

Calvin and Hobbes

MESAM

Wings and the Physics of Flight

1. Physics Primer – forces and force-body diagrams

2. The important forces in flight

3. How do birds generate lift?

4. Drag

5. Thrust

6. wing shape

7. types of flight:

a. gliding and soaring flight

b. flapping flight

c. hovering

d. hummingbirds

What is a force?

What is a force?

Something that causes a **change in motion** a "push or pull" on an object

By **change in motion** we mean

- speeding up
- slowing down
- changing direction

An object traveling in a straight line at a constant speed is not experiencing a change in motion

What is a force?

Something that causes a **change in motion** a "push or pull" on an object

What are some everyday forces?

From Newton's Second Law of motion:

Force = mass x acceleration

If the same force is applied to a big object and a small object, which has the higher acceleration?

An object will move according to the **sum** of all the forces acting on it.

Net Force → Change in Motion

Which way will the coconut move?

Which way will the coconut move?

What is the net force on the coconut?

Which way will the coconut move?

What is the net force on the coconut?

A Force-Body Diagram helps us visualize all of the forces acting on an object

Which way will the coconut move? A Force-Body Diagram

What other forces are acting on the coconut?

Which way will the coconut move? A Force-Body Diagram

The Force of gravity on the coconut is proportional to the coconut's mass. We generally call this force **weight**

Weight = mass x acceleration due to gravity

Which way will the coconut move? A Force-Body Diagram

The Force of gravity on the coconut is proportional to the coconut's mass. We generally call this force **weight**

Weight = mass x acceleration due to gravity

Which way will the coconut move? A Force-Body Diagram

The sum of the forces or the **net force** tells us which way the coconut will move!

Now imagine a bird in level flight at a constant speed What forces are acting on this bird?

Now imagine a bird in level flight at a constant speed What is the **net force** on the bird?

Now imagine a bird in level flight at a constant speed What is the **net force** on the bird?

The sum of the forces must equal zero if the bird is in constant motion.

This means that...

Weight = Lift

Thrust = Drag

Concept-test:

Which of these birds has a net force of zero acting on it?

Costa's Hummingbird Hovering

Lucy's Warbler perching

Turkey Vulture soaring at a constant speed

Peregrine Falcon diving after prey

Now imagine a bird in level flight at a constant speed

Now imagine a bird in level flight at a constant speed

Weight = mass x gravity

The heavier the bird, the greater the force of its weight!

Now imagine a bird in level flight at a constant speed

How do birds generate lift to balance their weight in flight?

Wings function as an airfoil – a curved surface which produces lift when air passes over it, and minimizes turbulence of airflow behind it

What happens to air that passes over a birds wing?

When air encounters something in its way, such as a wing, it must move around it.

There are two paths around the wing: over it and under it.

These two paths are not the same – the path over the top of the wing is **longer** than the path under the wing.

What happens to air that passes over a birds wing?

The air on top of the wing must move faster than the air below the wing

This difference in speeds results in a lowering of the air pressure above the wing, by

Bernoulli's Principle

What happens to air that passes over a birds wing?

The air on top of the wing must move faster than the air below the wing

This difference in speeds results in a lowering of the air pressure above the wing, by

Bernoulli's Principle the greater the velocity of a fluid, the less pressure it exerts

The difference in pressures above and below the wing result in LIFT!

What happens to air that passes over a birds wing?

Some of the air striking the wing is deflected at a 90 degree angle from the wing.

What happens to air that passes over a birds wing?

This mean that the AIR is deflected DOWN, while the WING is deflected UP!

This generates LIFT via

Newton's Third Law of Motion

What happens to air that passes over a birds wing?

Air deflected above the wing leaves a gap of air above the wing – LOW P
Air deflected below the wing piles up – HIGH PRESSURE

What happens to air that passes over a birds wing?

Air is deflected by the leading edge of the wing.

The difference in pressures above and below the wing creates LIFT

Bernoulli vs. Newton

So, what really generates lift?

Bernoulli vs. Newton

So, what really generates lift? Well...

Differential pressure creates lift!

The reaction force from air hitting the wing creates lift!

Bernoulli's principle describes the conservation of energy as air flows around a wing

Newton's laws describe the conservation of momentum

In physics, we also need to conserve mass ...

Bernoulli vs. Newton Navier-Stokes

Continuity:
$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho w)}{\partial z} = 0$$

X - Momentum:
$$\frac{\partial(\rho u)}{\partial t} + \frac{\partial(\rho u^2)}{\partial x} + \frac{\partial(\rho uv)}{\partial y} + \frac{\partial(\rho uv)}{\partial z} = -\frac{\partial p}{\partial x} + \frac{1}{Re_r} \left| \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} \right|$$

Y - Momentum:
$$\frac{\partial(\rho v)}{\partial t} + \frac{\partial(\rho u v)}{\partial x} + \frac{\partial(\rho v^2)}{\partial y} + \frac{\partial(\rho v w)}{\partial z} = -\frac{\partial p}{\partial y} + \frac{1}{Re_r} \left[\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{yz}}{\partial z} \right]$$

Z - Momentum
$$\frac{\partial(\rho_w)}{\partial t} + \frac{\partial(\rho_{uw})}{\partial x} + \frac{\partial(\rho_{uw})}{\partial y} + \frac{\partial(\rho_{uw})}{\partial z} = -\frac{\partial\rho}{\partial z} + \frac{1}{Re_r} \left[\frac{\partial\tau_{xz}}{\partial x} + \frac{\partial\tau_{yz}}{\partial y} + \frac{\partial\tau_{zz}}{\partial z} \right]$$

Energy:

$$\begin{split} \frac{\partial (E_T)}{\partial t} + \frac{\partial (uE_T)}{\partial x} + \frac{\partial (vE_T)}{\partial y} + \frac{\partial (wE_T)}{\partial z} &= -\frac{\partial (up)}{\partial x} - \frac{\partial (vp)}{\partial y} - \frac{\partial (wp)}{\partial z} - \frac{1}{Re_r Pr_r} \left[\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} + \frac{\partial q_z}{\partial z} \right] \\ &+ \frac{1}{Re_r} \left[\frac{\partial}{\partial x} (u \, \tau_{xx} + v \, \tau_{xy} + w \, \tau_{xz}) + \frac{\partial}{\partial y} (u \, \tau_{xy} + v \, \tau_{yy} + w \, \tau_{yz}) + \frac{\partial}{\partial z} (u \, \tau_{xz} + v \, \tau_{yz} + w \, \tau_{zz}) \right] \end{split}$$

So, even though we don't know the exact mechanism by which lift is generated, we can still achieve flight!

George Stokes

Claude-Louis Navier

How much lift is generated by the wings?

It depends on how much air is deflected, the more air that is deflected downwards, the more lift is generated.

More wing area = more lift

Lift α Area

 $L \alpha A$

Figure 5-14

Ornithology, Third Edition

© 2007 W.H. Freeman and Company

How much lift is generated by the wings?

It also depends on how fast the airspeed over the wings is.

Lift is proportional to velocity squared L α v²

Thus, if the airspeed is twice as fast, you generate **four times** the lift!

Concept-test:

Two birds, an african and a european swallow (both unladen), begin their spring migration. If the african swallow has only half the wing area of the european swallow, but flies twice as fast, which swallow generates the most lift? Assume the swallows are the same weight.

- a. The european swallow, b/c it has twice the wing area
- b. The african swallow, b/c it flies twice as fast
- c. They generate the same amount of lift

Concept-test:

Two birds, an african and a european swallow (both unladen), begin their spring migration. If the african swallow has only half the wing area of the european swallow, but flies twice as fast, which swallow generates the most lift? Assume the swallows are the same weight.

- a. The european swallow, b/c it has twice the wing area
- b. The african swallow, b/c it flies twice as fast
- c. They generate the same amount of lift

 $L \sim Av^2$

The Physics of Flight

Now imagine a bird in level flight at a constant speed

Drag is the resistance of air to movement of an object through it

Resistance is such a drag

Air striking the wing also produces DRAG, or resistance to the

forward motion of the wing.

More air hits the wing when the AREA is larger or

More air hits the wing when the VELOCITY is higher

Drag α Av²

Angle of Attack

Lift and Drag also depend on the orientation of the wing to the airflow – or the angle of attack

Lift and Drag do not depend on AA in the same way

Angle of Attack

Lift and Drag also depend on the orientation of the wing to the airflow – or the angle of attack

When AA is greater than about 15, drag >> lift, and the bird STALLS

Force Body Diagram revisited

So now we have some expressions for weight, lift and drag.

Thrust is the force which propels a bird forwards through the air

Airplanes generate thrust with engines – how do birds do it? Flapping!

Generates Power

Recovery Stroke

DOWNSTROKE - air collides with the underside of the wing

DOWNSTROKE - air collides with the underside of the wing

DOWNSTROKE - air collides with the underside of the wing

Just as pushing water backwards with a canoe paddle propels the canoe forwards, the downstroke of the wing propels the bird forwards through the air.

UPSTROKE – for most birds, and in slow flight, this is a "recovery" stroke, where no forces are generated...

Except DRAG

To reduce drag:

Wings are partially folded

The primaries are held apart

Thrust generates airspeed, which effects both lift and drag.

When airspeed is low Lift is very small

When airspeed is high Drag is very big

It is easiest for birds to fly at intermediate speeds of 30-60 kmph (or 19-37 mph).

Thrust generates airspeed, which effects both lift and drag.

When airspeed is low Lift is very small

When airspeed is high Drag is very big

It is easiest for birds to fly at intermediate speeds of 30-60 kmph (or 19-37 mph).

To fly faster, birds don't flap more quickly – this would create too much turbulence

Instead, they increase the depth of each stroke!

Turbulence

Turbulence is the loss of smooth flow in a fluid or air

Can be generated by a steep angle of attack,

Or by flapping

Vee-formation – reduces and utilizes turbulence

Alula can control turbulence over the top of the wing

Turbulence

Turbulence can also be used to generate extra lift!

Air moves from areas of high pressure to areas of low pressure

This creates a rising mass of air along the wingtips of the bird

By flying at the wingtips of a preceding bird, that extra lift can be used to save energy!

Concept-test:

Assuming that they could breathe,

would birds be able to fly (i.e. powered, directional flight) in space??

Concept-test:

Assuming that they could breathe,

would birds be able to fly (i.e. powered, directional flight) in space??

NO!

Birds generate lift and thrust by moving and deflecting air masses with their wings. In the vaccuum of space, birds wouldn't be able to generate these forces.

How much weight must the wings support?

Wing loading = body mass / wing area Birds vary from ~ 3 g/cm2 to 0.1 g/cm2

if wing loading is low, gliding is possible

How much weight must the wings support?

Wing loading = body mass / wing area

Birds vary from ~ 3 g/cm2 to 0.1 g/cm2

As wing loading increases....

How much weight must the wings support?

Wing loading = body mass / wing area Birds vary from ~ 3 g/cm2 to 0.1 g/cm2

As wing loading increases....

How much weight must the wings support?

Wing loading = body mass / wing area

Birds vary from ~ 3 g/cm2 to 0.1 g/cm2

As wing loading increases....

Lift is more difficult to generate, especially at low speeds

How much weight must the wings support?

Wing loading = body mass / wing area

Birds vary from ~ 3 g/cm2 to 0.1 g/cm2

Species with high wing loading tend to be powerful short distance fliers, and need a lot of speed to take off.

Loons (Gaviidae) Fowl (Galliformes) Alcids (Alcidae)

Aspect Ratio = wing length / wing width

it measures the relative amount of lift and drag produced by the wing.

Length >> Width

High aspect ratio = high lift to drag ratio

Length ~ Width

Low aspect ratio = low lift to drag ratio

Aspect Ratio = wing length / wing width

Birds with a high aspect ratio are good gliders and soarers, but they have poor agility, and poor take-off power

Figure 5-14
Ornithology, Third Edition
© 2007 W. H. Freeman and Company

- Soaring or gliding
 - Some of the lift is generated by rising air masses
 - Without thrust, drag decreases v, which decreases lift at a predictable rate – this is how gliders work

Figure 5-7
Ornithology, Third Edition
© 2007 W. H. Freeman and Company

- Soaring or gliding
 - Critical to migration of raptors
 - Long distance, slow migration, with minimal energy

- Flapping
 - The downstroke deflects air backwards and down, generating lift and thrust.
 - How do birds maintain control while they fly?

Warrick et al. 2002

Hummingbirds

Ability to completely rotate the wing allows for different combinations of lift and thrust, resulting in the following types of flight

Forward 26 miles per hour (top speed)

Hovering

Forward 8.6 miles per hour

Backward flight

- Hovering
 - Must generate lift on both the down and upstrokes
 - Extremely taxing to the bird,
 very few are true hoverers

Physics and Conservation

The Marbled Murrelet (Alcidae)

mass ~ 220 g

wing area ~ 75 cm²

Compare to Mourning Dove mass ~ 130 g
wing area ~ 257 cm²

High wing loading, and feet positioned for diving

MAMU stats from Elliott et al. Can. J. Zoo 2004, and The Birds of North America

Physics and Conservation

The Marbled Murrelet (Alcidae)

Cannot take off unless it is in the water or at a significant height.

On the ground it will walk to a suitable takeoff site, and has been known to nest very rarely on the ground – usually on a cliff edge.

Concept-test

Two diurnal raptors (Falconiformes) have equal wing areas. The Peregrine Falcon (family Falconidae) has a higher body mass, but also a higher aspect ratio than the Gray Hawk (family Acciptridae). What can't you say about the flying ability of these two birds?

- a. The Gray Hawk has lower wing-loading, so it should fly with more flapping
- b. The Peregrine Falcon has a higher aspect ratio, so it should be a better glider
- c. The Gray Hawk has a lower aspect ratio, so it should be able to maneuver better in the forest

Concept-test

Two diurnal raptors (Falconiformes) have equal wing areas. The Peregrine Falcon (family Falconidae) has a higher body mass, but also a higher aspect ratio than the Gray Hawk (family Acciptridae). Which statement about the flying ability of these birds is wrong?

- The Gray Hawk has lower wing-loading, so it should fly with more flapping
- b. The Peregrine Falcon has a higher aspect ratio, so it should be a better glider
- c. The Gray Hawk has a lower aspect ratio, so it should be able to maneuver better in the forest