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INTRODUCTION

Heterogeneity of populations in space is an important
topic in ecology: spatial heterogeneity potentially has
major roles in the persistence of species, the stability of
populations, and the coexistence of interacting species
(Hanski and Gilpin, 1997; Tilman, Lehman, et al., 1997;
Bascompte and Sole, 1998). In particular, recent results
for plant communities from both theoretical (Tilman,
1994; Pacala and Levin, 1997; Bolker and Pacala, 1999;
Neuhauser and Pacala, 1999) and empirical studies
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(Rees, Grubb, et al., 1996) imply that an understanding
of the effects of spatially local interactions is essential for
a proper appreciation of competitive interactions between
species. Spatial environmental variation should have a
major influence on the outcome of local interactions and
their regional effect according to specific models for a
variety of systems (Tilman, 1982; Holt, 1984; Shigesada,
1984; Shmida and Ellner, 1984; Iwasa and Roughgarden,
1986; Roughgarden and Iwasa, 1986; Pacala, 1987; Ives,
1988; Holt, 1997; Klopfer and Ives, 1997). The majority of
attention in models of spatial dynamics, however, has been
concerned with homogeneous physical environments or
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metapopulation models in which presence�absence
variables are the spatially-local state variables. The
structure of the physical environment is represented
poorly if at all. Hence, understanding the role of environ-
mental variation in space remains a major challenge in
spatial ecology (Thomas and Hanski, 1997). In contrast,
competitive interactions between species subject to
temporal environmental variation (Armstrong and
McGehee, 1976; Chesson and Warner, 1981; Abrams,
1984; Namba, 1984; Ebenhoh, 1991; Loreau, 1992) are
well understood theoretically (Chesson, 1994; Chesson
and Huntly, 1997). It is the purpose of this article to
present a parallel theory for competitive and apparent
competitive interactions in space, in the presence of
spatial and spatio-temporal environmental variation.

A defining feature of models of temporal variation is
multiplication over time. In discrete time, population
dynamics may be expressed simply by the equation

Ni(t+1)=*i(t) Ni(t)

which means that the fate of the population is determined
by the product of *i (t) over time, which in many impor-
tant situations can be approximated adequately by the
t th power of the geometric mean of *i (t) over time. The
key to understanding temporal models is how variation
over time affects this temporal product. In the presence of
spatial variation, local populations are summed over
space to give the total population, and the dynamics of
the total population involve averaging *i (t) over space
weighted by local population density (Hassell, May, et
al., 1991). In the case of uniform dispersal in space, this
weighted average is equal to the unweighted average, and
the difference between space and time comes down to the
difference between the arithmetic mean over space and
the geometric mean over time of *i (t) or, equivalently,
the difference between the behavior of the arithmetic
mean of *i (t) over space and the behavior of the arith-
metic mean of ln *i (t) over time. With more general
dispersal scenarios, the difference between the weighted
average in space of *i (t) and the unweighted average
must be taken into account. These facts mean that the
study of spatial variation can proceed by comparing the
properties of different sorts of averages. Many results for
temporal variation translate into the spatial context by
relating the appropriate spatial and temporal averages.
Indeed, much of the present work involves translating
prior results for the temporal context (Chesson, 1994)
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into the spatial context. Differences between spatial and
temporal contexts emerge quite simply in terms of the
ways these different sorts of averages interact with
population processes.
The theory developed here is set out in terms of com-
petition between a set of species that I shall refer to as
a guild (Root, 1967) in an ecological community. The
essential feature of the guild is that the members have
mutually negative interactions with each other. They
may do this because they share resources and experience
competition or they may share predators or pathogens
and experience apparent competition (Holt and Lawton,
1994). Also they may interfere with each other through
various behaviors affecting feeding or survival. Such
mutually negative interactions will be lumped together in
the term competition.

Although the emphasis is on spatially implicit models,
where explicit representations of regional population
dynamics are available, the effects of limited dispersal are
studied also, and the general theory applies to arbitrary
modes of dispersal. Several different particular spatial
models are considered and simple multispecies coexistence
criteria are obtained by a quadratic approximation
method. These particular models are the lottery model in
space, insect aggregation models, and an annual plant
model.

THE GENERAL MODEL

Individual organisms in the species under considera-
tion are assumed affected by the physical environment
and competition (or a generalization of competition as
discussed above). Variables Ejx and Cjx are assumed to
quantify the effects of environment and competition
specifically for the species j, location x, and time t (a
variable that will only be explicitly represented in the
notation when needed for emphasis). For each individual
of each species and each location x and time t these
variables are assumed to define a probability of survival
to time t+1 and an expected number of offspring surviving
to time t+1, which together define an individual-level
finite rate of increase,

*jx=Gj (Ejx , Cjx), (1)

where Gj is a function that combines the effects of these
two factors. The quantity Ejx is called an environmen-
tally-dependent parameter and is not a direct measure of
the physical environment, but a population parameter
that depends on the physical environment, such as a
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survival probability, a germination probability, or an
expected number of offspring. For this reason, it may
also be called an environmental response (Chesson and
Huntly, 1997). In most cases, it is defined so that larger



values of Ejx mean more favorable environments, i.e., so
that Gj is an increasing function of Ejx .

The competition parameter Cjx measures the total
effect of competition on *jx in some well-defined way, and
normally Gj decreases in Cjx . Note that * jx(t) is the
expected contribution of an individual to the population
in the system at time t+1, given Ejx and Cjx . Thus the
expected output from the location x at time t+1, given
Ejx , Cjx , and Njx(t), is *jx(t) Njx(t). In general, *jx(t)
Njx(t) differs from Njx(t+1), which takes account of
dispersal also. However, mortality during dispersal is
assumed to be factored into *jx(t).

The location x, depending on the situation, could be a
particular patch or cell in the landscape supporting a
local population, a particular point in continuous space,
or a point on a lattice able to support just a single
individual organism. The development here is general
although the worked examples are all cell-based or its
equivalents. Two spatial scales are considered explicitly:
the scale of a single location and the scale of the whole
population, which is a scale at which the system is effec-
tively closed (Chesson, 1996) and will be referred to for
convenience as the regional scale following (Slatkin,
1974). In models, this regional scale may actually include
an infinite amount of space, such as an infinite number of
patches or the entire real plane, R2. Such infinite systems
may be considered large system limits that simplify
modeling. The following example motivates the general
model.

Model of an Annual Plant Community

Consider an annual plant with a seed bank. An
individual seed is assumed to have a particular germination
probability, Ejx , as a function of the environmental condi-
tions that it experiences. If it germinates, then it grows
and has seed yield

Yj �Cjx ,

where Yj is seed yield in the absence of competition, i.e.,
with competition parameter equal to one. The competi-
tion parameter, Cjx , is then the amount by which yield is
reduced by the presence of neighbors.

If the seed does not germinate, it has some survival
probability sj . Putting this information together gives

*jx=Gj (Ejx , Cjx)=sj (1&E jx)+EjxYj �Cjx . (2)

Coexistence and Spatial Variation
Note that this formula describes the mean contribution
to the total seed population of species j at time t+1 from
an individual seed experiencing Ejx and Cjx , at time t.
What an individual actually does naturally shows chance
variation from this mean, leading to demographic
stochasticity; but (2) defines the mean for an individual
experiencing these conditions. We can imagine that the
germination probability Ejx(t) is defined by physical con-
ditions at location x and time t. Indeed, those physical
conditions prescribe a particular value for the vector of
germination probabilities (E1x , E2x , ..., Enx) for the n
species guild. Hence there are likely to be correlations
between the germination probabilities of different species
due to a common physical environment.

Equation (2) does not define the full dynamics of
the system. At the very least, Cjx needs to be defined.
Plausibly, it depends on the number of other seeds
germinating in a defined neighborhood of the given seed.
For example,

Cjx=1+ :
n

l=1

: lElx' lx , (3)

where 'lx is a measure of the number of seeds of species
l present in a neighborhood of location x and :l is the
competitive effect of an individual of species l. A very
simple assumption, uniform dispersal, in which seeds
produced at any location are dispersed equally to all
locations, would give 'lx=N� l(t), the average density
in space of the species in the system. In that case, given
the probability distribution of (E1x , E2x , ..., Enx), the
dynamics of seed densities in the system are fully defined.
However, more complex dispersal scenarios are realistic,
and in general 'lx will not be available from a simple
formula.

In the above example, the competition parameter (Eq. 3)
does not depend on j, the species; and for this reason, we
can say that there is only one competitive factor in this
system. We can write Cjx=1+Fx , where the competitive
factor Fx is the weighted sum of the seedling densities in
the neighborhood of x, the weights being the competitive
effects of the different species. Summarizing competition
in this way in terms of competitive factors allows the
competitive relationships between species to be better
understood. In a system that is homogeneous in space
and time, for example, this representation leads to the
immediate conclusion that only one species would be
able to persist in the long run (Levin, 1970; Armstrong
and McGehee, 1980; Chesson and Huntly, 1997). In
general, we shall think of the competition parameter Cjx
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as some function ,$j (F) of a vector of p competitive
factors F=(F1x , ..., Fpx)$. There is no loss of generality in
this assumption because the definition Fjx=Cjx is always
possible, although uninformative.



Another property of the formula (3) for Cjx in the
above example is that it is explicitly a function of the
environmentally-dependent parameters of the species:
the competitive factor, seedling density, is dependent on
the local germination rates. Thus, the environmentally-
dependent and competition parameters covary; i.e., there
is covariance between environment and competition. Even
without explicit representation of competition in terms of
environment, such covariance arises when there is limited
dispersal in space and there are correlations over time in
the environment, for then the local density Njx(t) is
correlated with the environmentally-dependentparameter,
Ejx(t). If the spatial locations, x, are cells within which
density-dependent interactions are confined, competition
may be represented explicitly as a function fj of local
environmentally-dependent parameters and local density;
i.e.,

Cjx(t)=fj (E1x(t), E2x(t), ..., Enx(t), N1x(t),

N2x(t), ..., Nnx(t)). (4)

However, with more general assumptions about space,
such a tidy representation of competition would not
apply.

Population Dynamics at the Regional Scale

On the regional scale, where the system as a whole
is assumed closed, the total number of individuals of
species j at time t+1 is approximately equal to the sum
of *jx over all individuals in the population. The actual
total population at time t+1 will differ randomly from
this, but for large populations this random deviation can
be ignored. Demographic stochasticity occurring locally
in space, and interacting with nonlinear dynamics locally
in space, potentially has systematic effects on the sum of
the *jx (Chesson, 1981; Durrett and Levin, 1994; Bolker
and Pacala, 1997; Chesson, 1998; Bolker and Pacala,
1999) and in general should not be ignored because in
some cases it has major effects on species coexistence
(Durrett and Levin, 1994; Bolker and Pacala, 1999;
Neuhauser and Pacala, 1999).

From this approximation to the total population at
time t+1, it follows that the dynamics of the density of
species j for the whole system are given by the equation

N� j (t+1)=*� j N� j (t), (5)

214
where *� j is the average of *jx over all individuals in the
population of species j, and N� j is the average density of
species j in the system, i.e., the total population of species
j in the system divided by the area for a system with finite
area or an appropriate limit of such a ratio for a system
with infinite area.

Equation (5) importantly contains two different sorts
of averages: an average of *jx over individuals and an
average of population density over space. The average
over individuals can also be expressed as an average over
space if we define the local relative density to be

vjx=N jx�N� j , (6)

where Njx is the population density of species j at loca-
tion x. Then the average of *jx over all individuals can be
written as

*� j=*jvj=*� j+Cov(*j , vj ), (7)

which expresses the average over individuals first as a
spatial average weighted by density of individuals at a
locality and then as a spatial average plus the covariance
in space of *jx and local relative density, vjx . Because the
system is large enough that fluctuations due to demo-
graphic stochasticity at the regional scale can be ignored,
these averages can be written as theoretical mean or
expected values; and the covariance can be written as the
theoretical spatial covariance. In particular, we can write

*� j=E[Gj (Ej , Cj )], (8)

where the expected value is over space, and the symbols
Ej and Cj refer to random variables that take the par-
ticular values Ejx(t) and Cjx(t) when the location x and
time t are specified; i.e., Ej and Cj are functions of x
and t whose variation with x and t can be described by
probability distributions. Ejx(t) and Cjx(t) are the realized
values of Ej and Cj . Similary, Nj will be a random variable
representing the local densities, which takes the value
Njx(t) for given x and t, and E[Nj (t)]=N� j (t), to an
adequate approximation in large systems��a probability
theory perspective on this is given in Appendix I.

In general, the vector of environmentally-dependent
parameters (E1 , E2 , ..., En), for the n species has a joint
n-dimensional probability distribution describing the
joint variation in space of these parameters. This distri-
bution will be assumed not to vary in time, which means
there is no overall temporal variation in the system, but
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there may well be spatio-temporal variation. Thus,
although the distribution of the values of (E1 , E2 , ..., En)
over all space is the same at every time, it is quite possible
that the value of (E1 , E2 , ..., En) at any given location



varies with time. Pure spatio-temporal variation (Chesson,
1985) is the case where (E1 , E2 , ..., En) varies independently
over time at each spatial location, x, and conversely varies
independently over space for each time, t. Pure spatial
variation is the case where (E1 , E2 , ..., En) does not vary
with time and hence only varies in space. In general, it
assumed here that some mixture of these two sorts of
variation applies. The role of pure temporal variation has
been investigated at length in Chesson (1994) and will
not be considered in this article. The spatial patterns of Ej

may be correlated between species. However, realistically,
it must also be expected that species do not have perfectly
correlated spatial patterns of variation; i.e., there are
likely to be species-specific responses to the environment.

The variation in space of the competition parameter,
Cj , can be expected to depend on or be correlated with
the environmentally-dependent parameters of the species,
as illustrated in Eq. (3) and discussed at length elsewhere
in the context of temporal variation (Chesson and
Huntly, 1988). Thus, in general it can be expected that Ej

and Cj will covary over space; i.e., there will be covariance
between environment and competition. Naturally, Cj also
varies with local abundances.

How organisms migrate, disperse, or otherwise move
in space is not specified in the formulation above. The
finite rate of increase is assumed to take into account any
mortality that takes place during dispersal, but dispersal
should have major effects on relative local densities, vjx .
Note that because of dispersal, Njx(t+1){*jx(t) Njx(t).
The *jx(t) Njx(t) individuals at time t+1 arising from the
Njx(t) individuals at location x and time t are dispersed
by some rule, which, for the most general developments
here, need not be specified. The outcome of dispersal
registers in the variables vjx , and it is the properties of vjx ,
not the underlying cause of these properties, that figures
in these general developments. Very simple migration
assumptions, however, lead to spatially-implicit models,
which we consider next as one particularly tractable class
that illustrates in simple form the general principles to be
derived here.

Spatially-Implicit Models

The general model presented above can be very com-
plicated to analyze from the fact that the probability
distribution for relative local density, vjx , changes with
time in a manner that is difficult to determine in general.
In certain models, sometimes called spatially implicit or
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pseudo-spatial, the probability distribution for relative
local density can be written as a function of regional
average densities, (N� 1(t), N� 2(t), ..., N� n(t)). Such spatially-
implicit models are most clearly applicable to the situation
where local populations are ephemeral, dispersing widely
in space every unit of time. In such cases, dispersing
organisms can be regarded as forming a common pool
from which they are redistributed. Populations do not
build up over time in particular localities, although they
need not be randomly distributed in space. Random
dispersal would lead to a Poisson distribution in space
with mean N� j (t), which at high local densities is approxi-
mated by uniform dispersal in which the emigrants from
any locality are equally distributed over all localities.
Nonrandom dispersal may occur with widespread dispersal
because organisms may be clumped in space by aggregation
in relation to local environmental conditions or in
relation to chance prior immigration at a locality. The
negative binomial distribution with mean N� j (t) and
constant clumping parameter k is a model representing
aggregation of widely dispersive organisms to particular
local environmental conditions (Chesson, 1998). In this
scenario, immigration to a locality from the pool of
dispersing individuals may be explicitly represented as a
function of the environmentally-dependent parameter Ej

(Chesson, 1985). These various instances of widespread
dispersal are justifications for spatially-implicit models of
population dynamics; they may be good approximations
for some systems such as insects feeding on ephemeral
resource patches (Atkinson and Shorrocks, 1981; Ives,
1988), marine systems with widely dispersing larvae
(Chesson, 1985; Comins and Noble, 1985), and even
annual plant communities when dispersal is large com-
pared with the mean spacing between individual organisms
(Pacala and Silander, 1985).

In these circumstances it is often possible to write *� j (t)
in a similar form to Eq. (8) for *� j (t); i.e., there is a func-
tion Hj such that

*� j=E[Hj (Ej , Cj )]. (9)

Thus, the function Hj combines Gj and vj , but is not
always simply the product, but more generally, the
conditional expectation

Hj (Ej , Cj )=E[*jvj | E1 , ..., En], (10)

in which Cjx may have a slightly different definition than
would naturally apply. The example below illustrates this
idea.

Model of Insects Laying Eggs in Ephemeral
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Patches of Food

Some insects, especially Dipterans, lay their eggs in
ephemeral patches of food, such as fruit, fungi, or the



dead bodies of animals, in which their larvae develop
(Atkinson and Shorrocks, 1981; Ives, 1988). As these
patches last for just one generation, to lay their eggs, the
flies emerging from these food patches must disperse to
new food patches. Common models for this situation
take forms equivalent, for the purposes of studying
species coexistence, to

*jx=erj (1&Cjx), (11)

where

Cjx= :
n

l=1

:jlN lx , (12)

Nlx is the number of eggs deposited in food patch x of
species l, and the :jl are competition coefficients. A simple
model of dispersal is Njx(t)=Ejx(t) N� jx(t), i.e., the total
pool of eggs, is divided up over patches according to
some environmental characteristic of the food patches
such as attractiveness or accessibility of a food patch to
adults of the species. In this particular instance, vjx=Ejx ,
and we see that

Hj (Ejx , Cjx)=*jx vjx=E jxerj (1&Cjx ). (13)

An alternative interpretation of this formula is that
dispersal is uniform in space, meaning that vjx=1, and
Ejx is a patch and species-specific survival rate from egg
to larva due to the physical conditions of the particular
patch. With this latter interpretation, expression (13)
equals Gj as well as Hj .

Following the first scenario where the number of
individuals arriving at a patch depends on the environ-
ment of the patch, it is common in the literature to have
a negative binomial for the distribution of eggs over
patches. To cover that case, Elx N� l (t) can be considered
to be the conditional mean number of eggs of species l in
the patch with the conditional distribution of Nlx(t), l=
1, ..., n, being independent Poisson given Elx , l=1, ..., n.
If the marginal (i.e., ordinary or unconditional) distribu-
tions of the Elx are gamma, it follows that the marginal
distributions of the Nlx(t) are negative binomial��this is
in fact the approach used by (Ives, 1988). In this case,
formula (13) for Hj still applies, with the following
changes. Hj (Ej , Cj ) is now interpreted as the conditional
expectation, E[*jvj | El , l=1, ..., n]; rj and the :jl are
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replaced by

r$j=rj (1&:jj ) and :$jl=
1&e&rj :jl

rj (1&:jj )
. (14)
The competition parameter is replaced by the average
value of (12) for the given environmental conditions, viz.

Cjx= :
n

l=1

:jlElx N� l . (15)

It is worthwhile noting also that the Poisson component
has a small effect if the competition coefficients are small.
As 1�:jj is the local carrying capacity in terms of egg
number, moderately large average local egg numbers
remove any appreciable effect of the Poisson component
of negative binomial variation, and the gamma distribu-
tion based just on variation in Ejx can be used instead. A
similar remark applies to the annual plant model for
large dispersal distances. Although a Poisson distribu-
tion is certainly more realistic than no variation in space
in seed densities, which arises from the assumption of
uniform dispersal, moderately large local neighborhoods
mean that the Poisson distribution would have negligible
effects and important effects of space would continue to
arise from spatial variation in seed germination (attributed
here to an environmental effect), not seed abundance.
Naturally, other dispersal assumptions, such as environ-
mentally-dependent dispersal, or short distance dispersal
could lead to important effects of spatial variation in seed
abundance, as demonstrated by Bolker and Pacala (1999).

MODEL ANALYSIS

Having established the equation N� j (t+1)=*� jN� j (t) as
defining the regional dynamics of a large population,
how do we analyze it? In spatially-implicit models as
discussed above, *� j (t) can be expressed as a function of
(N� 1(t), N� 2(t), ..., N� n(t)) alone, and therefore the dynamics
of average population density are simply defined by
autonomous difference equations. Standard methods
apply. In other cases, a full analysis of the system is
potentially extremely complex. However, for a broad
subset of cases, necessary conditions for coexistence are
available with important general information about
coexistence in a spatially variable environment. In many
situations, it seems likely that these conditions are also
sufficient, but at present there is no general approach
demonstrating sufficiency.

When it is possible for species to be perturbed to
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arbitrarily low densities, a necessary condition for stable
coexistence is that each species increases from such
low densities in the presence of its competitors (mutual
invasibility). Additional conditions are necessary to specify



sufficient conditions for stable coexistence (Chesson, 1982;
Hutson and Law, 1985; Chesson and Ellner, 1989; Ellner,
1989; Law and Morton, 1996), but an increase from low
density is an essential feature of stable species coexistence
and provides a means of quantifying coexistence. In an
invasibility analysis, species perturbed to low density are
termed invaders and will be denoted here by the species
label i. The rest of the community, which has not been
perturbed to low density, is given species labels r and s, and
is termed the residents. If *� i is greater than 1, species i is
assumed to be able to persist in the presence of its com-
petitors (the residents) and the actual value of *� i can be
used to quantify coexistence and therefore to measure
quantitatively the contributions of different coexistence
mechanisms. Indeed, this ability to quantify coexistence
is an important attribute of the invasibility criterion.

Calculating the invader growth rate, *� i , is far from
straightforward in general spatial models. First, *� i might
fluctuate over time, in which case, invasion is determined
by the mean of over time of ln *� i (t) (Turelli, 1981; Chesson
and Ellner, 1989). However, most spatial models of com-
petitive interactions that do not involve pure temporal
environmental variation (Chesson, 1985) do not lead to
important temporal fluctuations in *� i for large regional
populations; that situation will be assumed here because
the purpose is to focus on the effects of variation in space.
Indeed, consideration will be restricted here to the
common case where the residents converge on constant
regional densities, i.e., where the vector of resident
densities [N� r(t), r{i] converges with time on a constant
value, with the invader constrained to low density. This
convergence of resident regional densities is associated
with convergence over time of the probability distribu-
tion describing the joint variation in space of [Erx(t),
Crx(t) and Nrx(t), r{i]. When these conditions have
been satisfied, the residents are said to be at their stationary
distribution.

Under the above scenario, the invader rate of increase
is a function of the stationary statistical properties of
the resident population, the invader's environmentally-
dependent parameters, and the invader's distribution in
space. To understand the key features of the invader's
distribution in space, note that when local population
densities are modeled as continuous variables, low
regional densities will normally also mean that local
densities are mostly small. It follows that effects of species
i 's density on itself and on the residents will become
negligible as the regional density, N� i (t), of species i is
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made arbitrarily small. The dynamics of invader species
i will therefore be asymptotically linear its own local
densities, as N� i (t) � 0, which means that the dynamics of
relative densities, [vix(t), all locations, x], will not
depend on the invader regional density, which can there-
fore be set equal to 0. The probability distribution
describing spatial variation in (vix(t), *ix(t)) should
converge with time to a unique limiting distribution with
*� i being the spatial average of *ix(t) vix(t) for this limiting
distribution.

The above described convergence of the invader's
spatial distribution will be assumed here. In addition to
common applicability to models where local population
sizes are continuous variables, such convergence is also
commonly applicable to spatially-implicit models with
integer local population sizes. Spatially-explicit models
with integer local population sizes and local dispersal
pose thorny issues with respect to the existence of the
various limits implying a unique well-defined value of *� i ,
which I shall not attempt to solve here. I simply ask the
reader to be satisfied that the invasion analysis applies to
a broad enough class of models to make the development
that follows worthwhile.

In studies of invasions of alien species (e.g., Shigesada
and Kawasaki, 1997) it is common to study invasion
from a single point in space. However, the intention here
is not to mimic the process of invasion when a species
is just introduced to a region, but to study the process
of recovery if it is reduced to low density on average
throughout the region, which is appropriate for the study
of species coexistence, especially in the presence of a
component of pure spatial environmental variation,
which means that invasions in different spatial locations
may follow very different courses.

In conducting the invasibility analysis, I shall add the
superscript &i to the competition parameter to indicate
that the residents are assumed to have reached their
stationary distribution in the absence of species i, the
invader. In these terms, we seek to determine the sign and
magnitude of

*� i=*� i+Cov(*i , vi )

=E[Gi (Ei , C &i
i )]+Cov(Gi (Ei , C &i

i ), vi ). (16)

SPATIAL COEXISTENCE
MECHANISMS

Three general classes of coexistence mechanisms arise
from variation in space. Two of these, the storage effect
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and relative nonlinearity of competition, arise from
the behavior of the simple average *� i and are direct
analogues of mechanisms applying for temporal varia-
tion, which arise from the temporal average, r� i=ln *i ,



of ln *i (t). The final class of mechanisms, which as
yet has no known temporal counterpart, arises from
Cov(*i ,vi ).

The Spatial Storage Effect

The storage effect arises from an interaction between
Ej and Cj in their joint determination of *j (Chesson,
1988, 1994; Chesson and Huntly, 1997). An interaction
means in particular that the value of Ej alters the effect
that Cj has on *j . This is illustrated in Fig. 1. In panel (a)
of the figure, increasing the value of Ej steepens the slope
of the relationship between *j and Cj, , an effect which is
measured by the cross partial derivative

#=
�2Gj

�Ej �Cj
. (17)

In the case of Fig. 1a, this cross partial derivative is
negative, indicating that the negative slope of the rela-
tionship between *j and Cj is made more negative by
increases in Ej . This situation is referred to as subadditive,
because the change in *j that results from a joint change
in Ej and Cj is less than the sum of the changes that
each factor causes when varied separately. In spatially-
implicit models, subadditivity and the quantity # should be
defined in terms of H rather than G; indeed, for spatially-
implicit models H should be substituted for G throughout
the discussion below.

Subadditivity may be regarded as having a buffering
effect on population growth because simultaneously poor
conditions, viz. a low value of Ej and a high value of Cj ,
are not as bad as predicted by the sum of their separate
effects. Contrasting situations are additive growth rates,
corresponding to a zero value of # (Fig. 1b), and super-
additive growth rates with positive # (Fig. 1c). With
additive growth rates, Ej and Cj contribute separately to
produce *j and so the joint effect of Ej and Cj is simply
the sum of their separate effects. With superadditive
growth rates, there is again an interaction between Ej and
Cj but in this case a low Ej and a high Cj is worse than
predicted by the sum of their separate effects.

The annual plant model given by Eq. (2) above is
subadditive as are most spatial models that can be put in
this framework. There is a very simple reason. The finite
rate of increase *j cannot be less than 0, and it would
normally be expected that *j would approach 0 as com-
petition becomes severe, regardless of the environmental
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conditions. Thus, plots of Gj (Ej , Cj ) against Cj for
different Ej should all converge on zero. Thus, at least for
large Cj , these plots should look like Fig. 1a, subad-
ditivity. This situation does not apply when considering
FIG. 1. The finite rate of increase, *, plotted as a function of the
competition parameter C for increasing values of the environmentally-
dependent parameter, E. Thicker curves are higher values of E.
(a) Subadditivity; (b) additivity; (c) superadditivity.

purely temporal variation for then one is concerned with
averaging rj (=ln *j) which is not bounded below by any
definite value. In the temporal case, models with additive
growth rates may be formulated realistically, but super-
additivity is more difficult to obtain (Chesson and
Huntly, 1988; Chesson, 1994).

The biological explanation for the difference between
these two situations is that in the spatial case, the buffering
of population growth that is associated with subadditive

Peter Chesson
growth rates automatically occurs from the subdivision of
the population in space over the varying conditions of Ej

and Cj because poor performance in some spatial locations
is ameliorated by better performance elsewhere. Such



effects do not occur so readily with temporal variation from
the simple fact that population growth is multiplicative
over time, and so poor performance at one time lowers
the starting point from which population growth occurs
the next time. Specific life-history traits are needed to
counteract such negative effects arising from the multi-
plicative nature of population growth (Chesson and
Huntly, 1988).

Subadditive growth rates not only buffer population
growth, they may also lead to species coexistence when
combined with two other realistic features of nature. The
first of these is species-specific responses to the environ-
ment: different species have different patterns of variation
in environmental responses (Ej ) in space. The second
feature is covariance between environment and competition:
the competition parameter Cj increases as a function of the
environmentally-dependent parameter, Ej . Covariance
between environment and competition constrains the
pattern of joint variation in Ej and Cj on which *j

depends and therefore affects the outcome of the inter-
action between Ej and Cj .

To see how this promotes coexistence, consider the
following symmetric example:

Symmetric example. Assume

1. There is a common Gj=G for the different
species;

2. There is a common Cj=C, and the conditional
distribution of C&i (t), given (E1(t), E2(t), ..., En(t)),
depends symmetrically on the resident environmentally-
dependent parameters, Er(t), r{i, and does not vary
with the invader environmentally-dependent parameter;

3. Environmental variation is pure spatio-temporal,
and the distribution of (E1 , E2 , ..., En) is symmetrical.

In the special case of the annual plant model, assumption
1 means that sj and Yj have the same values for all
species, assumption 2 means that :j is the same for all
species, and dispersal does not differ between species. A
symmetrical distribution as specified in 3 means that
(E?(1) , E?(2) , ..., E?(n)) has the same distribution as
(E1 , E2 , ..., En) for any permutation ?(1), ?(2), ..., ?(n) of
1, 2, ..., n. In particular, all species have the same distribu-
tion for their environmentally-dependent parameters,
and all pairs of species have the same correlation between
their environmentally-dependent parameters.

Now we add to these assumptions the three ingredients
of the storage effect as they apply in this specific example:
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4. species-specific responses to the environment,
which means here that Ej&El has positive variance for
any pair of species j and l ;
5. Covariance between environment and competi-
tion: the conditional distribution of C&i (t), given (E1(t),
E2(t), ..., En(t)) is an increasing function of the resident
environmentally-dependent parameters, Er(t), r{i, i.e.,
P(C&i (t)>c | E1(t), E2(t), ..., En(t)) increases in any
Er(t) for all constants c;

6. Subadditivity, which is discussed at length above.

Assumption 5, deserves amplification. The idea is simply
that competition should increase as a function of the
environment. However, competition is also a function of
species densities, which complicates the issue. With an
explicit representation of competition in the form

Cx(t)=f (E1x(t), E2x(t), ..., Enx(t), N1x(t),

N2x(t), ..., Nnx(t)),

where f is some function increasing in each of the Ejx(t),
then the assumption that the environmental variation is
pure spatio-temporal is sufficient for assumption 5 for
then the Nj (t) are statistically independent of the Ej (t)
and so do not interfere with the relationship between
C(t) and Er(t). Those spatially-implicit models in which
the Nj (t) do not vary in space also have this property
regardless of whether environmental variation is pure
spatio-temporal. In other situations (see examples below),
it is often the case that the conditional distribution of local
resident densities increases with their respective environ-
mentally-dependent parameters, and as f would naturally
increase as a function of local densities, condition 5 would
again be satisfied.

With these assumptions, two equivalent but different
derivations for the temporal case given in (Chesson,
1988, 1990) can be extended to show that

E[G(Ei , C&i )]>E[G(Er , C&i )], (18)

i.e., the average value of * over space for invaders is
greater than that for residents (*� i>*� r). Thus, in the case
of zero covariance between * and relative density v, or if
G is replaced by H, this is identical to the statement

*� i>1, (19)
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which is the same for all species as invaders and therefore
means that all species coexist according to the invasibility
criterion. The derivation for the temporal case in (Chesson,
1990) shows in particular that the difference between *�



and 1 increases with the magnitude of subadditivity (as
measured by #), increases with the variance of Ej&El ,
and increases with the slope of C as a function of Ej .

Thus, it increases with the magnitude of each of three
ingredients of the storage effect. In this symmetric case
with Cov(*, v)=0 or in symmetricspatially-implicitmodels,
the storage effect is the sole and complete mechanism of
coexistence. The symmetric case is not realistic in nature,
however. It remains of interest because in general *� i

can be expected to vary continuously as a function of
deviations from symmetry. Therefore, *� i will remain
above 1 for some range of deviation from symmetry. Of
greatest importance are situations where different species
have different spatial average fitnesses, which might be
reflected, for example, by different average values of the
Ej . Without variation in the environment, these cases
lead to domination by a single species, but with sufficient
variation and the ingredients above for the storage effect,
coexistence is possible in spite of the average fitness
disadvantages that some species may have. The quan-
titative approximations below show how this works.

In spatially explicit models with limited dispersal,
inequality (18) still holds under the symmetric assump-
tions above, and so the storage effect can be considered
to contribute to coexistence even though it may be
opposed or reinforced by the behavior of Cov(*, v). This
issue is clarified by the quantitative results below, which
allow simultaneous consideration of multiple mechanisms.

Spatial Relative Nonlinearity of
Competition

Organisms living in the same environment and respond-
ing to the same competitive factors may differ by having
different nonlinear responses to these competitive factors.
For example, expressing the competition parameter in
terms of a vector of common competitive factors F,

Cj=fj (F), (20)

*j takes the form

*j=Gj (Ej , fj (F)). (21)
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Species coexistence may be affected when the *j are dif-
ferent nonlinear functions of F for different species and F
varies in space. Effects on coexistence are most easily seen
in the case of just a single competitive factor, F. Assuming
that *j is monotonic in F for each j, then for any two
species u and v, the common dependence on F means that
the *s can be expressed in terms of each other and the
vector of environmentally-dependent parameters, E=
(E1 , E2 , ..., En), by means of some function which may be
designated huv :

*u=huv(E, *v). (22)

The critical issue is the shape of *u as a function of *v . For
example, in Fig. 2, with *u a convex function of F and *v

a concave function of F, *u is a convex function of *v

(�2huv(E, *v)��*2
v>0) and therefore curves upward as

*v increases. When *u is a convex function of *v , *v is
necessarily a concave function of *u assuming that they
are both decreasing or both increasing functions of F.
Relative nonlinearity is any deviation from linear relation-
ships between the *s through their common dependence
on F, but the strictly convex and concave relationships
depicted in Fig. 2 may be called uniform nonlinearities.

Jensen's inequality applies to show that when an
invader * is a convex function of a resident *,

*� i>E[hir(E, *� r )], (23)

which means that spatial variation in F boosts *� i above
the value predicted by the relationship (22) between *i

and *r . With the roles of the species reversed (i.e., the
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FIG. 2. The finite rate of increase, *, plotted against a common
competitive factor, F, for two different species in the same community.
(a) Convex relative growth rate, (b) concave relative growth rate.



previous resident as the invader), the invader * is a
concave function of the resident *,

*� i<E[hir(E, *� r)], (24)

and *� i is diminished by spatial variation in F. Thus,
variation in a common competitive factor in the presence
of a uniform relative nonlinearity pushes one species' *� i

down and pushes the other species' *� i up. This asym-
metrical effect naturally follows from the asymmetries
between species inherent in relative nonlinearities.

A single competitive factor in a spatially- and temporally-
uniform environment, i.e., with no variation in E or F in
space, would predict dominance by one species because
an F* rule would apply in analogy with the R* and P*
rules respectively for resource and apparent competition
(Holt, Grover, et al., 1994). To see this, note that the
equation 1=Gj (Ej , fj (F*)) defines species j 's F* value,
which is the value of F at which species j would not
change in population size. Assuming that * is monotoni-
cally decreasing in F, that species differ in their F* values,
and that the multispecies system does come to a point
equilibrium, homogeneously in space and time, then only
the species with highest F* value would be present at
equilibrium (Holt, Grover, et al., 1994). Applying this
result to a system consisting of just two species we see
that the average invader growth rate, *� i=hir(E, 1), can
only be greater than 1 for one of them, the dominant.

In the presence of spatial variation in F, the asym-
metrical effects of relative nonlinearity on these two
species expressed by inequalities (23) and (24) promote
coexistence by increasing the *� i of a relatively convex
subordinate species as long as the *� i of the dominant is
not too greatly decreased. The approximate quantitative
results below show how these effects may be achieved. In
general, for relative nonlinearity to act as a coexistence
mechanism by itself, more variance in F must be associated
with the relatively concave dominant as a resident than
with the subordinate as a resident so that the subordinate
*� i may rise above 1 without the dominant *� i falling below
1. Relative nonlinearity works here by diminishing fitness
differences between species. It does this when the
otherwise more fit species is the more concave.

As with the storage effect, changes in *� i due to spatial
variation only demonstrate coexistence promoting effects
if they are not opposed by changes in Cov(*, v) or if G is
replaced by H in the above discussion, in which case the
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results apply directly to *� i . In any case, the limited ability
for relative nonlinearity to promote coexistence when
acting alone means that it is best viewed as modifying
other mechanisms such as the storage effect or covariance
between the finite rate of increase and the relative density.
It can do this by decreasing the degree of dominance of
a superior competitor with a relatively concave growth
rate making it easier for other mechanisms to raise all
values of *� i above 1. On the other hand if the superior
species is relatively convex, competitive exclusion will be
promoted by relative nonlinearity.

Relative nonlinearity occurs under different circum-
stances in space compared with time. For example, the
annual plant model described above is not relatively non-
linear as a spatial model because the *s of different species
are linear functions of the same nonlinear function of
the competitive factor. However, relative nonlinearity
applies in time when species differ in sj or Yj (Chesson,
1994). In contrast, the insect model given by Eq. (12)
always shows relative nonlinearity if the competition
parameter is common to all species (Cj#C ) whenever
the rj differ between species. However, the corresponding
temporal model never shows relative nonlinearity
(Chesson, 1994, Sect. 5.1).

Covariance between Relative Density
and Rate of Increase

The quantity Cov(*j ,vj ) would seem to be affected by
many factors including the nature of dispersal and the
nature of environmental variation, but as yet there is no
general understanding of its properties. However, in the
presence of limited dispersal and pure spatial variation it
may reasonably be expected to be positive because local
populations should then be larger in locations with larger
finite rates of increase. This covariance may be larger for
invaders than for residents when there are species-specific
responses to the environment because residents are
more limited by competition and therefore have smaller
variance in both *j and vj which should mean smaller
covariance between them. This reasoning suggests that
coexistence should be promoted by limited dispersal and
pure spatial variation due to Cov(*j , vj ). To see that this
proposition is indeed correct in at least some circum-
stances, consider the symmetric example discussed above
under the subheading The Spatial Storage Effect, making
assumptions 1�3 with the modification that variation is
restricted to pure spatial variation.

To specify limited dispersal, assume that each time
period, t to t+1, some particular fraction, q=1&p, is
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dispersed from each locality to join a common pool from
which they are uniformly dispersed to all localities. This
is a model of widespread dispersal with local retention
as may be expected in communities of coral reef fishes.



The dynamics at each locality are then given by the
equation

Njx(t+1)=p*jx(t) Njx(t)+qN� j (t+1). (25)

It is shown in Appendix II that *� i>1 if and only if

Ef (G(Ei , C &i
i ))>Ef (G(Er , C &i

r )), (26)

where f is the function defined by the equation f (G)=
qG�(1&pG ). Thus, the conditions for coexistence that
were encountered in the discussion of the storage effect
above now apply to f (G) rather than G. It follows that if
f (G) is subadditive and there is positive covariance
between environment and competition, then condition
(26) for coexistence is satisfied. With p between zero and
one, f is an increasing convex function. It follows that
f (G) is subadditive when G is additive or subadditive and
it is also possible for f (G) to be subadditive in some cases
where G is superadditive (Appendix II).

At least in the two species case, if C increases directly
as a function of the Ej or is instead constant as a function
of the Ej , in the functional form Cx(t)=f (E1x(t), E2x(t), ...,
Enx(t), N1x(t), N2x(t), ..., Nnx(t)), it is nevertheless true that
C&i has positive covariance with the Er (Appendix II). It
is also possible for C&i to have positive covariance with
the Er when C decreases as a function of the Ej , with
relative densities held fixed. Thus, coexistence occurs
provided only that the functions G are not too superad-
ditive and C does not decrease too strongly as a function
of the Ej . These results represent substantial broadening
of the range of the opportunities for coexistence com-
pared with cases with pure spatio-temporal variation and
no variation in relative density. Variation in relative
density has two effects. One is to increase covariance
between environment and competition and thus con-
tribute to the storage effect by allowing positive
covariance between environment and competition even
when C decreases as a function of the Ej . The second is
a positive effect resulting from the covariance between
the local finite rate of increase and relative density. This
covariance is simply the difference *� &*� j , and the com-
parison of these differences for residents and invaders in
this symmetric situation can be regarded as its contribu-
tion to species coexistence. It is tempting to regard
Ef (G)&EG as Cov(*, v) but this is only true when *� is
equal to 1 and therefore only correct for the resident
species. However, it is apparent from Appendix II that
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Ef (G)&EG may be regarded as a 0th order approxima-
tion to Cov(*, v) in other cases.

The presence of Cov(*, v) leads to effects directly
analogous to subadditivity in this particular example.
Could it be that an effect comparable to relative non-
linearity of competition might also occur in some circum-
stances? A little calculus shows that relative nonlinearity
may potentially occur in the case of pure spatial variation
considered here when the species differ in the amount of
local retention during dispersal, for this means that the
functions f that modify the effect of G are convex to
different degrees for different species.

QUANTITATIVE RESULTS

The three mechanisms discussed above, the storage
effect, relative nonlinearity, and covariance between the
growth rate and relative density, can be expressed as
additive components of *� i using a quadratic approxima-
tion. Within the accuracy of the quadratic approximation,
these three mechanisms dependent on spatial variation,
together with mechanisms of coexistence that do not rely
on spatial variation (``variation-independent'' coexistence
mechanisms), seem to exhaust the possibilities for
coexistence within the general model. This quadratic
approximation technique is developed in detail in
(Chesson, 1994) for temporal variation, which is relied
on heavily. The technique begins by nonlinear transfor-
mation of the environmentally-dependent and competi-
tion parameters to a standard form, which expresses
them in units of *j , i.e., in units that mean the same thing
in any particular case of the general model.

Parameter Standardization

In order to define the standard parameters, a pair of
values of Ej* and Cj* of Ej and Cj are chosen satisfying
the relationship

Gj (Ej*, Cj*)=1, (27)

which means no population growth��an equilibrial situa-
tion. Species persisting in the system necessarily have their
* values varying around 1. Hence, the existence of param-
eter values giving the actual value 1 is not a demanding
requirement. The particular values Ej* and Cj* will be
referred to as equilibrial values. Unlike Ej and Cj , these
values do not vary in space. In general, there will be a
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continuum of choices for the pair of equilibrial values,
which leads to some arbitrariness in the analysis, but the
rules below constrain E j* to be near the mean of E j and
make that arbitrariness of small order.



The standard parameters are now defined as

Ej=Gj (Ej , Cj*)&1 (28)

and

Cj=1&Gj (Ej*, Cj ). (29)

Provided Gj is monotonic in each of its arguments, these
new parameters contain the same information as the
original parameters but are expressed in units of the finite
rate of increase *j . Like the Ej and Cj , the Ej and Cj vary
in space and possibly time also, but this dependence is
suppressed in the notation for simplicity. Again, they are
best thought of as random variables that take specific
values when space and time are specified.

Quadratic Approximation

In simple models, the formula for *j in terms of the
standard parameters is very often quadratic in form.
Indeed, it is quadratic in all of the examples given here.
Naturally, it is also approximately quadratic when the
variation in Ej and Cj is small. Under certain assumptions
discussed in Appendix III, small variation in Cj follows
from small variation in Ej . The assumption of small
environmental fluctuations is expressed formally as

Ej=O(_) (30)

which means here that Ej varies within a finite interval
containing 0 (a constraint on the choice of E j*), of order
_ (a constraint on the magnitude of variation), where _
is a small parameter. From the assumptions in Appendix
III, this means

Cj=O(_). (31)

A further constraint on the choice of E j* is the requirement

E[Ej ]=O(_2). (32)

Under the appendix assumptions, this implies also that

E[Cj]=O(_2). (33)
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As we shall see below, these assumptions and their
immediate consequences mean that the magnitudes of
the four mechanisms in the expression below are each
O(_2), facilitating their comparison.
From (30) and (31), the model can be written in the
following general quadratic form

*j&1rEj&Cj+#j EjCj , (34)

where the symbol ``r'' means equal to o(_2)), and #j is
the cross-partial derivative

#j=
�2*j

�Ej �Cj }Ej=Cj=0

. (35)

Note that as *j is a function of Ej and Cj , it, like them, is
a random variable taking particular values when space
and time are specified. The simplicity of expression (34)
is a consequence of parameter standardization. It is an
exact equation whenever *j takes the form

*j=Gj (Ej , C)=d+A(Ej )+B(Cj )+hA(Ej ) B(C j ),

(36)

where constants d and h, and functions A and B, may
depend on the species j.

To determine the invader rate of increase, *� i , we can
use the fact that the species do belong to the same guild
and therefore have certain features in common that can
be used to relate the rates of increase of different species
to one another. The idea of membership in the same guild
might be expressed mathematically in terms of functional
relationships between the competition parameters of
different species. Here we assume that for each invader
species i, and each set of residents, there is a function f
expressing the competition parameter for the invader in
terms of the competition parameters of the residents:

C&i
i =f ((C&i

r )r{i). (37)

Note that when the residents are at equilibrium, i.e.,
C&i

r =Cr*, r{i, then C&i
r =0, r{i. Thus, using Eq. (37)

the invader competition parameter when the residents
are at their equilibrial values is

C&i
i *=f (0). (38)

The regional finite rate of increase, *� r , of a resident is
necessarily equal to 1. Using this fact, we obtain the
following seemingly trivial equation,
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*� i&1=*� i&1& :
n

r{i

q ir(*� r&1), (39)



where the qir are positive constants to be determined.
To calculate the *� j , recall from Eq. (7) that *� j can be
expressed as the sum of the simple average of *j over
space and the spatial covariance of *j and relative
density. Thus, combining Eqs. (7) and (39) and approxi-
mation (34) leads to the approximation

*� i&1r2E&2C+2I+2}, (40)

where (with expectation, E, meaning spatial average and
Cov meaning spatial covariance)

2E=E[Ei ]& :
n

r{i

qirE[Er], (41)

2C=E[C&i
i ]& :

n

r{i

qirE[C&i
r ], (42)

2I=#iE[Ei C
&i
i ]& :

n

r{i

qir#rE[ErC&i
r ], (43)

and

2}=Cov(*i , vi )& :
n

r{i

q ir Cov(*r , vr). (44)

The choice of qir that makes the decomposition (40)
the sharpest biological comparison makes use of the
relationship (37) between the invader and the resident
competition parameters to define qir as

qir=
�C&i

i

�C&i
r }C r

&i=0, r{i
. (45)

With this definition, linear relationships between the
species in their dependence on common competitive
factors are factored out of 2C (Chesson, 1994). More-
over, Eq. (40) rearranges further to

*� ir*� $i&2N+2I+2}, (46)

where

*� $i&1=2E&Ci
&i * (47)

and

&i
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2N=2C&Ci *. (48)

In (46) the different components of *� i refer to distinct
coexistence mechanisms, as is now explained.
Interpretation of *� $i . Simply put, the quantity *� $i is the
finite rate of increase that the invader would experience
in the absence of spatial variation; it measures the effects
of variation-independent coexistence mechanisms. It is
most easily understood by expressing competition in
terms of competitive factors,

Cj=, j(F)=1&Gj (Ej*, ,$j(F)), (49)

where, as this equation indicates, ,j may also depend on
the equilibrial values of the environmentally-dependent
parameters. If F&i* is a value of F consistent with C&i

r =0,
r{i, then

Ci
&i *=, i (F&i*), (50)

which is the value of competition that the invader
experiences as a consequence of the resource equilibrium
that the residents create. Note that with the assumption
above that C&i

i is a function of [C&i
r , r{i], the value of

expression (50) is unique although there is no necessity
for F&i* to be unique.

A negative value of Ci
&i* means that invasion of

species i is favored by the resident equilibrium: resident
equilibrial competition is less competition than needed to
keep species i from the system. One particular example
with a single competitive factor is Tilman's R* rule
(Tilman, 1982) applying to the case where species in a
community are limited by a single resource (F=R, the
resource density). A negative value of Ci

&i * in that situa-
tion means that the R* value for species i is lower than
that of resident species. Corresponding remarks apply for
the P* rule of Holt, Grover, et al. (1994) for apparent
competition and to the F* rule that we use here to
embrace both competition and apparent competition.
With just a single competitive factor, Ci

&i* can only be
negative for one species, reflecting the fact that only one
species can persist at equilibrium under those circumstances.
However, with multiple competitive factors, and different
species more strongly limited by different competitive
factors, it is possible for Ci

&i * to be negative for all
species, potentially allowing equilibrium coexistence.

The contribution of the Ci
&i* term to coexistence must

be added to the other terms in the equation, most impor-
tantly to 2E from which it is not truly separate. If this 2E
were zero, then *� $i would just be 1&Ci

&i*. However, 2E
takes account of the possibility that the means of the
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environmental responses, EEj , may not be zero; in other
words the variation in Ej may not be centered at zero
either because E[Ej]{Ej* or because Ej is a nonlinear
function of Ej . From the development in (Chesson, 1994)



it can be seen that, to o(_2), Ci
&i*&2E can be inter-

preted as the value of Ci
&i * that would apply if the Ej*

were adjusted to make the EEj equal to 0, which would
mean 2E=0. As the Ej* are arbitrary one might ask, why
not choose them so that the EEj are zero? The answer is
that this is not always the most natural thing to do. For
example, in the case of a single competitive factor, which
is of considerable interest in the study of varying environ-
ments, it seems most natural to choose the same equi-
librial value of the competitive factor for all species so
that fluctuations in F about this common equilibrial
value can be considered. The value of the Ej* for each species
is then determined by the the equation Gj(Ej*, ,$j(F*))=1.
If the Ej did not vary spatially and each took the value 0,
then in general the community would be neutrally stable:
over time F could be expected to approach the common
F* value everywhere in space, but average densities of
the species would not be fixed as there would be an n&1
dimensional set of values of (N� 1 , N� 2 , ..., N� n), each point
of which would be a neutrally-stable equilibrium. Such
neutral equilibria have limited generality. Having EEj

different from zero destroys this neutral equilibrium and
in most cases with a single competitive factor leads to
competitive exclusion in a constant environment, as
discussed above. For example, with a two-species system,
the 2E values of the two species would be of opposite
sign and the species with positive 2E would exclude the
other.

An alternative way of specifying nonneutrality would
be to have different F* values for different species, while
setting EEj=0. These F* values could not differ from one
another by more than O(_2) under the assumptions of
Appendix III for the quadratic approximation to be
applicable and for *� $i to be no larger in magnitude than
O(_2). Although a valid approach, specifying different
F* values for different species produces complications in
the development of the 2N term, which is presented
below. However, one important interpretational com-
plication arises when the EEj are not zero. The common
F* is not a species characteristic and is not the same F*
that specifies a winner in competition according to the
F* rule. To apply the F* rule for competitive exclusion
in a constant environment, one must calculate a species-
specific F* as the value of F for which *j=1 given the
actual value of Ej that applies to species j. If the species
have the same functions Gj and ,$j then these species-
specific F* values are ranked in order of the Ej and the
winner in competition in a constant environment is the
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species with the largest value of Ej .
Interpretation of 2N. The quantity 2N, which measures

spatial relative nonlinearity of competition, is best under-
stood in terms of competitive factors. As shown in (Chesson,
1994) all linear terms in competitive factors disappear
from 2N by virtue of the definition of the qir . Left over
are quadratic and higher terms, of which only the quad-
ratic terms are of sufficient magnitude to be of concern
here. To understand these, we define

8(2)
j =\

�2Cj

�F l �Fm+
*

, (51)

where the parentheses mean the matrix with row and
columns respectively l and m over the indices 1, 2, ..., p
(the number of competitive factors) and the * means
evaluated at F*. Defining

9= 1
2 \8 (2)

i & :
r{i

q ir8 (2)
r + , (52)

it follows that

2N=trace[9V(F)], (53)

where V(F) is the matrix of variances and covariances
among the elements of F. Naturally, in the case of a single
competitive factor, this expression is simply the product
of two numbers: 9V(F ). As shown in Chesson (1994) for
the temporal case, this single competitive factor case
admits coexistence of at most two species by relative non-
linearity alone. The values of 9 for the two species are
necessarily of opposite sign, as are the values of 2E. For
coexistence, that species with the relatively more concave
finite rate of increase as a function of F (the one with
positive 9 ) must be the one with the advantage in 2E,
i.e., must be the one with a positive 2E. There must also
be higher variance in F when this species is a resident
than when the other species is a resident. The quan-
titative details are given in Chesson (1994, Sect. 5.2).

Interpretation of 2I. The term 2I, the storage effect,
has a major influence on the ability of species to coexist
in a spatially variable environment. Because E[Ej ] and
E[C&i

j ] are both O(_2), 2I can be put in the more useful
form

2Ir#i/&i
ii & :

n

r{i

qir #r/&i
rr , (54)
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where

/&i
lj =E(El&EEl ) } (C&i

j &EC&i
j ), (55)



``covariance between environment and competition,'' and
differs from EEl C

&i
j by O(_4). A further rearrangement of

(54) leads to a still more meaningful expression

2I=&qi (1&5i Pi ) 1/, (56)

where / is the vector of resident covariances between
environment and competition, 1 is the diagonal matrix
of resident # values, Pi is the diagonal matrix with r th
diagonal element to the ratio of the correlation coeffi-
cients, corr(Ei , C&i

r )�corr(Er , C&i
r ), r{i, 5i is a diagonal

matrix with rth diagonal element equal to (#i - V(Ei))�
(#r - V(Er)), 1 is the (n&1)_(n&1) identity matrix, and
qi is the row vector of qir values. The derivation follows
simply by approximating C&i

i as a linear function of the
C&i

r (see Chesson, 1994). Expression (56) is most easily
understood by reference to the following two-species
case.

With a system consisting of just two species (n=2),
pure spatio-temporal environmental variation, a cell-
based spatial structure, and local competition a function
of the local environment (Eq. 4), Pi reduces to the scalar
\=corr(Ei , Er), and so expression (56) reduces to the
scalar equation

2I=&qir(1&5i \) #r/&i
rr . (57)

The last part of this formula, #r/&i
rr , represents the inter-

action between environment and competition for the
resident species. The correlation coefficient \ measures
species-specific responses to the environment with \=&1
being most specific and \=1 being not specific at all. The
quantity 5i measures symmetry between species in their
joint responses to environmental conditions and com-
petition. In this formula, the resident covariance between
environment and competition, /&i

rr , is the only quantity
that might represent a difficult calculation, but it can
commonly be approximated up to o(_2) using linear
approximation techniques, as discussed for the temporal
case (Chesson, 1989), and as follows for symmetric multi-
species cases.

There are many ways that species may be related to
each other in multispecies settings, but of particular
interest is the case where species are limited by a common
competitive factor, precluding stable coexistence in
spatially and temporally homogeneous settings. This
being the case, we can assume that

Cj=; j(C&C*)+O(_2) (59)
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for the common competitive factor C, which is assumed
expressible as a function of the local densities and
environmentally-dependent parameters, i.e., in the form
(4), which requires cell-based population structure. The
O(_2) term in (59) allows the consideration of distinct
competition parameters for different species provided
that distinctiveness is only O(_2). Such distinctions are
large enough to affect *� $i , and possibly 2N, but cause at
most o(_2) effects in 2I. Note that as each of *� $i , 2N, 2I,
and 2} is O(_2), assumption (59) is not a greatly restric-
tive requirement. A more specific assumption is that each
V(Ej)=_2, and Cov(Ej , El )=\_2 for i{j, and environ-
mental variation is pure spatio-temporal. The equal
variance assumption is less restrictive than at face value,
for the environmentally-dependent parameters can be
transformed to make this assumption more nearly satis-
fied in a given setting. The calculations below are then
applied to those transformed parameters. The covariance
assumption is more specific. It implies that the environ-
mental responses of different species are equally related
to one another. Together with the assumption of com-
mon competition it means that each species is similarly
affected by all other species. In other words, species inter-
actions are diffuse (Chesson, 2000).

Define

Ar=
�C&i

�Er }Er=0, r{i
, ar=EAr , and :r=

�Er

�Er }Er=Er*

.

(60)

Also define the following general notation for averages
over products of parameters of resident species

ab } } } =
1

n&1
:

r{i

arbr } } } . (61)

The calculations for the temporal case (Chesson, 1994)
apply identically here to show that

2Ir&;i _2[(1&\) :2a#+\:a(n&1)(:#&:i #i )].

(62)

In this formula, the ar , and hence all the average terms
containing them, are commonly on the order of 1�(n&1)
(see the examples below), which is understandable because
the more resident species there are, the less each is likely to
contribute to the total competition experienced. Of the
terms inside [ ], (:#&:i#i) measures asymmetries between
species in the interaction between environment and com-
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petition; this term averages to zero over species. Note
therefore that the average over species of 2I�; i equals
_2(1&\) :2a#, which may be thought of as the average
strength of the storage effect for this guild because ;i



simply represents the rate of response to common com-
petitive factors and in many cases (see the examples
below) is a scaling factor in all components of *� i&1 and
therefore cancels out of any comparison between compo-
nent mechanisms. The term _2(1&\) can be thought of
as the species-specific component of the environmental
response because _2\ is the fraction of variance in Ej that
a species has in common with other species. If :2a# is
proportional to 1�(n&1), as commonly seems the case
(see the examples below), the average strength of the
storage effect is proportional to _2(1&\)�(n&1), which
therefore increases with the species-specific component of
variance and decreases with the number of competitors
that a species has. This decline in strength of the coexistence
mechanism with the number of competitor species is a
commonly observed feature of coexistence mechanisms
in the presence of diffuse competition (Chesson, 2000),
which is assumed in these calculations. It is not specifi-
cally a property of the storage effect.

Interpretation of 2}. Insight on the effects of covariance
between relative density and the rate of increase, which is
measured by 2}, is available on the assumption that
vjx=1+O(_). As shown in Appendix III, this require-
ment holds in particular for the case of pool dispersal
with local retention presented in the covariance between
relative density and rate of increase section above. This
assumption means that (vj&1) EjCj=O(_3) and there-
fore that

Cov(*j , vj )rCov(Ej , vj )&Cov(Cj , vj ). (63)

With pure spatio-temporal variation, the first term on
the RHS is zero, and the covariance between *j and vj is
just a covariance between local density and competition.
This is the important effect arising in the spatial Lotka�
Volterra competition model of Bolker and Pacala (1999)
where there is no environmental variation and Eq. (63) is
exact as a consequence of the quadratic form of the
model. Because residents cause competition, in many
cases Cov(Cj , vj ) is likely to be positive for residents and
lesser in magnitude for invaders. Thus, in instances of
pure spatio-temporal environmental variation, the term
2} is likely to be positive, promoting coexistence.
However, there are no general results demonstrating this
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effect at the present time.
In the case of pure spatial variation, the component

Cov(Ej , vj ) of Cov(*j , vj) does not vanish and potentially
has major effects. Assuming pool dispersal with local
retention, it is shown in Appendix III for both residents
and invaders that

vjx=1+( p�q)(*jx&1)+O(_2) (64)

and hence that

Cov(*j , vj )r( p�q) V(*j ), (65)

which implies that invaders gain an advantage in terms of
2} if they have higher spatial variance in their finite rates
of increase than residents. This variance can be expanded
in terms of variance in the environmentally-dependent
and competition parameters and the covariance between
them using approximation (40) above, but it is most
instructive in the symmetric case where G is the same for
each species and there is a common competitive factor, as
explicitly assumed in the section above on covariance
between the rate of increase and relative density. All this
symmetry means that qir =1�(n&1), and then 2} reduces
to

p
q _

1
n&1

:r{i /&i
rr &/&i

ii & , (66)

which takes a form identical to the storage effect in such
symmetric situations. In fact it is equivalent to 2I with
#=&p�q. Thus, in this symmetric situation, 2} can be
regarded as simply replacing # with #&p�q. As # will be
negative in the common subadditive coexistence-
promoting scenario, the effect of 2} will commonly be
equivalent to an enhanced storage effect, consistent with
the earlier findings above.

EXAMPLES

Three examples illustrate the concepts and techniques
developed here.

Model of Insects Laying Eggs in Ephemeral
Patches of Food

This model, which is described above in the section
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on the general model, is most easily analyzed with a
symmetric competition structure with intraspecific coef-
ficients, :jj , the same for each species j (equal to :), and
interspecific coefficients, :jl , j{l, all equal to ;. So that



the effects of differences between interspecific and intra-
specific competition are of comparable magnitude to the
effects of a variable environment, I shall assume that
:&;=O(_2). Natural choices for the equilibrial values
are E i*=1 and C i*=1. With these definitions, we find
that

Ej=Ej&1 and Cj=1&erj (1&Cj). (67)

This model is spatially implicit, and so it is possible to
work with Hj rather than Gj ; Hj (Ej , Cj )&1 can be
expressed as the exact quadratic form

*j vj&1=Ej&Cj&EjCj (68)

from which it is immediately apparent that #j=&1.
Although this formula is exact, we will nevertheless make
use of small variance approximations to estimate the
expected values of its components, viz. *� $i , 2N, and 2I.
Because these are based on Hj rather than Gj , the term
2} does not appear. For these calculations, rather than
use Ej as the environmentally-dependent parameter, it is
better to transform to the log scale and use =j=ln Ej . On
this scale, the symmetry assumptions _2=V(=j ) and \=
corr(=j , =l ), for any j and l, are more reasonable. In
addition, define +j=E[=j]=O(_2). Using the symmetric
competition structure assumed above, the competition
parameter can be expressed simply in terms of two
competitive factors,

Cj=F+Fj , (69)

where

F=; :
n

l=1

ElN l and F j=(:&;) E jN j . (70)

As :&;=O(_2) this means Cj=F+O(_2), a fact that
allows the calculations of relative nonlinearity and the
storage effect to proceed as if there were only one com-
petitive factor. This is not so, however, for *� $i , where the
full expression for Cj is important.

Table 1 gives the values of various parameters based
on the assumptions of this model. To calculate *� $i , note
that as the invader does not experience intraspecific
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competition,

C &i
i =F. (71)
TABLE 1

Parameters of the Insect Aggregation Model

:j 1
;j rj

#j &1

qis
ri�rs

n&1+(:&;)�;
=

r i �rs

n&1
+O(_2)

F*
;(n&1)

;(n&1)+:&;

9 &
ri

2
(ri&r� )

Substituting the equilibrial value of F* from Table 1, we
see that

Ci
&i *=1&exp {ri \1&

;(n&1)
;(n&1)+:&;+=

r&
ri (1&;�:)

n&1
, (72)

which means that

*� $ir2E+
ri (1&;�:)

n&1
. (73)

The formula for 2E can be written in terms of the +s and
_2 as follows

2Erri \+ i+
1
2 _2

r i
&

1
n&1

:
s{i

+s+
1
2 _2

rs + , (74)

which in the case of equal rs, just reduces to the difference
between +i and the average of the +s of i 's competitors.

To calculate 2I, we can make use of the symmetric
environment theory for one competitive factor above,
noting that Eq. (59) is satisfied here and so the symmetric
theory applies. The fact that the :j are all 1 and the #j are
all &1 makes this especially simple. The only quantity
that is at all difficult to calculate is a� =&:2a#, which is
shown in Appendix IV to be 1�(n&1)+O(_2). It follows
that
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2Ir
ri_2(1&\)

n&1
. (75)



To calculate 2N, we can consider F to be the only
competitive factor, and then taking 9 from Table 1, we
have

2Nr&
ri

2
(ri&r� ) V(F ) (76)

which leaves us with the thorny issue of the value of
V(F ). A little algebra shows this to reduce to

V(F )r;2_2 \(1&\) :
s{i

N� 2
s +\ _ :

s{i

N� s&
2

+ . (77)

The sum of the resident densities at their equilibrium is
1�;+O(_2) (Appendix IV), but it is not so easy to deter-
mine the sum of the squares unless the residents have
identical parameters, in which case they have equal
densities and the sum of squares is therefore 1�;2(n&1)
+O(_2), which means that in this special case, which is
the only case for a single resident (n=2),

2Nr&
ri

2
(ri&r� ) _2 \1&\

n&1
+\+ . (78)

We see that 2N boosts the invasion rate of species that
has a high value of ri relative to its competitors. A species
with a lower ri suffers a disadvantage. Unlike the storage
effect, relative nonlinearity gives the invasion rates of all
species no uniform boost. Its effect therefore must be con-
sidered in terms of how it trades off against other terms.
For example, examining 2E we see that for positive +s,
species with relatively lower +s should be disadvantaged.
But to interpret that scenario, we have to decide what the
+s mean. If there is no mortality during dispersal, i.e., the
rj already take into account losses that would occur
during dispersal, then E[Ejx]=1, which implies that
+j+

1
2 _2=o(_2), preventing appreciable variation in the

+s between species and rendering the 2E term above
negligible. However, in other cases, + j might reasonably
be assumed to reflect survivorship during dispersal. Then
+j+

1
2 _2 must be negative, and the formula for 2E

implies that high survival is essential to compensate for
small ri , which may also compensate for the disadvan-
tage arising from 2N.

The full expression for *� i&1 is the combination of Eqs.
(73), (75), and (76). For the special case of equal values
of the rj , *� i&1 takes on the particularly simple form

*� i&1r+i&+� +r
1&;�:

+_2 1&\
. (79)
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\ n&1 n&1+
The case of equal rj naturally elminates any effect of
relative nonlinearity from this expression, which is the
price of simplicity. This expression, however, contains
the features most important to multispecies coexistence,
for, as we have seen, relative nonlinearity gives no
uniform boost to growth from low density. The two
mechanisms that remain are resource partitioning, whose
magnitude is measured by (1&;�:)�(n&1), and the
storage effect, represented by _2(1&\)�(n&1). These
two mechanisms take on very similar forms because
they both assume diffuse competition; i.e., each species
competes similarly with every other species.

Resource partitioning is a variation-independent
mechanism and could represent differential dependence
of the insect larvae on the different food substances
or qualities within a patch. The variation-dependent
mechanism, the storage effect, may be looked upon as
resource partitioning on a larger spatial scale with dif-
ferences in the Ejx between species representing species
differences in oviposition preferences at the level of the
patch. Much of the literature on species coexistence in
this and related models refers to ``aggregation'' as the
mechanism of coexistence (Atkinson and Shorrocks,
1981; Ives, 1988), but Ives (1988) emphasizes that
aggregation must be greater within species than between
species and that this may come about by differential
responses of searching females to environmental condi-
tions. Interpreted in this way, aggregation as a mechanism
of coexistence is a special case of the spatial storage effect.

The Lottery Model

The lottery model is for perennial sedentary iteroparous
organisms with larvae dispersing widely in space (Chesson,
1985). It has particular application to coral reef fish com-
munities where the arrival of larvae ready to settle on a reef
varies greatly in time and space and is often discussed under
the heading of recruitment variation. The spatial lottery
model is specified by the equation

Njx(t+1)=(1&$j ) N jx(t)+Ejx(t) N� j(t)�C$jx(t), (80)

where Njx is the number of adults of species j at location
x, $j is the adult death rate ((1&$j) Njx(t) is the number
of adults surviving from time t to time t+1), and
Ejx(t) N� j(t) is the number of juveniles arriving at site x
during the interval t to t+1. These juveniles represent
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the pooled reproduction and larval survival from all
sites, which are then redistributed into sites depending on
spatio-temporally-varying site characteristics, captured
by the environmentally-dependent parameter Ejx(t). These



juveniles compete with juveniles of all species for space
vacated by adult death according to the formula

C$jx= :
n

l=1

Elx N� l (t)< :
n

l=1

$lN lx(t). (81)

Comins and Noble (1985) define a similar model with the
Ej representing spatio-temporally-varying competitive
ability, with dispersal being widespread with local
retention.

Assuming that the environment is pure spatio-temporally
variable, we can take a conditional expectation in (80) to
obtain

E[Nj (t+1) | E1 , ..., En]=H j (Ej , C ) N� j (t), (82)

where

Hj (Ej , C)=1&$ j+Ej �C (83)

and the common competition parameter is

C= :
n

l=1

ElN� l(t)< :
n

l=1

$l N� l (t).

The difference between C$j and C is simply that C$j depends
on the actual amount of space, �l $lNlx , available for
juveniles at a particular site, x, while C depends on the
average amount of space competed for over all sites,
�l $l N� l .

As C is a common competitive factor, it is natural here
to choose a common equilibrial value C* for Cj . The
equilibrium relationship (34) therefore means that
Ej*=$j C*.

The standard parameters become

Ej=$j (Ej �Ej*&1) (84)

and

Cj=$j (1&C*�C ) (85)

and the quadratic approximation is exact here because
Eq. (83) is in the form (36) with #j=&1�$j . As the Cj are
linearly related between species, there is no relative non-
linearity (2N=0). The qir are easily seen to be equal to
$i �[$r(n&1)]. Again assuming a symmetric variance
structure for the Ej on a log scale, and defining +j=
E[ln Ej ]&ln $j , it follows from the results in the quan-
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titative section that

*� i&1r$i (+i&+� )+$i
_2(1&\)

n&1
, (86)
where the first term on the RHS is *� $i and the second term
is 2I. Note that C* does not appear in this expression.
Although an arbitrary choice, it is unimportant in the
final result.

These results provide an interesting comparison with
the temporal form of the lottery model (Chesson, 1994),
where complex relative nonlinearity terms intrude when-
ever the $s vary with the species and, where the storage
effect disappears as $i approaches 1, the nonoverlapping
generation case. They show in particular that spatio-
temporal recruitment variation has the potential to be an
important mechanism of coexistence for coral reef fishes
and also for other organisms where migration of disper-
sive forms into patches is spatio-temporally variable and
differential between species.

The Annual Plant Model

The annual plant model given above also takes an
exact quadratic form. Note that, as defined, Cj is inde-
pendent of j and is once again a common competitive
factor and that a common value C* of Cj* will be chosen.
In the absence of variation, there would only be one
winner in competition in this system. Analogous to
Tilman's R* rule for determining the winner in competi-
tion, there is a natural C* rule here for determining that
winner. Let C� j* be the value that would keep species j at
equilibrium when the environment is fixed at E[Ej ].
Then without variation in space the winner in competi-
tion would be the species with the largest value of C� j*. To
see what happens when there is spatial variation in the
environment, assume that seeds are widely dispersed so
that the local neigborhood density can be approximated
by the regional density, N� j , and assume locally varying
germination fractions, Ej , with symmetric variance
structure on a log scale. Then, as is shown in Appendix V,

*� i&1=
%i

C* {(C� i*&C� *)+
C*&1
n&1

_2(1&\)= , (87)

where %i=1&si (1&E[Ei]) (the mean fraction of seeds
that are lost from the seed bank by germination or death
in one unit of time), C� * is the resident average of the C� j*,
and C* is the common equilibrial value of the Cj . Here
C* is probably most appropriately defined as the average
over all species of C� j*, which differs a little from C� *, and
the average only over the residents.

This formula exhibits the interesting fact that the
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stronger competition is on average, as determined by C*,
the stronger storage effect up to a finite supremum
approached when C* is much larger than 1. At that point
only proportional differences in the competition tolerated



by different species are important, consistent with the
claims of (Chesson and Huntly, 1997) that coexistence
does not depend on the magnitude of competition. In
contrast to the temporal version of this model (Chesson,
1994), there is no relative nonlinearity, and again the
storage effect does not vanish in the spatial case when
generations are nonoverlapping, i.e., when si=1.

DISCUSSION

This work has a different approach than commonly
pursued in theoretical modeling studies in community
ecology. Rather than take one model that is presumed
representative of a class of models and study it in detail,
with the hope of drawing general conclusions, the approach
here is to study a class of models with the expectation of
elucidating general principles that demonstrably apply to
all models in the class. The outcomes are principles that
may at first appear rather abstract and mathematical in
form, but when investigated further can been seen to be
the development of biological concepts that can be
understood in terms of the features of specific systems.
Second, as a by-product of the general analysis, this work
provides methods by which specific models can be
analyzed.

This work has been successful in extending to the spatial
domain concepts and principles previously demonstrated
for models in a temporally varying environment. It
has shown that the three major classes of coexistence
mechanisms previously identified for models of temporal
variation, viz. variation-independent mechanisms and
the two variation-dependent mechanisms (relative non-
linearity of competition and the storage effect), have
natural analogues in the spatial domain. However, these
two variation-dependent mechanisms arise under dif-
ferent circumstances in the spatial context. Unlike the
temporal storage effect, the spatial storage effect does not
rely on life-history stages insensitive to environment and
competition. Instead, dispersion of the population in
space provides the requisite buffering. Indeed, given
species-specific responses to spatially-varying environ-
mental factors, the spatial storage effect seems to be
inevitable under realistic scenarios and seems best regarded
as a formalization of the concepts of spatial and spatio-
temporal niches. In contrast, spatial relative nonlinearity
seems to arise under more restricted conditions than
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temporal relative nonlinearity, at least in simple models,
but requires further study to assess its importance.

This work has also suggested that species coexistence
in the presence of spatial variation involves phenomena
with no direct temporal analogues. These new phenomena
arise from covariance between local population growth
and local population density. The formula for growth
of an invader, which is used to quantify coexistence,
contains an additional term due to this covariance that is
not present in the temporal case. The behavior of this
term has not been studied in general but the special cases
investigated here suggest that it may be best regarded as
modifying the storage effect and relative nonlinearity,
rather than as entirely new. However, the limited evidence
presented here suggests that it potentially has a very power-
ful role promoting species coexistence in the presence
of spatial variation. This phenomenon was explored
recently in a spatial version of the lottery model by Muko
and Iwasa (2000). Recent findings of Bolker and Pacala
(1999) on species coexistence relying on differing
dispersal distances in a spatially explicit model appear to
be a special case of this phenomenon.

The most serious shortcoming of this work is the
absence of a full definition of the circumstances under
which the invasion criterion can be defined and imple-
mented. The rate of recovery of a population from low
density seems a very natural way of quantifying the
strength of species persistence in a system, but has
received insufficient study in spatial models. It most
clearly applies in spatially implicit models where is
it related to persistence in the sense of permanence
(Hutson, Moran, et al., 1983; Hutson and Vickers, 1983;
Hutson and Law, 1985; Law and Morton, 1996). As used
here, the invasion criterion requires a stable point equi-
librium for the regional-scale densities of residents and
corresponding stationary behavior of the patterns of
spatio-temporal fluctuations. The majority of spatial
models of competition that do not specifically include
pure temporal environmental variation have this
property, although some models of predator�prey inter-
actions lead to long-term cycles and spatial homogeneity.
An understanding of coexistence as a result of temporal
fluctuations, however, is given in previous work (Chesson,
1994), which this article extends to space. Missing therefore
from current knowledge is a general approach capable of
incorporating both spatial variation and temporal varia-
tion that persists at the level of the total regional popula-
tion. There is at least one particular example, the lottery
model (Chesson, 1985), in which a full range of possibili-
ties for variation in space and time is considered and
solved, but the general case has not been addressed and
is beyond the scope of this article.
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Within the limitations discussed above, however, the
approach used here does provide a very general under-
standing of the opportunities for species coexistence in a
spatially-varying environment. Moreover, the quadratic



approximation technique implemented in the specific
examples is a powerful method for uncovering the behavior
of simple models in elementary terms. This technique is
only implemented here for spatially-implicit models, and it
is bound to be much more difficult to apply in spatially-
explicit models with local dispersal. However, the quad-
ratic representation of local population growth given here
is exact in many simple cases even with spatially-explicit
models; therefore, the decomposition of the invader growth
rate into four terms representing different mechanisms is
exact also. Factors affecting these terms, such as nonad-
ditivity and relative nonlinearity, are simple to obtain
analytically even if other features, such as variances in
competitive factors and covariance between environment
and competition, are more difficult to estimate and may
require simulation or other forms of approximation such
as moment closure approximations (Bolker and Pacala,
1997). Thus, the techniques presented here provide
important information on the nature and properties of
the mechanisms occurring in a model even when they do
not lead to full quantification of the mechanism.

APPENDIX I

It is often helpful to adopt the perspective of formal
probability theory and add to each of Ejx(t), Cjx(t), and
Njx(t) a fourth argument, |, which belongs to a sample
space 0 with associated _-field and probability measure.
Then Ejx(t), Cjx(t), and Njx(t) would be random variables
themselves, not realizations of random variables Ej , Cj ,
and Nj . For example, in simulations of the system, Ejx(t),
Cjx(t), and Njx(t) would take different values in different
simulations, with Ejx(t, |), Cjx(t, |), and Njx(t, |) being
realized values and | being equivalent to the random
number seed. This perspective is most helpful in discus-
sion of the concepts of pure spatial variation and pure
spatio-temporal variation. Pure spatio-temporal environ-
mental variation can then be defined as the situation where
the vector random variables (E1x(t), ..., Enx(t)) are inde-
pendently and identically distributed over all pairs of
times and locations (t, x). For pure spatial variation
(E1x(t), ..., Enx(t)) is independently and identically
distributed over locations x, but is constant over time.

Under this perspective, the expected value E[Gj(Ejx(t),
Cjx(t))], as formally defined in probability theory, would
in general depend on x and therefore would not be equiv-
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alent to the spatial average implied by the expression
E[Gj(Ej , Cj )] (Eq. 8). However, for many spatial
geometries used in modeling, and for many suitable
initial conditions, it is possible to assume without loss of
generality that the vector of stochastic processes (Ejx(t),
Cjx(t), Njx(t), j=1, ..., n, t�0) has the same distribution
for every x. For this to be true, it just has to be possible
to randomize the values of Ejx , and any initial condi-
tions, relative to the location in space. For example,
consider space to be intertidal habitat around an island,
which is topologically equivalent to a circle. A location x
is a point on the circle, and it will have certain fixed
environmental characteristics due, for example, to
whether it is on the north or south side, facing the
prevailing currents, or in their lee. It will also have
temporally varying characteristics due, for example, to
temporal variation of currents. The stochastic process
[Ejx(t), t�0] is assumed to summarize these charac-
teristics. Regardless of the spatially fixed nature of some
factors contributing to [Ejx(t), t�0], the [Ejx(t), t�0]
can be made formally identically distributed for different
x by random choice of the origin for the measurement of
x. Such randomization has no effect on the nature of
the model, but it does render expected values such as
E[Gj(Ejx , Cjx)] independent of x. With effectively
infinite space and an ergodic theorem implying degenerate
convergence of spatial averages, expectations such as
E[Gj(Ejx(t), Cjx(t))] are then equal to their correspond-
ing spatial averages. If the critical variables (Ejx(t),
Cjx(t), Njx(t), j=1, ..., n) cannot be set up so that they
have the same distribution for every x, then the expected
values of the text (e.g., E[Gj(Ej , Cj )]) have to be defined
explicitly as spatial averages. In the limit of large space,
these spatial averages are equivalent to the spatial averages
of the expectationfor each spatial location (e.g., E[Gj(Ejx(t),
Cjx(t))]), which would naturally be the most convenient
way of calculating them mathematically.

APPENDIX II

Equation (25) for the model with pure spatial varia-
tion and widespread dispersal implies the following
iteration for relative local density:

vjx(t+1)=p(*jx(t)�*� j (t)) v jx(t)+q. (88)

Assuming that residents come to an equilibrium at each
locality, resident values of *x are constant over time. For
residents, Eq. (88) implies the following equation for
resident relative densities:

Peter Chesson
vrx=
q

1&p*rx
. (89)



The invader's *x are also constant over time as they depend
only on the temporally-constant environment and
temporally-constant resident densities. Thus, invader
relative densities are given by the equation

vix=
q

1&p*ix �*� i

. (90)

From the fact that the *� j values are the spatial averages
of vjx *jx=vjxG(Ejx , C jx) we see that

E _ qG(Er , C&i
r )

1&pG(Er , C &i
r )&=*� r=1 (91)

and for invaders

E _ qG(Ei , C &i
i )

1&pG(Ei , C &i
i )�*� i&=*� i . (92)

Equation (92) rearranges to

E _ qG(Ei , C &i
i )

*� i&pG(Ei , C &i
i )&=1. (93)

As the LHS of Eq. (93) is a decreasing function of *� i it
follows that *� i is greater than 1 if and only if the following
inequality is satisfied

E _ qG(Ei , C &i
i )

1&pG(Ei , C &i
i )&>E _ qG(Er , C &i

r )
1&pG(Er , C&i

r )& , (94)

in other words if and only if

Ef (G(Ei , C&i
i ))>Ef (G(Er , C&i

r )),

where f is defined by the equation f (G)=qG�(1&pG), as
stated in the text.

To see when f (G(E,C)) is subadditive, the cross partial
derivative works out to be

�2f (G(E, C ))
�E �C

=f"(G(E, C ))
�G
�E

}
�G
�C

+f $(G(E, C))
�2G(E, C)

�E �C
. (96)

The first term on the RHS is negative, as G decreases in
C and increases in E. The second term is zero for additive
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G and negative for subadditive G. Thus, the whole
expression is negative ( f (G(E, C)) is subadditive)
whenever G is subadditive, additive, or merely weakly
superadditive.
To see when covariance between environment and
competition occurs in this model, assume that C&i

rx =
f (Erx , Nrx)=f (Erx , N� rvrx), for some function f, and let
f1 and f2 refer to partial derivatives with respect to the
first and second arguments of f (similarly for G); then

dC&i
rx

dErx
=f1+N� r

dvrx

dErx
f2 . (97)

But Eq. (89) implies that

dvrx

dErx
=pq \G1+G2

dC&i
rx

dErx +<(1&pG )2. (98)

Substituting into (97) and rearranging gives

dC&i
rx

dErx
=( f1+pqN� r f2G1 �(1&pG )2)�

(1&pqG2N� 2 f2 �(1&pG )2). (99)

As both numerator and denominator are positive when-
ever f1�0, we see that as Erx varies in space, C&i

rx varies
as an increasing function of Erx , which implies positive
covariance.

APPENDIX III

I shall prove order relations Cj=O(_), and E[Cj ]=
O(_2) just for cell-based models, with local population
sizes being continuous variables. First of all note that for
a random variable, such as Cj , the statement Cj=O(_)
will be taken to mean that |Cj |<k_ for some nonrandom
quantity k that does not vary with t, x, _, or the | of
Appendix I. Note also that the conclusion Cj=O(_) will
generally be false for integer population sizes and realistic
demographic stochasticity, and so there is no point
trying to cover that case.

To begin with, we shall assume that there is a common
competition parameter for different species and that it
can be written as a function of the local environmentally-
dependent parameters, Ex(t)=(E1x(t), ..., Enx(t)), and
local densities Nx(t)=(N1x(t), ..., Nnx(t)):

Cx(t)=f (Ex(t), Nx(t)). (100)
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Assume also that the appropriate equilibrial values have
been subtracted so that the environmentally-dependent
and competition parameters vary about zero. Assuming



that the functions Gj are smooth, the assumption that
Ej=O(_) means also that Ejx(t)=O(_).

Define *x(t) } Nx(t)=(*1x(t) N1x(t), ..., *nx(t) Nnx(t)),
and

C$x(t+1)=f (Ex(t+1), *x(t) } Nx(t)). (101)

Note that C$x(t+1) is the competition parameter that
would apply at time t+1 if there were no dispersal from
or to the patch. Using regulatory conditions (given below)
on the functions Gj and f, Chesson (1994, Appendix II)
shows that there are constants k>0 and \<1 such that,
whenever |Cx(t)| is sufficiently small,

|C$x(t+1)|<\ |Cx(t)|+k_. (102)

This result implies that

sup
x

|C$x(t+1)|�\ sup
x

|Cx(t)|+k_. (103)

We add here the assumption

|Cx(t+1)|�sup
x

|C$x(t+1)|+k$_ (104)

which is an assumption about the nature of competition
and dispersal to be discussed below. With assumption
(104), inequality (103) becomes

sup
x

|Cx(t+1)|�\ sup
x

|Cx(t)|+(k+k$) _. (105)

This means that

|Cx(t)|�(k+k$) _�(1&\) (106)

for all t whenever |Cx(0)| is sufficiently small, i.e., when-
ever |Cx(0)|�(k+k$) _�(1&\) for _ sufficiently small.
This proves the required result Cj=O(_) whenever there
is a common competitive factor and the appropriate
regularity conditions hold.

These regularity conditions are stated as follows:
Let = be a positive number and let the vectors E, E$, N,

N$, and scalar C satisfy the conditions, |E|<=, |E$|<=,
| f (E", N)|<= for some E" with |E"|<=, N$=N }
G(E, C), and |C |<=, where G(E, C )=(G1(E1 , C ), ...,
Gn(En , C )).

With these constraints holding, define
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\=sup } 1+
� f (E, N } G(0, C ))

�C } , (107)

k1=sup |{ f (E$$$, N$)|E$$$=E$ , (108)
where { is the operator (���E1$$$, ..., ���En$$$), and

k2=sup |{f (E$$$, N } G(E, C))| E$$$=E . (109)

The regularity conditions are then that for = sufficiently
small, these quantities are all finite and \<1. Then, k is
defined as 2k1+k2 . That k1 and k2 should be finite
is essentially a smoothness condition on the functions.
Competition naturally has negative feedback to itself,
and the condition on \ ensures that this negative feed-
back is stabilizing.

A final condition was introduced here that has no
counterpart in the temporal models and that is |Cx(t+1)|
�supx |C$x(t+1)|+k$_. This means that any increase in
local density due to dispersal cannot increase competition
any more than O(_) above the maximum competition
applicable if there were no dispersal. This is not a greatly
restrictive assumption under realistic dispersal and
competition scenarios.

All of the above is simply for the case of a common
competitive factor. Following Chesson (1994) this result
extends to the case where the competition parameters
can be expressed in the form

Cjx(t)=Cx(t)+h jx(t) (110)

with |h jx(t)|<k j_2 for constants k j .
To obtain the result E[Cj ]=O(_2), we first consider a

resident ( j=r), and we assume that dispersal and local
dynamics are such that vrx&1=O(_). Given the quad-
ratic approximation, we have

0=E[(*r&1) vr]rEEr vr&ECrvr+#EEr Crvr . (111)

Now Ervr=O(_2)=ErCrvr and so their expected values
are O(_2) also. Therefore, Eq. (111) implies ECrvr=
O(_2). Given vrx&1=O(_), this means ECr=O(_2) too.
Equation (110) coupled with smoothness of the functions
Gj now implies that ECi=O(_2), which then covers all
the needed cases.

Note that in the case of pure spatial variation and
widespread dispersal with retention, formula (89) of
Appendix II justifies the requirement vrx&1=O(_):
formula (89) implies that

vrx=1+( p�q)(*rx&1)+O((*rx&1)2), (112)

and the results in this appendix show that (*rx&1)=
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O(_), from which the statement vrx&1=O(_) follows.
The results here also imply that (*ix&1)=O(_), which
implies *� i&1=O(_). Substituting this in Eq. (90) we see
that vix&1=O(_). Combining this with the fact that



E[*i ]=O(_2), from the results above, leads to *� i&1=
O(_2). Substituting this back in Eq. (90), we can see that
vix=1+( p�q)(*ix&1)+O(_2), which proves Eq. (64) of
the text for j=i as well as j=r.

APPENDIX IV

For the model of insects laying eggs in ephemeral
patches of food, we need to calculate a� . Now

C&i=; :
s

Es Ns , (113)

which means As=;Ns , and so

a� =
;

n&1
:

s{i

N� s . (114)

Because Ej=1+O(_) and E[Ej]=1+O(_2), we can
substitute 1 for the Ej in the resident growth equation
EHs(Es , C &i

s )=1 to give the approximation

exp {rs \1&; :
r{i

N� r+(:&;) N� s+==1+O(_2),

(115)

which implies

; :
r{i

N� r+(:&;) N� s=1+O(_2). (116)

Summing over residents, s, reveals the result

:
s{i

N� s=
n&1

(n&1) ;+(:&;)
+O(_2) (117)

which then implies

a� =
;

(n&1) ;+(:&;)
+O(_2)

=
1

n&1
+O(_2), (118)

as stated in the text. This means also that �s{i N� s=

Coexistence and Spatial Variation
(1�;)+O(_2). Although this formula for the resident
densities may not appear to be the closest approxima-
tion, it is on the same order of accuracy as approximation
(117) and gives a more understandable result.
APPENDIX V

In the annual plant model, for simplicity assume that
the different species all have the same value : of :j , the
competitive effect of a seedling of species j. Here, we shall
use the symbol :j for the quantity �Ej ��=j evaluated under
equilibrial conditions, where =j=ln Ej and Ej is the
germination fraction. The small effects approximations
will all be done on the log scale, and therefore =j will be
substituted for Ej in the relevant formulae. We choose a
common equilibrial value C* for the competition param-
eters. The Ej* are determined by C* and the sj . The basic
parameters derived from these are given in Table 2.
Calculating 2I by making use of the symmetry assump-
tions, note that :j#j=&1 and therefore :#&:i#i=0.
Also, :2a#=&:a, with

:
r{i

:rar= :
r{i

:N� rEr*=C*&1+O(_2), (119)

and hence :2a#=&(C*&1)�(n&1). It follows that

2I=;i
C*&1
n&1

_2(1&\). (120)

There is no relative nonlinearity and, with a common
competitive factor and a concensus choice C* for equi-
librial competition, Ci

&i*=0. It remains to calculate 2E.
The formula for qir from the table means

2E=;i \EEi

; i
&

1
n&1

:
r{i

EEr

;r + , (121)

but ; j=(1&sj[1&Ej*])�C*=(1&sj[1&E[Ej])�C*
+O(_2), and as EEj=O(_2), it follows EEj�; j=C*EEj�
%j+o(_2), where %j=(1&sj[1&E[Ej]). However,
C*EEj �%j+C*=C� j*, the equilibrium value of competi-
tion for species j with the germination faction constant at
E[Ej ]. It follows that 2E can be written as

2E=;i (C� i*&C� *). (122)

TABLE 2

Parameters of the Annual Plant Model
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:j 1&sj

;j (1&sj[1&E j*])�C*
#j &1�(1&sj)
qir ;i �;r(n&1)



Combining the formulas for 2E and 2I and noting that
%j �C* can be substituted for ;j without changing the
order of accuracy of the results, we obtain Eq. (87).
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