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Abstract Theoretical models imply that spatial scale derives its greatest importance
through interactions between density-dependent processes and spatial variation in popu-
lation densities and environmental variables. Such interactions cause population dynamics
on large spatial scales to differ in important ways from predictions based on measurements
of population dynamics at smaller scales, a phenomenon called the scale transition. These
differences can account for large-scale population stability and species coexistence. The
interactions between density dependence and spatial variation that lead to the scale transition
can be understood by the process of non-linear averaging, which shows how variance origin-
ating on various spatial scales contributes to large-scale population dynamics. Variance
originating below the scale of density dependence contributes less to the scale transition
as the spatial scale of the variation declines, while variation originating on or above the
scale of density dependence contributes independently of the spatial scale of the variation.

Key words: density dependence, metapopulation, spatial variation, stability.

INTRODUCTION

Various important processes taking place in reef-fish
systems have recognizable spatial scales. The size of an
individual’s home range or the extent of its daily
foraging activities are scales that may also set a scale
of limitation of food resources. Variation in food density
on smaller scales may not affect individuals, while
changes on the same or larger scales would. The scale
of predation or disease is likely to be much larger than
these scales. Mobile predators, acting in a density-
dependent way, must respond to prey density on a
larger scale than the home range of individual prey of
solitary species. Thus, the scale of food limitation may
be quite different from the scale of predation.

While processes may have recognizable scales, vari-
ables, such as population density, that we use to charac-
terize systems, can normally be defined on any scale.
However, the dynamics of variables may be highly scale
dependent. For example, fluctuations over time in
population density will often be greater on smaller
spatial scales, but more fundamental changes in the
nature of population dynamics may occur with a
change in scale according to modern ecological theory.
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The stability of a population (Hassell 1987), the co-
existence of competitors (Caswell 1978; Hastngs
1980; Chesson 1983) and the stability of predator-prey
interactions (Comins & Hassell 1987; Reeve 1988;
Hassell er al. 1991; Wilson ez al. 1993) may depend on
structuring of populations in space across a variety of
scales.

Variation in population densities and/or environ-
mental variables is an essential aspect of spatial struc-
turing. Much less appreciated is the fact that density
dependence (Forrester 1995; Holbrook & Schmitt
1995) plays a critical role in the effect that scale and
variation in space have on population dynamics.
Although there is a tendency to regard spatial and
temporal variation as eliminating or reducing the effects
of density dependence (Caswell 1978; den Boer 1981;
Andrewartha & Birch 1984; Doherty & Williams
1988), it is now known that such variation gains its
main importance through its interaction with density
dependence (Chesson 1996). Moreover, the impor-
tance of scale in ecology derives primarily from this
interaction.

It is the purpose of this article to explore some simple
ways of understanding the interaction between varia-
tion and density dependence in the context of reef-fish
communities. Although the development below is
almost entirely for the single-species case, it need not
be. Indeed, much of the literature deals with inter-
actions between species. However, the key issues can



210 P. CHESSON

be understood more simply in the single-species con-
text. The presentauon here 1s a quantitative comple-
ment to a graphical approach used in Chesson (1996).

The analysis below considers a population structured
in space. On a small spaual scale, individuals may
potentally interact with one another leading to density
dependence. Such density dependence could lower
survival rates (Forrester 1995), reduce reproduction
(Jones 1991) or inhibit recruitment into the population
(Stumson 1990). Whatever the cause, the overall effect
of this density dependence 1s to lower per capita contri-
butions to the next gencration as densities increase,
except in the case of an Allee effect where the reverse
situation applies. Each unit of space on the small scale
is assumed to define a local population, and such local
populations are connected on a larger spatial scale by
dispersal of larvae. However, local populations may also
be connected by migration of adults. The key question
1s how population dynamics on the larger spatial scale
are affected by variation in population density from unit
to unit on the small scale.

CHANGES IN POPULATION DYNAMICS
WITH SCALE

There is a simple relationship between population
densities on different scales: values on larger scales are
averages of values on smaller scales (Chesson 1996).
To understand how population dynamics change with
scale, however, we must introduce some simple models.
Let the population density of a species in the ith unit
of space on a small scale at some time 1 be N,(7).
Population density on a larger scale including » units
on the small scale is thus:

N =13 N 0

On the smaller scale, the relationship between the den-
sity, N, (r + 1), one unit of time later, and N,(r) can be
written as some function (F) of density:

Ni(t+ 1) = F(N:«(1)) (2)

In the simplest case, F might represent density-
independent survival and reproduction from one
time to the next so that:

N,(t+ 1) = RN,(¢) (3)

where R is the constant (and therefore density indepen-
dent) finite rate of increase. In general, these relation-
ships will not be deterministic, and at any locality there
will be some deviation of N,(r + 1) from the predicted
density, F(N,(1)), uncorrelated with N,(t). However,
such deviations do not affect the arguments here
(Chesson 1981).

Larger-scale population dynamics can be obtained by
averaging smaller-scale population dynamics:

Ne+ =13 Na+D=13% Fvey) @

and in the case of density-independent survival and
reproduction (equation 3), this equation reduces to:

N(t+ 1) = RN@) (5)

Thus, the relationship describing population dynamics
on the smaller scale also describes population dynamics
on the larger scale. In symbols this means

N@+ 1) = F(N(1) (6)

This outcome is the intuitive expectation of most
people. However, it is a very special case. In general
equation 6 is false, and the fact that it is false in general
has profound consequences for population dynamics,
Equation 6 is true only in the very special case when F
is linear; that is, when the plot of N;(r + 1) against N,(z)
is a straight line (e.g. line (a) of Fig. 1; i.e. when popu-
lation dynamics are density independent).
Non-linear equations describe density-dependent
dynamics. Equation 4 then involves averaging a non-
linear funcuon of N,(r). Such non-linear averaging
(Chesson 1996) means that the new population density,
N(1+ 1), on the larger scale depends not just on the
density the ume before but also depends systematically
on the variance, a’, of the density on the smaller scale.
The actual contribution of the variance is difficult to
define precisely in general. However, in Appendix I, I
derive a general approximation that shows that:

NG+ 1) = F(N(@©)) + ca® ©)

where the quantity ¢ may depend on population den-
sity N'(z) but not o*. This expression implies a change
in population dynamics, passing from the small scale
to the larger scale, approximately of the form:

N+ 1) = F(N()) = co® (8)
(a)
T (b)
z
N;(t) (1+r) KiT

Fig. 1. Relationships between small-scale population density
al successive points in time; for example, successive years.
(a) Density-independent dynamics, (b) logistic dynamics.



Thus, at least approximately, the prediction of the
smaller-scale population dynamical equation is in error
by an amount proportional to the variance on the
smaller scale, I shall refer to this difference as the scale
transition. The familiar logistic equation of density-
dependent population growth provides an illustration,
where in fact equations 7 and 8 are exact.

We can write the logistic equation in discrete time
as:

N+ 1) = N(@©)=r(l = N@/KN,() (9)
Rearranging to see just what F is here, we have:
N+ 1D =N() + r[1 = N.()YKIN.() (10)

The right-hand side of equation 10 is F(N, (1)), which
is plotted as line (b) in Fig. 1. With this definition of
F taking the average to obrtain the dvnamics on the
larger scale vields:

N(t+ 1) = N(@) + r[1 = NQ/KIN@) - (/Ko (11)

This equation is in exact agreement with equation 7;
moreover, we find that the quantity ¢ here is simply a
constant, — (r/K) (Appendix I). Thus, there is a reduc-
tion in the density on the larger scale at ume 7 + | due
to variation on the smaller scale. Variance on the
smaller scale has produced a stronger overall effect of
competition on the larger scale. This effect can be un-
derstood intuitively by considering a simple example.

Suppose half the units on the smaller scale, which
might be called ‘patches’, have population density
0.5 N(r), and half have density 1.5 N(r). Then three-
quarters of the population are in the higher density
patches. Half the patches are high density, but three-
quarters of the population is in those patches. Thus,
three-quarters of the population experiences competi-
tion at 1.5 times the level predicted by the average, and
only one quarter experiences competition at half the
level predicted by average population density. To bring
the point home more strongly, consider a more extreme
situation where half the patches have zero density and
the other half have a density of 2 N(¢). Then all of the
population is in the high density patches and so all in-
dividuals in the population experience double the level
of competition that one would predict from the average
density alone. These examples show that variance in-
creases the average level of competition experienced
by individuals in a population over that predicted by
the average density. It therefore should not be too sur-
prising to find that smaller scale variance has an effect
on the dynamics of population density on the larger
scale.

Clearly the effect described here is not specific to the
logistic model but applies to competition generally. It
can apply also to positive density-dependent effects
(Allee effects; Knowlton 1992). Such positive density-
dependent effects would occur, for example, when
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higher density patches provide some protection from
predation if predators do not aggregate or do not persist
longer in such higher density patches (Marschall er al.
1989). In this case, variance on the smaller scale in-
creases the net beneficial effect of higher densities, and
the quantity ¢ is therefore positive.

To allow prediction of when these effects will occur,
Appendix I gives the following general formula for ¢

c=0.5F" (N@) (12)

that is, half the second derivative of F evaluated at N(1).
The second derivative can be thought of as the devi-
ation from a linear relationship at that point on the
curve. It will be positive whenever the change in F(N),
with a change in N, increases with the value of N. It is
negative in the opposite situation. The approximation
(equation 8) for the scale transition will be most accur-
ate over ranges of values where F'’ remains fairly con-
stant. The formula is exact for the logistic model simply
because, being a quadratic, F''(N) is the same for all
N. Qualitatively, we see that the logistic given as (b) in
Fig. 1 curves over in the same direction for all densities,
reflecting the constant value of F''(N).

The quantty F''(N) may change in sign with N as
depicted in curves (a) and (b) of Fig. 2, which then
change the nature of the scale transition. Curve (a)
shows an Allee effect at low density (the accelerating
portion of the curve). At higher densities, competition

(b)

(a)

N (t+1)

e

m-—--——-—u—-—T-—-

b O

Ni(t)

Fig. 2. Relationships between population density at
successive points in time. (a) Small-scale dynamics with an
Allee effect at low density and contest competition at high
density. (b) Small-scale scramble competition, for example
the Ricker equation (Chesson 1996), (¢) Large-scale
dynamics resulting from (b) and high small-scale variation
in population density.
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of the contest form is assumed, and thus N, (¢ + 1) rises
to a plateau as a functon of N, (1), In reef-fish systems,
contest competition may occur, for example, if fishes
are territorial and compete for space (Sale 1977). In
contrast, curve (b) of Fig. 2 has a large hump, which
may represent scramble competition resulung when
insufficient food at higher densites leads to failure of
development and death (Huston & DeAngelis 1987).
Alternatively, the hump in (b) of Fig. 2 could come
from strong density-dependent predation.

If curve (a) applies, the positive value of FF''(N') over
the range 0 to A means that smaller scale variation
within this range will lead to higher population densi-
ties, N, on the larger scale one time unit later (i.c. a
positive scale transiuon). Bevond the point A, where
competition 15 dominant and F''(N) is negative,
smaller-scale variation leads to lower population densi-
ties on the larger scale one time unit later (a negative
scale transition). These changes dimimsh the Allee
effect on the larger scale. An Allee effect in a reef-fish
system might conceivably arise from inversely density-
dependent predation associated with a saturating
functional response (Murdoch & Bence 1987). A popu-
lauon with an Allee effect would be vulnerable to ex-
tinction, but the scale transition means that such
vulnerability may disappear on the larger spatial scale.

A dramatic scale transition can occur when the
scramble compettion curve (b), Fig. 2, applies. The
quantity FF''(N) is negative over the range 0 to B, and
positive higher than B. Thus, there is a negative scale
transition for the density range 0 to B, and a positive
scale transition for local densities exceeding B. As equa-
tions 7 and 8 indicate, the scale transition depends on
the magnitude of the variance on the smaller scale, but
with enough variance on the smaller scale, the rela-
tionship between N(r+ 1) and ﬁ(r) 15 similar to the
dashed curve (¢) of Fig. 2 (Chesson 1996). In other
words, with the change in scale, and variance on the
smaller scale, scramble competition produces a result
on the larger scale resembling contest competition,
Population dynamics from these two sorts of com-
petition are really quite different. The population
dynamics described by curve (b) are highly unstable.
Large fluctuations, and even chaotic dynamics occur
(Fig. 3a). The curve (c) implies very stable population
dynamics (Hassell & May 1985; Chesson 1996), as de-
picted in Fig. 3b. Thus, unstable dynamics on a small
spatial scale coupled with variation in density from
place to place on that scale may lead to stable dynam-
ics on the larger scale.

DEPENDENCE OF VARIANCE ON DENSITY

For a full understanding of the scale transition, it is nec-
essary to know how variance changes with population
density and, more generally, how variance changes with

time, There are many complexities associated with
migration and dispersal processes (Levin 1992; Gaines
& Bertness 1993), environmental variability (Reeve
1988; Botsford et al. 1994), aggregation processes
(Doherty 1987; Shorrocks & Rosewell 1987; Hassell
¢t al, 1991) and mstabilites in local population dynam-
ics (Chesson 1981). However, spatial distributions in
nature are often found to lie somewhere between a
Poisson distribution and a negative binomial distribu-
tion with constant aggregauon parameter (Hassell ez al,
1991). In the Poisson case, the variance o is simply
equal to the larger scale density, while for the negative
binomial distribution, a® = N(1) + [N(1)]*/k, where k
is the aggregation parameter. Small values of £ mean
highly aggregated or patchy spatial distributions. The
Poisson formula is a special case of the negative bino-
mial with & ¢qual to =.

Substituting the negative binomial variance formula
in equation 11 for larger scale population dynamics
vields

NG+ 1) = N@ +r'[1 - N@/KING  (13)

where r' =r(l — I/K), and K' = (K- 1)/(1 + 1/k).
Thus, larger scale population dynamics remain logistic
but the parameters of the equation are different. The
primed values applicable on the larger scale are all less
than their smaller scale counterparts, revealing slower
average growth on the larger scale and a lower carrying
capacity. With a Poisson distribution (& = =) it should
not be too surprising that the effects of variance on
dvnamics are quite small unless the carrying capacity
is very small (just a few individuals per patch on the
smaller scale). Large effects of variation require
clumped distributions (k < %), and the effect of such
clumping is to lower the larger-scale carrying capacity.

(a)
80;
ol oy TIAy 3 3
(b)

N(t)

0 5 10 15 20 25 30 35 40 45 50
Time (t)

Fig. 3. (a) Simulation of large-scale dynamics with Ricker
dynamics on the small scale and no spatial variation. (b)
Simulation of large-scale dynamics with Ricker local dynam-
ics and negative binomial spatial variation with k = 0.5. See
Chesson (1996 for full details.



However, these results should be treated with some
caution if r s large (as the logistic equation predicts
negative values of Ni(¢r + 1) for N,(t) > (1 + nK/r) and
so should not be used whenever there is appreciable
probability of local populations in this range. In fact,
it 1s best to think of the discrete-ume logistic equation
as merely an approximation to models like (b) and (¢)
(Fig. 2) over restricted ranges of densities.

RELATIVE SCALES OF VARIANCE AND
DENSITY DEPENDENCE

The development above assumes that the smaller scale
under consideration is also the scale on which density
dependence occurs. However, density dependence can
occur on a variety of scales. Choosing the right scales
is important for understanding the interaction between
spatial variation and density dependence. For example,
Poisson variation only has much effect on larger scale
population dynamics if smaller scale population sizes
are very small. The smaller the scale of density depen-
dence, the smaller these local population sizes will be,
and the larger the effect Poisson variation will have,

Variation on smaller scales than the scale of density
dependence is relevant to larger scale population
dynamics only to the extent that it creates variation on
the scale of density dependence. For example, the
variance, o, discussed above might be expressed as a
sum (Underwood 1981):

ki =l

A & SO
=t (14)

H2 My

-

a” =a

where o] represents variation arising on the scale of
density dependence, each of 03, 03, ... Tepresents a
source of variation arising on a particular scale below
the scale of density dependence, and iz, 73, ... represent
the total number of statistically independent units on
each of these scales contributing to one unit on the scale
of density dependence. As iz, 113, ... Is an increasing se-
quence, equarion 14 shows that the importance of vari-
ance on small scales decreases as the scale decreases.

How does variation originating on scales higher than
the scale of density dependence contribute 10 popu-
lation dynamics on some yet larger scale? At issue is
the total amount of variation between units on the scale
of density dependence within a unit on the scale on
which we wish to predict population dynamics. If scales
2, 3,... are now defined as larger than the scale of
density dependence (scale 1), then the total variance
on the scale of density dependence is:

el 4 2 2
0P=0] + 05+ 01+ .0 (15)

Thus, variation on scales higher than the scale of den-
sity dependence contributes undiminished to the mod-
ification of large-scale population dynamics.
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If density dependence occurs on a small scale, but
1s measured on a larger scale, the results here show that
the measured density-dependent relationship will not
be the pure effect of density, but will already nclude
some of the interaction between spatial variation and
density dependence discussed previously (1.e. some
non-linear averaging and a scale transition will
already have taken place). This possibility has some
important practical consequences for estimating
density-dependent relationships from observational
data. Choosing a scale that is too large may give a
misleading impression of the nature and strength of
fundamental biological interactions taking place in a
systermn (Hassell 1087; Ray & Hastngs 1996). This does
not mean, however, that the observed dynamics on a
larger scale are in any sense less real than those on a
smaller scale. Instead, it reflects the fact that the out-
come on a larger scale may have a greater number of
causes, and therefore be more difficult to disentangle.

DISCUSSION

The results here show how sparial variation in popu-
lation density may nteract with density-dependent
processes to change the nature of populauon dynamics
with a change in scale. This effect is called the scale
transition (Chesson 1996). Spatial variation and density
dependence can clearly occur on a multiplicity of scales,
although for simplicity the development here assumes
that density dependence arises on one scale only. The
magnitude of the interaction between spatial variation
and density dependence depends on their relanve
scales. Variation originating on scales much smaller
than the scale of density dependence is unlikely to con-
tribute substantially to variance on the scale of density
dependence, and therefore is unlikely to contribute sub-
stantially to the interaction between spatial variation
and density dependence.

Variation does not have important effects on scales
much larger than its origin unless it interacts with
density dependence (Chesson 1996). Thus, variation
and density dependence should not be thought of as
alternative explanations of ecological phenomena such
as population persistence and species coexistence,
where the nature of population dynamics on large
spatial scales is critical. Indeed, explanations of such
major population and community phenomena increas-
ingly depend on the interaction between variation and
density dependence. It is important to take a broad view
of density dependence, however, if the full potential for
its interaction with variation is to be understood.
Density dependence can be indirect in its action, work-
ing through intermediaries such as resources or preda-
tors, often with a time lag (Chesson 1996). Moreover,
density dependence may have its immediate effects not
on numbers of individuals but on individual growth and
size (Doherty & Williams 1988).



214 P. CHESSON

For simplicity of presentation, the discussion here has
been restricted to the single-species situation with
population density varying in space, while the physical
environment has been assumed to be the same every-
where. However, theoretical exploranons of the scale
transition have more commonly examined muluspecics
systems  where persistence of predator prey or
host-parasitoid associations, and coexistence of species,
are the kev outcomes of the interaction berween multi-
species density-dependence and spatial varnauon
(Caswell 1078; Hastings 1980; Chesson 1981, 1985;
Comins & Hassell 1987; Ives 1988; Reeve 1988;
Hassell er @/, 19915 Durrett & Levin 1994). Mulu-
species density dependence involves not just depen-
dence of an individual species’ per capita growth rate
on 1ts own density, but dependence of the per capita
growth rate on the densities of other species too.

The role of spatial environmental variation in popu-
lation dynamics has received less attention than the role
of spaual variauon in population densities, but there 1s
no reason to believe thar it 1s any less important in
nature. Theoretical models implicate spaual environ-
mental variation in species coexistence (Levin 1974;
Chesson 1985; Comins & Noble 1985; Iwasa &
Roughgarden 1986; Ives 1988), in essence, providing
spatial niches of various sorts, For example, in a par-
ticular locality, a species may have a relative advantage
over other species by having a higher competitive ability
(Comins & Noble 1985) or a higher survival rate
(Chesson 1985) in that locality. Alternatively, a particu-
lar species may simply have a higher rate of migration
into (Chesson 1085) or aggregation at (Ives 1988) a
particular locality. Such different responses to the en-
vironmental features of a locality distinguish the niches
of the species. The intermediate disturbance hypothesis
as explored by Hastings (1980) can also be regarded
as an instance of coexistence resulting from spatial
environmental variation. In Hastings® model, environ-
mental events may be regarded as causing catastrophic
mortality locally in space, which initiates succession and
allows regional coexistence of species in a landscape
consisting of many patches at different successional
states, Spatial environmental variation also theoretically
plays a role in the persistence and stability of
predator-prey and host-parasitoid interactions (Reeve
1988; Hassell er al. 1991). Like spatial variation in
population densities, interactions between environ-
mental variation and density-dependent processes are
key to the effects that spaual environmental variation
has. However, this issue is far better understood in the
case of temporal environmental variation (Chesson
1994).

Reef-fish systems are noted for their high variability
in time and space. The results of this article encourage
a view in which this variation is important through its
interaction with density-dependent processes. Variation
should not be seen as eliminating density dependence

but modifying it quantitatively and qualitatively when
viewed on a larger scale. Population units on local scales
are far from independent of one another, and so a local
system cannot be understood without an understanding
of inputs from larger scales. However, as population
dynamics at large scales reflect the interaction between
local-scale density dependence and variation from unit
to unit on the local scale, the whole system cannot be
understood without reference to the nature and varia-
bility of the internal structure, Perplexing problems of
reef-fish systems such as population regulation and
diversity maintenance may well be explained by such
interactive effects of the spatial components of a system.
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Second-order Taylor expansion of the non-linear function (F} leads to the quadratic approximation

Nt + 1) = F(N@)Y + F(N(D)N.() = N(0)] + 0.5 F'(NG)[N(1) - N(B)* (Al)

Summing over { and dividing by » shows that

N+ 1) = F(N(1) + ¢o” (A2)

where ¢ = 0.5 F'"(N(1)). The accuracy of this approximation depends on the closeness of F to a quadratic (equation Al)
across the range of variation in local density. It is more useful as an illustration of how vanaton interacts with non-linearities
than as a precise calculation. However, equation A2 is exact for the logistic equation as the logistic equation is quadratic.

Differentiating the logistic shows that ¢ = — r/K.
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