated in Appendix III as

9~ {1—(a—B)[a(n—1)]}p, ., (105)

where p,_, is the n—1 dimensional row vector (1, .., 1)/(n—1), which
averages the elements of column vector that it multiplies. Note that that q,
differs from p,_, only by O(s?). Given that E& = O(c?) (assumption a4),
and noting by Taylor expansion that E& =~ S(E[E;]— E*)+ 36(1—6)d?,
we see that

AE~S(ELE;]— E[E]). (106)

To calculate € "* = —g (E}¥, ¢;(F*)), we note that ¢; is linear, and
therefore the methods of Subsection 4.2.1 above apply to give

¢:(F*)=q,C* "= {1 - (a— f)/[a(n—~1)]} C* (107)
Expanding —g,(E¥, ¢:(F*)) in #;(F*) about C* yields
€T =6(Bla—1)C*/(n—1). (108)
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Combined, (106) and (108} give
Fi={E[E]— E[E1+ C*(1 - f/a)f(n—1)}. (109)

The relative nonlinearity term AN is o(c?), because V(F)= O(c¢’) and
¥ = O(c?) (¢ — B = 0(c?)). Thus, it remains to calculate A7. This, however,
turns out to be a straightforward application of the results of Subsec-
tion 5.3 above because ¥, =%, ‘+ O(c°}, and so all the calculations of
covariances can proceed as if there were just a single limiting factor.
Similarly, the O(¢?) difference between q; and p,,_, has only an o(c?) effect
on A7 and can be ignored. Appendix IV shows that a=C*/é(n—1) and so
we see from formula (79) that

AI=5(1 —8)(1 — p) a2 C*/(n— 1). (110)
Combining all terms of the growth rate, we now obtain

(1—B/x) C*+(1 —9d)(1—p)a>C*
n—1 '

F/0~ E[E,]—E[E]+ 11

(111)

This result appears to depend on the arbitrary parameter C*, but it
does not really, as C*=E*+1Iné~' and E[E;]=E*+ O(c?), and so
E[E]+1Indé"' can be substituted for C* above without affecting the
accuracy of the approximation. When this is done, the expressions
(109)—(111) all become independent of the choice of the equilibrial
parameters.

These results lead to essentially the same form of interaction term as in
the lottery and seedbank models. The symmetry assumptions applied here
ensure that this is the case. However, of particular note is that — %, " has
a similar form and similar effect to 4/. In essence, the fluctuation-independ-
ent or short-timescale mechanisms have the same effect as the fluctuation-
dependent mechanisms when both are viewed on a long timescale. The
correlation between the environmentally dependent parameters of different
species corresponds to the ratio of competition coefficients f/x. The
correlation p determines how much different species tend to have periods of
high juvenile production simultaneously, when these juveniles will be
thrown into competition with each other. The ratio f/x measures the
similarity of competition between versus within species for any fixed
environmental conditions. Thus, these two quantities summarise similar
things but for different timescales.

Unlike p, however, S/o can be greater than 1, but can never be less than
0. If B/x, interspecific competition between juveniles is greater than
intraspecific competition between juveniles, lowering the values of 7;, and
opposing the coexistence promoting effect of A47. In the present model, 4/
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can only be nonnegative. However, if the model were superadditive, for
example if environmental fluctuations had their greatest impact on adult
survival, and competition covaried positively with this, then the A7 term
would be negative as a consequence of a positive value of y. These results
serve to illustrate the deep connections that exist between competitive
processes on different scales, which are often obscured by the scale on
which we view them.

6. DISCUSSION

This last decade has been marked by a vigorous debate on the sorts of
generalizations that are possible concerning the dynamics and structure of
ecological communities (Kareiva, 1989; Roughgarden, 1989). The present
work provides evidence that certain kinds of broad generalizations are
indeed possible in community ecology. This evidence is derived here from a
general model that is capable of representing a broad range of different sorts
of communities. In spite of these broad possibilities, it was nevertheless
shown that there is a limited range of mechanisms capable of affecting
species coexistence. These mechanisms are represented quantitatively in the
three natural terms, 7, AN, and AI, whose structure can be examined in
detail for quite general situations. Other mechanisms of coexistence and
competitive exclusion either do not exist within this model or are more
subtle than can be revealed by the quadratic parts of the model.

The specific examples served further to illustrate unity. They showed that
the 41 term takes a very similar form in different models though they may
have different functional forms for competition or may involve different life
histories. Moreover, the recruitment variation example of Subsection 5.6
illustrated similarity between mechanisms on different scales. When the
effects of fluctuation-independent mechanisms and the storage effect are
both viewed on a long timescales, their operation can appear very much
the same. Thus, it appears that not only are there a restricted number of
mechanisms of coexistence, but these mechanisms have connections at
fundamental levels which can be revealed when viewed appropriately.

Of the two fluctuation-dependent mechanisms considered here, the
storage effect seems by far the more important because when acting alone
it is capable of permitting coexistence of an arbitrary number of species. On
the other hand, relative nonlinearity of competition requires complex
scenarios before it can lead to coexistence of more than two species.

The several examples illustrating the storage effect in Section 5 imply
that the strength of the storage effect changes in inverse proportion to the
number of species in the system provided correlations between the respon-
ses of pairs of species to environmental factors are of similar magnitude for

653/45/3-4
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all pairs of species. The recruitment variation example of Subsection 5.6
shows that the corresponding assumptions applied to classical resource
partitioning lead to a similar inverse proportionality of the strength of the
coexistence-affecting mechanism as the number of species decreases. Such
dependence of the strength of mechanism on the number of species poten-
tially provides a basis for predicting the species richness of a system.

This article emphasises the long-term low-density growth rate as the
means of assessing the strength of a mechanism. Moreover, this long-term
growth rate allows comparisons of the quantitative contributions of
different mechanisms to coexistence in the most likely situations in nature
where several mechanisms may act together (Connell, 1978).

The technique of partitioning the long-term low-density growth rate to
reveal the contributions of different mechanisms shows in particular
how mechanisms operating on different timescales can be considered
simultaneously. The F; term of this can be viewed as summarizing all those
mechanisms of coexistence and competitive exclusion occurring on shorter
timescales that the time unit in the model. In principle, the 7} term could itself
be expanded into three terms showing mechanisms associated with fluctua-
tions on some timescale and other mechanisms associated with yet shorter
timescales. Thus, the model forms a conceptual framework for dealing with
multiple timescales situations, and can contribute to the development of
hierarchy theory (Allen and Starr, 1982; O’Neill er al., 1986).

The results presented here, however, are not without their limitations.
Most troublesome is the small effects approximation. We would like to
have some assurance that the results are applicable to realistic levels of
environmental fluctuation. The accuracy of the quantitative formulae is of
most concern, as it is clear that the existence of these mechanisms is inde-
pendent of the range of fluctuations (Chesson, 1990). We can expect that in
some particular models the approximation will hold up broadly, but in
other particular models serious errors will occur for all but very small
levels of environmental fluctuation. This is analogous to the corresponding
problems in the stability analysis of deterministic models. Guidelines on
how to distinguish these cases are yet to be developed.

A number of other limitations have been addressed satisfactorily in
special forms of the general model or are the subject of other publications.
These are the restriction to just one environmentally dependent parameter
per species (Chesson and Warner, 1981), the assumption of independence
of environmental fluctuations over time (Chesson and Warner, 1981;
Chesson, 1990), and the requirement that the invader’s competition
parameter can be expressed as a function of residents’ competition
parameters (Chesson and Rosenzweig, manuscript). Moreover, there is an
analogous development of the theory to the case of spatial variation
(Comins and Noble, 1985; Chesson and Ives, manuscript).
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APPENDIX I: GENERAL NOTATION

Competition parameter of species j

Equilibrial value of C;

—g;(E}*, C)): standard competition parameter
%, with species i as an invader

(6%, ... %,"), with ith place missing
Environmentally dependent parameter of species j
Equilibrial value of the environmentally dependent
parameter

(Ei, - E)

g,(E;, C¥): standard environmentally dependent
parameter

(&, .., &) with ith component deleted

Label for invading species

Labels for arbitrary species

Labels for resident species

Growth rate: In X, (¢ + 1) —1n X, (1) =1n 4;(1)
Long-term low-density growth rate

General form of 4,(¢)

General form of r;(¢)

Diagonal matrix with rth diagonal element

s 1, YN VENV(E)

06 /0€ !

(411, el qin)

Population size of species j

In X,(¢)

Mean competition effect

Mean environmental effect

Storage effect

Effect of relative nonlinearity

d&/dE; at E; = EX

d%,/dC; at C;=C}

0’g;/(08 0%)) at (&, 6,) = (0, 0): nonadditivity
diag(y,, ..., v,) with ith diagonal element deleted
X,;(t+ 1)/X;(1): finite rate of increase of species j
Diagonal matrix with rth diagonal element
i/ VEN (1, JV(E))

Small parameter proportional to \/gj

C(&,, ¢, "): Covariance between environment and
competition

(1) - X' ) with ith component deleted
n—1xn—1 identity matrix

Approximately equal to with an o(g?) error
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APPENDIX IT

The approximations in the text use the standard order notation y = O(0)
and y=o(cg), meaning respectively |y| < Ko for some constant K and
yio =0 as c—0.

The small effects approximation of the text requires that fluctuations in
the competition parameters be restricted to finite ranges of order ¢ about
their equilibrial values. We seek conditions under which values initially
satisfying this constraint, will satisfy it for all time. Consider just the
case where the competition parameters can be expressed as functions of
environmentally dependent parameters and species densities alone
(assumption (a7')). To begin with, we assume that the different species
have a common competition parameter C(z). We then go on to consider
the general case. We find conditions under which C(¢) — C* = O(a). Under the
reasonable assumption that %; is a smooth function of C(¢), €, = O(o).

For simplicity of notation assume that C(¢) has been adjusted so that
C* =0. We write

Clt)=c(&(1), Z(1)), (Al)

where Z(¢) is the vector of log population densities, and &(¢) is the vector
of standard environmentally dependent parameters. Note that

Z(t+1)y=2Z(t)+g(&(1), C(1)), {A2)

where g is the vector of growth rates in terms of the standard environmen-
tal parameter vector and the common competition parameter.
C(t+ 1) can now be expanded as follows:

Clt+1)=c(&(t+1), Z(1+ 1))
=cl&(t+1), Z(1) +g(8(1), C(1))]

=P(t)+ Q(¢t)+ R(1)+ C(1), (A3)

where
P(t)=c[&(1), Z(1) +g(0, C(2))] — c[&(2), Z(1}] (A4)
Qt)=c[&(t+ 1), Z(t+1)] —c[&(1), Z(t + 1)] (AS)

R(t)=c[&(1), Z(1) + g(&(1), C(1))] — c[&(1), Z(1) + g(0, C(1)) ] (A6)

Each of these differences represents a comparison of a change in one value
of an argument of a function. With sufficient regularity (e.g., locally
Lipschitz of order 1), we can expect to bound these differences by linear
functions as follows:
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[P(1) + C(1)] < pC(1) (A7)
Q) <k |81+ 1)=&(1)| <2k,0 (A8)
|R(D| <k, |&(1)| < ky0. (A9)

Under these circumstances we find that
|IC(t+ 1)) <p |C()] + (2k; + k). (A10)
If p <1, we can define
K= (2k, + k,)/(1 —p), (A11)
and then
[C(t)] < Ka (A12)

for all + whenever |C(0)] < Ka.

The mean value theorem for differentiable functions provides formulae
for these critical constants, p, k,, and k,. We choose some positive num-
ber ¢, and assume that z, z’, &, and &', and C satisfy the conditions |&] <&,
|8’ <&, {c(b, 2)| <& for some & with |&)) <¢, 2’ =z+g(&, C), and |C) <e.
Under these conditions we define

ac[8, z+g(0, 0)]|
oC I

p=sup|l+ (A13)

Second
ky=sup{Ve(&',z'), (Al4)
where V is the operator vector (0/04,, ..., /08,). Finally,
ky=sup | V(8 z+g(&, C)),

where & is set equal to & after the taking of derivatives. A K such that
(A12) holds, for o sufficiently small, exists if there is a positive ¢ such that
k, and k, are finite and p is less than 1. Sufficiently small ¢ is such that Ko
and o are both <e.

The conditions that %k, and k; be finite are essentially regularity
conditions on the functions defining the model. The condition that p be
less than 1 means that the feedback from C to itself, which is necessarily
negative, does not approach zero while [C| <& and |&| <eg, and that this
feedback is not too strong.

It is not difficult to show that these conditions are satisfied for the seed
bank model in the text. However, in the lottery model, the feedback from
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C to itself approaches 0 as equilibrium is approached. Therefore the above
methods do not work. The lottery model is unusual in this respect.
However, it is not difficult to show directly that

min{E,— E¥} <C<max{E,—E*}
j | J

and therefore that C is bounded by ¢ in the lottery model.

To demonstrate that %;,=O(s) more generally, we assume that it
is possible to transform the competition parameters so that there are a
function C(¢), functions #,(t), and constants x; such that

C,(t)=C(t) + h; (1)

with |4,(¢)] <rcjz72 for C(t) and & = O(c). A minor modification of the
above derivation then demonstrates that competition parameters are
bounded in a finite range of order ¢ in this more general case. The model
of recruitment variation, Subsection 5.6, can be shown to satisfy these
conditions provided C* < 2/6.

We need to show also that the expected value of the competition
parameter is O(c?). Note that the small-effects approximation for resident
species implies that

E& —E%,+7,EE%, = o(c?). (A15)

All terms on the left except possibly E%, are O(c?). It follows that E%,
must be O(s?) also. This result extends to invaders by the assumption that
competitive differences between species are at most O(a?).

We must show also EF — F* = O(¢?) in the competitive factor model,
but this is immediate from the assumption that there is a smooth bijective
relationship between €~/ and F, which will normally be so when the
dimension of F is not more than n—1 when there are n—1 residents
species.

APPENDIX II1

The idea of a generalized inverse is used in the text in the context of
explicit representation of the solutions of equations. Rao (1973, p. 24)
defines a generalized inverse A~ of a n xm matrix A by the property

AA~A=A. (A16)

If the system of linear equations Ax=>b has a solution, then A~b is a
solution of these equations. Unless A itself is invertible, however, A~ is not
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unique. I give two elementary examples of generalized inverses of relevance
to the text.

Consider the linear additive models of Subsection 4.2.1. If there is just a
single limiting factor F, then we have C;=¢,F and ® ‘= (¢,, .., 4,), with
the ith element deleted. A generalized inverse of this matrix is given by the
formula (® )" =(1/¢,,.., 1/¢,)/(n—1), as can easily be checked
against the defining relation (A16). By formula (34), we then obtain
q,=¢:(1/¢,, .., 1/¢,)/(n—1), a formula for q, that arises commonly in the
text. Because the generalized inverse is not unique (e.g., in this example, an
alternative formula is (® ‘)~ = [1/¢,, 0, ..., 0]), some care is needed in the
interpretation of the results of these analyses to be ensure that they do not
depend importantly on the arbitrariness of the choice of (&) ~.

In cases where ® ' is a square matrix of full rank, the generalized
inverse is the same as the inverse and is unique. For example, if we define
U to be an n—1 by n—1 matrix of 1’s, Eq. (104) leads to the matrix
@' ~'=(ax— f)1 + BU relating the resident competition parameters to the
limiting factors in the model of Subsection 5.6. This matrix is square with
full rank provided «+# f, and the unique inverse is easily seen to be
1/{(a—B)—-BU/(a—B)[«x— B+ (n—1)]. This result can be wused to
calculate q, by the formula (34), ignoring the distinction between €, and C,,
because (0%;/C;)* =6 for every species. As ¢;=f(1,..,1)=p(n—-1)p, ;,
by definition of p,_,, we obtain q,=(n—1)fp,_,/[(n—1}f+a—B]~
{1 —(a—B)/[a(n—1)]} p._,, as stated in the text.

In linear additive models, the vector q, leads to a 4C value equal to the
difference between competition experienced by an invader from equilibrial
resident competition and the invader’s equilibrial competition. Nonlinear
and nonadditive models are more complex, but have a similar equilibrial
term ¢, ' = ¢,(F*)— C¥, provided we make the assumption that the equi-
librial values for residents satisfy the equation C}*=¢,(F*). If we do not
make this assumption, € “* is replaced in formulas (45)-(47) by

[¢:(F*)—C*]—q,[¢ (F*)—C~"], (A17)

where ¢ ~* is the vector of functions ¢ for residents, and C ~'" is the vector
of resident equilibrial competition parameters. Equation (17) represents an
invader-resident comparison of deviations between competition parameters
at equilibrial F values, and equilibrial values of these competition
parameters. Formula (A17) applies in linear cases also, showing that
expression (36) can be split into these same two components whenever the
equilibrial competition parameters are not chosen to be consistent with
equilibrial limiting factors.
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An important component of the covariance between environment and
competition is the quantity a, = EA,, where

oCc!
A= (A18)

evaluated at & =0. In the lottery model, we find that
—1
A,=e"'X, (5, > eE:'XS)

=X,/<Z 55Xs) (A19)

as the equilibrial equation (5) implies that E* = C* +1In ;. It follows that

a= (A20)
n—1
In addition
———— 1-5
(1—6)(5a=—-——6, (A21)
n—1
where
8=y 8,EY,, (A22)

with Y, =46,X,/>_ 0,X,. Note that this is a weighted average of the d, with
weight of 8, equal to the expected value of the fraction of newly available
space opened up by species r. Because E[E,]=E*+ O(c?) and E*=
C* +1né,, we have the approximation

E,
‘5"=E25re Xr

s oEy 0(a?), (A23)

which expresses 6 as a weighted average with weights equal to the expected
proportionate contributions of each species to the total pool of competing
juveniles.

With two resident species, r and s, the probability density of X, is

cfo,x+6,(1—x)1*x" Y1 —x)»! (A24)
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(Hatfield and Chesson, 1989), where ¢ is a constant, and in the special case
E[E])=E}* v,=6, "' —1. This probability density can be used to calculate

the special case. Using this to evaluate (A22), we find that

9,(1-6,)2—-96,)+6,(1-9,)(2—-39,)

= T 15,6, +(1=3.)(2=9,)

(A25)

For small & values, & is well approximated by 4.

The seedbank model has a very similar functional form for the competi-
tion parameter. The essential difference is that the supply of resources being
competed for is a constant in the seedbank model but depends on the den-
sities of the species in the lottery model. However, as the resource supply
does not depend on the environment, and is an additive term in the
formula for the competition parameter, it does not affect the A4,. For the
seedbank model we find that

—1
A,=ce"X, (5, Y cseEf'Xs) . (A26)
Thus
_— 1
oa= (A27)
n—1
and
13
(1—-08)da= _f, (A28)
where

—1
§=Y6,E l:c,eE"X, (Z cSeE;XS) ]
1
=Y 4,E l:c,eE'X, (Z cseEsz) ] + 0(c?), (A29)

or in essence a weighted average of the §, with weights equal to expected
proportionate contributions to competition from each of the resident
species.

The recruitment variation model of Subsection 5.6 has

Cri=pY efX,, (A30)

r#EQ

which to O(6?) is a common limiting factor for the species in this system.
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Thus, we calculate the A4, and a for this quantity. Very simply A4,=
57 'Bexp{E*} X,, and therefore

l £ 3
5o B {; exp(EX) X,. (A31)

But this is within O(a?) of EC;/8(n—1), and since EC,; = C* + O(c?),
this means that

a=

a=C*/6(n—1)+ O(a?),

which is sufficient to establish A7 to o(c?).

APPENDIX V

To calculate the variance of competition in the lottery model, we note
that E*=1Iné,+ C* and so with symmetric covariance structure the E,
can be written in the form

E=U+V,+Iné,+ C* (A32)

where U has zero mean and variance pe? and is uncorrelated with ¥, of
variance (1 —p)o? and mean O(¢?). The V, are uncorrelated with each
other. With Y, defined as in Appendix IV, we find

C—C*=U+Y V,Y,+0(c?). (A33)

It follows that

V(C)za2<p+(1—p)ZEYf). (A34)
We can evaluate this for the case of two resident species with E; = E},
using the density (A24). We find in that case that

2—(0,+9,)
2 2 r s
Y A B = G s T s —s)ai-s) A3

from which the variance formula (93) in the text follows.
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