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Drosophila melanogaster is emerging as a valuable genetic model
system for the study of mental retardation (MR). MR genes are remarkably
similar between humans and fruit flies. Cognitive behavioral assays can
detect reductions in learning and memory in flies with mutations in MR
genes. Neuroanatomical methods, including some at single-neuron resolu-
tion, are helping to reveal the cellular bases of faulty brain development
caused by MR gene mutations. Drosophila fragile X mental retardation 1
(dfmr1) is the fly counterpart of the human gene whose malfunction causes
fragile X syndrome. Research on the fly gene is leading the field in molecular
mechanisms of the gene product’s biological function and in pharmacolog-
ical rescue of brain and behavioral phenotypes. Future work holds the
promise of using genetic pathway analysis and primary neuronal culture
methods in Drosophila as tools for drug discovery for a wide range of MR
and related disorders. © 2005 Wiley-Liss, Inc.
MRDD Research Reviews 2005;11:286–294.
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The past decade has produced a dramatic rise in publica-
tions revealing genetic and molecular mechanisms of
mental retardation (MR). Nonetheless, MR remains the

most common medical condition for which no specific drug
treatments are available. In contrast, disorders with similar prev-
alence, such as heart failure and schizophrenia, stimulate vigor-
ous drug discovery and development efforts in the academic and
pharmaceutical sectors [Scatton and Sanger, 2000; Tang and
Francis, 2003]. At the present time, three major factors represent
obstacles to thinking of MR as treatable in the pharmacological
sense. For each obstacle, the Drosophila melanogaster genetic
model system offers valuable strategies for overcoming the chal-
lenge. First, MR disorders have diverse environmental and
hereditary etiologies, diagnostic criteria vary among clinicians,
and MR is often associated with other neurological manifesta-
tions [Hodapp and Dykens, 2005]. This might lead one to the
pessimistic, but premature conclusion that hundreds of different
drugs would be needed to treat cognitive dysfunction in the
majority of MR patients. Second, in most cases, there is limited
understanding of how neuronal phenotypes, if they are known
at all, disrupt functional brain circuitry and thereby diminish
MR patients’ cognitive capacities. Third, standard bioassays,

such as proliferation, apoptosis, and biochemical tests on tumor
cell lines for screening potential anticancer agents, are just be-
ginning to be developed for MR disorders [Bourtchouladze et
al., 2003]. This article will summarize published studies from the
Drosophila system relevant to the biology of MR and present
arguments for its expanded use as a step toward therapeutic drug
screening in mammals.

RATIONALE FOR STUDYING MR
IN DROSOPHILA

One might wonder, “How would you recognize a men-
tally retarded fruit fly?” Cognitive functions can be measured in
insects, and deviations from normal, whether due to hereditary
or environmental factors, can be quantified. Drosophila manifest
a wide range of experience-dependent behaviors. This behav-
ioral plasticity has been used both to identify and to characterize
genetic mutants, starting with the pioneering work of Seymour
Benzer and colleagues [Dudai et al., 1976; Greenspan, 1995].
Molecular analysis of these genes has revealed that mechanisms
of learning and memory are shared between vertebrates and
invertebrates [Mayford and Kandel, 1999].

At the simple end of the behavioral spectrum, wild-type
Drosophila habituate to sensory stimuli [Engel and Wu, 1996;
Cho et al., 2004]. In addition, they can learn associations across
sensory modalities and remember them for varying amounts of
time depending on the nature and duration of the training
[Connolly and Tully, 1998]. For example, flies learn to avoid an
odor that has been paired with electric shock (classical olfactory
conditioning) or a spatial location where they were exposed to
a noxious heat stimulus (operant place learning). When the task
is made more complex by the addition of irrelevant sensory
stimuli, flies can still learn the relevant predictive cue [Liu et al.,
1999]. In an even more complex form of behavioral plasticity,
when the sexual advances of a male fruit fly are rebuffed by a
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nonreceptive female, the male responds
with a prolonged reduction in his court-
ship activity (courtship conditioning)
[Tompkins et al., 1983; Mehren et al.,
2004].

For each task a fly can learn, the level
of initial learning and its retention during
specific phases of memory, including short-
and long-term, are differentially affected by
single-gene mutations [Dubnau and Tully,
1998]. Moreover, different forms of learn-
ing and memory require different brain
structures [Heisenberg, 2003]. Hence,
while we do not know whether natural
populations of fruit flies include “men-
tally retarded” individuals, scientists can
identify flies in the laboratory that have
specific, quantifiable cognitive impair-
ments and these are likely to result from
distinct biochemical and neuroanatomi-
cal mechanisms.

Despite the hundreds of millions of
years of evolutionary distance that sepa-
rate Homo sapiens and Drosophila melano-
gaster, MR-associated molecules are re-
markably well conserved between the
two species. In a recent comparative se-
quence analysis of nearly 300 molecularly
identified human MR genes, we found
that 87% have a highly similar relative in
Drosophila [Inlow and Restifo, 2004].
This percentage is higher than previous
reports that used the same sequence-sim-
ilarity criteria to compare Drosophila
genes and human disease genes of diverse
types [Fortini et al., 2000; Reiter et al.,
2001]. Furthermore, the extent and type
of amino acid sequence similarity be-
tween the human MR genes and their
fruit fly counterparts were sufficient in
76% to suggest that they have similar
biological functions in the two species
[Inlow and Restifo, 2004]. The best-
characterized Drosophila MR gene coun-
terpart is Drosophila fragile X mental retar-
dation 1 (dfmr1), mutations of which

cause a syndrome of behavioral and cog-
nitive deficits, neuroanatomical abnor-
malities, and male sterility (discussed be-
low).

Five of the fruit fly counterparts of
human MR genes are already known to
be essential for normal learning and
memory (Table 1). In two cases (FLNA/
cheerio and RSK2/rsk; nomenclature is
presented throughout as human gene ab-
breviation/fly gene abbreviation [see Inlow
and Restifo, 2004, for additional infor-
mation regarding the similarities between
the human and fly genes]), the genes
were identified in traditional unbiased
screens for behavioral phenotypes due
to loss-of-function mutations [Dubnau
et al., 2003; Putz et al., 2004]. In the
other cases, gain-of-function mutations
(GNAS1/Gs�60A) or loss-of-function
mutations (NF1/Nf1 and Fmr1/dfmr1)
were created or selected because of an
interest in a specific gene and then tested
for their behavioral consequences [Con-
nolly et al., 1996; Guo et al., 2000;
McBride et al., 2005]. As noted in Table
1, several different learning-and-memory
paradigms were used to demonstrate def-
icits in the Drosophila mutants. In the one
case for which mutants of the same gene
were subjected to more than one type of
test (RSK2/rsk), deficits were seen in
both types [Putz et al., 2004]. Taken
together, the data demonstrate that these
Drosophila mutants are cognitively im-
paired and, even without a systematic
scheme for measuring performance across
the full spectrum of fruit fly abilities (i.e.,
a Drosophila “intelligence quotient test”),
it is reasonable to consider the five genes
involved to be “Drosophila MR genes.”
Furthermore, given the known neuro-
logical phenotypes of other MR gene
counterparts in Drosophila [Inlow and
Restifo, 2004 and references therein], it
is easy to predict that many more human

MR genes will eventually be shown to
have conserved cognitive functions in
fruit flies.

New MR genes are being pub-
lished at a rate of one to three per month,
but hundreds more remain to be identi-
fied [Inlow and Restifo, 2004]. Increas-
ingly effective gene-mapping methods, as
well as candidate-gene approaches, are in
use to achieve these goals [Ropers and
Hamel, 2005]. Morley and Montgomery
[2001] proposed human counterparts of
Drosophila learning or memory genes as
candidates for genes affecting human
cognition. Given the examples in Table
1, one could easily propose that all entries
on the rapidly expanding list of fly learn-
ing and memory genes [Roman and
Davis, 2001; Waddell and Quinn, 2001;
Dubnau et al., 2003] should be consid-
ered MR gene candidates.

POWER AND POTENTIAL OF
THE FLY GENETICS TOOLBOX

The experimental power and so-
phistication of the Drosophila genetic sys-
tem has been detailed elsewhere [Green-
span, 1997; Sullivan et al., 2000], but
several features with special relevance to
developmental brain disorders warrant
mention here. First, phenotypic analysis
of developmental mutations is easier than
in mammals. Because Drosophila are not
viviparous, developmental phenotypes of
lethal mutants are more accessible. These
phenotypes provide clues to gene func-
tion that are unsuspected in hereditary
disorders that cause human fetuses to die
early in gestation. In addition, one can
create a series of mutant alleles with a
spectrum of severities to study the con-
sequences of varying levels of residual
gene function. Extremely clever meth-
ods, with origins in yeast genetics, allow
the revelation of cell-autonomous neu-
ronal phenotypes, at very high resolu-

Table 1. Drosophila Mental Retardation Genesa

Human Gene
(OMIM #) Clinical Disorder (OMIM #) Fly Gene Fly Phenotype Affects References

FLNA (300017) Periventricular heterotopia
(300049)

cheerio LT memory (classical associa-
tive learning)

Dubnau et al. [2003]

FMRI (309550) Fragile X syndrome (309550) dfmrl ST memory (courtship con-
ditioning)

McBride et al.
[2005]

GNASI (139320) Albright hereditary osteodystrophy
(103580)

G protein s�60A Learning (classical associative) Connolly et al.
[1996]

NFI (162200) Neurofibromatosis 1b (162200) Neurofibromin 1 Learning and ST memory
(classical)

Guo et al. [2000]

RSK2 (300075) Coffin-Lowry s.; MRX19
(303600)

rsk (S6KII) Learning (associative: operant
and classical)

Putz et al. [2004]

as., syndrome; LT, long-term; ST, short-term.
bThe cognitive deficits of NFI patients may result in part from interactions between NFI and adjacent genes [Venturin et al. 2004].

287MRDD RESEARCH REVIEWS ● MENTAL RETARDATION GENES IN DROSOPHILA ● RESTIFO



tion, in single-cell mutant clones [Lee
and Luo, 1999]. The relative simplicity
of the Drosophila genome often permits
single counterparts of a mammalian gene
family to be studied without the compli-
cations of genetic redundancy that result
from duplications that occurred during
vertebrate evolution [Holland et al.,
1994; Durand, 2003]. For example, un-
like the three closely related Fmr1 genes
in mammals, only one is present in Dro-
sophila [Wan et al., 2000]. On the other
hand, one can not assume that the single
fly gene’s function represents the sum of
the multiple mammalian genes’ func-
tions.

Second, the ability to regulate gene
expression in time and space using trans-
genic Drosophila [McGuire et al., 2004]
offers an important means of determining
when and where a gene is acting to pro-
mote cognitive function—which has ma-
jor implications for therapeutic interven-
tion strategies. If transgenic rescue of a
mutant fly with a wild-type allele is suc-
cessful only when the transgene is active
during development, then that gene is
critical for functional brain asssembly but
is not necessarily required in the mature
animal for synaptic plasticity. Conversely,
if mutant performance can be enhanced
by providing the wild-type protein
acutely before behavioral testing, that
would indicate that the gene serves on-
going functions during adulthood. For
example, the learning deficits of Drosoph-
ila Nf1 mutants can be rescued by induc-
ing expression of wild-type Nf1 in the
adult, suggesting that Nf1 function dur-
ing development is not essential for adult
learning [Guo et al., 2000]. Similar dis-
tinctions can be made when determining
the critical period for the cognition-im-
pairing effects of dominant gain-of-func-
tion mutations. In addition, RNA inter-
ference methods can be used to induce a
loss-of-function condition at specific
times [e.g., Lam and Thummel, 2000] to
determine the consequences of acutely
eliminating a gene product in an other-
wise normal animal.

Third, Drosophila genetics can be
used to identify members of metabolic,
regulatory, or signaling pathways. This
results from a basic principle that muta-
tions in genes that are members of the
same biological pathway often share phe-
notypes. The pathway concept is impor-
tant in part because, when an individual
human gene has a counterpart in Dro-
sophila, other members of its pathway
often do as well. For instance, MR is a
consequence of mutations in over a
dozen genes involved in protein glyco-
sylation, all of which have fruit fly coun-

terparts [see Appendix of Inlow and Res-
tifo, 2004]. Furthermore, pathways tend
to intersect or converge, especially as sig-
nals are transmitted from the cell surface
to regulators of enzyme activity or gene
expression. For example, mutations in
several highly conserved genes of the
Rho-type small-G-protein signaling
cascade (OPHN1/Graf; GDI1/Gdi;
ARHGEF6/rtGEF) cause isolated MR
[Ramakers, 2002]. Downstream of this
pathway lies the previously mentioned
MR gene RSK2 (see Table 1) whose
gene product phosphorylates the tran-
scription factor CREB (a keystone of
mammalian and invertebrate learning
[Mayford and Kandel, 1999]), whose
partners include CREB binding protein
(CBP), product of the Rubinstein-Taybi
syndrome MR gene (CREBBP/nejire).
Genetic screens in Drosophila can reveal
previously unknown members of a path-

way and cross-pathway relationships, for
instance by identifying new mutations
causing synergistic enhancement or sup-
pression of a phenotype [Bonini, 2000].
Drosophila CBP is an important regulator
of the hedgehog pathway [Akimaru et
al., 1997], whose vertebrate counterparts
include several MR genes (SHH/hedge-
hog; PTCH/patched; GLI3/cubitus inter-
ruptus; ZIC2/oddpaired), which suggests a
connection between CBP and SHH
pathways in mammals that could be rel-
evant to MR. Why do these pathway
relationships matter? For the simple but
powerful reason that a drug that acts on a
well-placed pharmacological target could
provide effective treatment for disorders
resulting from mutations of many differ-
ent genes throughout one complex path-
way.

Fourth, the Drosophila system could
also be applied to environmental causes
of MR, in particular pre- or perinatal
exposure to neurotoxic drugs of abuse

that alter brain development [Stanwood
and Levitt, 2004]. Adult fruit flies re-
spond to cocaine and ethanol in time-
and dose-dependent ways that are remi-
niscent of mammalian responses, includ-
ing behavioral intoxication, sensitization,
and tolerance, and the genetic control of
these responses is beginning to be eluci-
dated [McClung and Hirsh, 1998;
Guarnieri and Heberlein, 2003]. Extend-
ing genetic studies in Drosophila to the
neurodevelopmental effects of ethanol
and cocaine could suggest treatment
strategies for acquired as well as heredi-
tary MR. There is already one demon-
stration of a link, albeit a complex one,
between the genetics of ethanol tolerance
and the genetics of cognition in Drosoph-
ila. Mutations of a neuropeptide-encod-
ing gene were independently identified
in screens for memory deficits (amnesiac
alleles) and for enhanced ethanol sensi-
tivity (the cheapdate allele) [Quinn et al.,
1979; Feany and Quinn, 1995; Moore et
al., 1998]. The neuropeptide appears to
have both developmental and adult func-
tions because ethanol hypersensitivity
could be rescued by providing the wild-
type gene to adults [Moore et al., 1998],
whereas rescue of the memory pheno-
type required wild-type gene expression
during development [DeZazzo et al.,
1999].

Finally, and perhaps most impor-
tant, enthusiasm for using Drosophila in
the study of MR is bolstered by the re-
cent development of fly models of neu-
rodegenerative disorders and successful
drug treatment to normalize behavioral
and anatomical phenotypes [Bonini and
Fortini, 2003]. Drosophila models of Par-
kinson’s disease include both transgenic
flies expressing �-synuclein with a human
disease-associated dominant mutation
[Feany and Bender, 2000], as well as
wild-type flies exposed to the pesticide
rotenone [Coulom and Birman, 2004].
In the former case, as in humans with
familial Parkinson’s disease, mutant
�-Synuclein protein aggregates within
dopaminergic brain neurons, causing
adult-onset degeneration and locomotor
abnormalities [Feany and Bender, 2000].
Overexpression of Parkin protein sup-
presses �-Synuclein–induced neurode-
generation in both cultured mammalian
neurons and mutant flies [Petrucelli et al.,
2002; Haywood and Staveley, 2004]. In
addition, geldanamycin, a modulator of
stress-response pathways, prevents age-
dependent dopaminergic cell loss in these
�-synuclein transgenic flies [Auluck and
Bonini, 2002].

Equally compelling data come
from the Drosophila model of Hunting-

. . . the Drosophila
system could also be

applied to environmental
causes of MR, in
particular pre- or

perinatal exposure to
neurotoxic drugs of

abuse . . .
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ton’s disease (HD), created by expression
of human mutant Huntingtin protein
with a polyglutamine-tract expansion,
which causes repeat-length–dependent
neuronal degeneration [Jackson et al.,
1998]. Three biochemical approaches to
modulating HD pathology have similar
beneficial effects in rodent and Drosophila
models [Steffan et al., 2001; Hockly et
al., 2003; Ravikumar et al., 2004; Steffan
et al., 2004]. In addition, the fly system
has begun to suggest new pharmacolog-
ical strategies and specific chemical com-
pounds that could ultimately yield effec-
tive treatments for neurodegenerative
diseases in humans [Auluck and Bonini,
2002; Auluck et al., 2002; Kazantsev et
al., 2002].

CASE IN POINT: DROSOPHILA
FRAGILE X MENTAL
RETARDATION 1 (dfmr1)

Fragile X syndrome (FXS), a very
common MR disorder with cytogenetic
and neurodevelopmental manifestations,
was covered in detail in a recent dedi-
cated issue of this journal edited by Crnic
and Hagerman [see MRDDRR volume
10, issue 1, 2004]. FXS patients have
loss-of-function mutations of Fmr1,
which causes a distinctive profile of cog-
nitive deficits of varying severity, along
with enlarged testes, characteristic facies,
and, in some patients, other neurological
features such as autism, epilepsy, and dis-
ordered sleep [Hagerman, 2002; Cornish
et al., 2004]. Evidence from both mam-
malian and fly systems strongly supports a
working model in which FMRP’s pri-
mary neuronal function is selective RNA
binding and transport to dendrites, for
the purpose of translational control—
mainly repression—of specific proteins
in a synaptic activity–dependent manner
[Darnell et al., 2004; Willemsen et al.,
2004]. This would put FMRP, and lo-
calized translation, at the center of syn-
aptic plasticity mechanisms in both de-
veloping and mature animals.

Activation of metabotropic gluta-
mate receptors (mGluR), specifically the
Gp1 class, regulates FMRP localization
and perisynaptic translation [Weiler et al.,
1997, 2004; Todd et al., 2003; Antar et
al., 2004]. In addition, mGluR-mediated
long-term depression at hippocampal
synapses is increased in Fmr1 mutant mice
[Huber et al., 2002]. These observations
have led to the proposal that FXS neu-
robehavioral manifestations result from
excessive mGluR signaling [Bear et al.,
2004], which suggests that Gp1 mGluR
antagonists could provide effective treat-
ment for the disorder.

The Drosophila gene product,
dFMRP, is very similar in sequence and
domain organization to its mammalian
counterparts, with �70% amino acid
identity in the RNA-binding KH do-
mains and ribosome-interaction domain
[Wan et al., 2000]. It is found throughout
the central nervous system (CNS) and
peripheral nervous system (PNS) of de-
veloping and mature animals, primarily
in the cytoplasm of (probably all) neuro-
nal somata [Zhang et al., 2001; Morales
et al., 2002; Lee et al., 2003; Pan et al.,
2004], but not in glia. Immunoelectron
microscopy localization methods would
be required to rule out small amounts of
dFMRP in neuronal nuclei or near
postsynaptic sites, as was found in mam-
mals [Feng et al., 1997].

The neurological phenotypes of
dfmr1 mutants include behavioral
and cognitive deficits. The most com-
pelling of these, in terms of comparison
to human FXS, is very rapid memory loss
in the courtship conditioning assay, re-
cently reported by McBride and Jongens
and their colleagues. After rejection by an
unreceptive female during a 1-hour
training period, mutant males reduce
their courtship activity to the same de-
gree as do wild-type males, demostrating
intact learning [McBride et al., 2005].
However, within minutes thereafter, the
mutants resume courtship at their prior
baseline level, revealing a profound
short-term memory deficit. This inability
to suppress a behavior might also repre-
sent a form of perseveration. Short-term
memory for complex tasks is one of the
specific weaknesses of the human FXS
cognitive profile [Cornish et al., 2004].
In addition, lack of behavioral inhibition,
which often results in perseveration, has
been proposed as a fundamental under-
lying deficit in FXS [Cornish et al.,
2004]. Because dfmr1 mutant perfor-
mance on other tasks has not yet been
reported, it is too early to conclude any-
thing about the scope and specificity of
the cognitive deficit. Nonetheless, the
nature of the memory deficit in the fly
mutants suggests a qualitative overlap
with FXS patients’ cognitive weaknesses.
Another major recent advance has been
the pharmacological rescue of the dfmr1
memory deficit by treatment with
mGluR antagonists [McBride et al.,
2005], discussed below.

Drosophila dfmr1 mutants also have
circadian rhythm defects, notably poor
rhythmicity of locomotor behavior. Be-
cause the eclosion of the locomotor
rhythm is intact, (the emergence of the
adult fly from its protective cocoon-like
structure at the end of metamorphosis)

the locomotor rhythm defect reflects ab-
normal output of the circadian clock
rather than a broken central oscillator
[Dockendorff et al., 2002; Inoue et al.,
2002; Morales et al., 2002]. This pheno-
type is reminiscent of the aberrant sleep
patterns and elevated melatonin levels
found in FXS males [Gould et al., 2000].
Finally, “courtship interest” is reduced in
dfmr1 mutant males [Dockendorff et al.,
2002], but the residual level can still be
reduced further by courtship condition-
ing [McBride et al., 2005]. As with the
memory defect, courtship interest was
restored by mGluR blockade during de-
velopment or adulthood, whereas the ac-
tivity rhythm phenotype was not
[McBride et al., 2005].

In humans, Fmr1 mutations do not
cause major disruptions in brain struc-
ture, although modest quantitative
changes have been noted by magnetic
resonance imaging (MRI) in some re-
gions and these changes correlate with
cognitive deficits [Hessl et al., 2004].
However, at the single-neuron level (us-
ing the Golgi impregnation technique on
postmortem brain tissue), cortical neu-
rons in several regions have abnormal
dendrites, with spines showing excessive
numbers and length [Rudelli et al., 1985;
Hinton et al., 1991; Wisniewski et al.,
1991; Irwin et al., 2001]. Similar studies
in the Fmr1 mutant mouse confirmed
these findings, as well as excessive den-
dritic branching [Comery et al., 1997;
Irwin et al., 2002; Galvez et al., 2003].
Given that spines are postsynaptic sites
and that dendrites undergo complex al-
terations during development [Cline,
2001], it is not surprising that a “sub-
tle” morphological change would cause
serious functional consequences. The
abnormal spine appearance has been in-
terpreted as immaturity or stalled de-
velopment, possibly due to insufficient
pruning [reviewed in Beckel-Mitch-
ener and Greenough, 2004], but it may
reflect synaptic loss [Bear et al., 2004].
Moreover, real-time analyses of GFP-
labeled cortical neurons of Fmr1 mu-
tant mice are more consistent with ab-
normal timing and speed of dendritic
development [Nimchinksy et al.,
2001], suggesting that this issue needs
further investigation. Note that neither
axonal projection patterns nor axon
terminal-arbor morphology has been
examined in Fmr1 mutant mammals.

The cellular neural phenotypes
of dfmr1 mutant flies are qualitatively
similar to the mammalian ones, with a
common—but not universal—theme of
dendritic and axonal overgrowth in CNS
and PNS, as well as pathfinding errors
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[Zhang et al., 2001; Dockendorff et al.,
2002; Morales et al., 2002; Lee et al.,
2003; Michel et al., 2004; Pan et al.,
2004]. The only neurons for which both
axonal and dendritic morphologies have
been examined in dfmr1 mutants are
those of the mushroom bodies, a brain
region well known for its role in many
forms of associative learning and memory
[Zars, 2000; Roman and Davis, 2001;
Heisenberg, 2003]. Carlos Michel and
Robert Kraft in my lab found a specific
developmental defect during the meta-
morphic transition [Michel et al., 2004],
when hundreds of mushroom body �/�
neurons are born and differentiate [Lee et
al., 1999]. Wild-type �/� axons bifur-
cate at right angles and project into ver-
tical (�) and medial (�) lobes. In dfmr1
mutants, axons project into the lobes at
the appropriate developmental stage but,
as they approach the midline, they fail to
detect or to obey a “stop ” signal [Michel
et al., 2004]. Rather, they continue
growing into the contralateral hemi-
sphere, resulting in the appearance of
�-lobe midline fusion, observable by
confocal microscopy with appropriate
fluorescent markers (Fig. 1). Three lines
of evidence from other labs suggest that
this mushroom body phenotype is the
cause, at least in part, of the above-men-
tioned memory deficit. First, prevention
of mushroom body development results
in poor courtship conditioning memory
[McBride et al., 1999]. Second, the Dro-
sophila memory mutant linotte has the
same mushroom body phenotype [Mo-
reau-Fauvarque et al., 1998]. Third, the
�/� lobes are required for memory re-
trieval [McGuire et al., 2001].

How severe is �-lobe fusion in a
fly relative to mammalian brain defects?

Given the differences in absolute size and
structural organization between mamma-
lian and insect brains, the comparison is
difficult. Nonetheless, roughly speaking,
the � lobes are comparable to a large
bilaterally symmetric pair of axon tracts
that can be visualized by MRI or histo-
logical staining, e.g., the internal capsule.
In other words, if FXS brains had a defect
comparable to �-lobe fusion, it would be
relatively easy to detect without mor-
phometric analysis. This, along with the
other neuronal phenotypes (see below),
suggests that dfmr1 mutants are neurolog-
ically more severely affected than are hu-
man or mouse Fmr1 mutants.

Pan and colleagues [2004] used ge-
netic techniques to create mosaic Dro-
sophila in which single mushroom body
neurons were dfmr1 mutant and sur-
rounded by wild-type brain tissue. The
mutant neurons had excessive and disor-
dered branching of axons and dendrites.
Conversely, overexpression of wild-type
dfmr1 in mushroom body neurons re-
duced dendritic and axonal complexity
to less than those of wildtype [Pan et al.,
2004]. These data provide strong evi-
dence that dfmr1 normally functions to
limit the exuberance of axonal and den-
dritic branching, consistent with earlier
observations in the PNS (see below).
However, there is an important caveat
when interpreting phenotypes in such
mosaic animals, exemplified by the re-
port that single-neuron dfmr1 mutant
clones in the � lobes do not show mid-
line crossing [Pan et al., 2004]. This dis-
crepancy provides an important clue,
suggesting that the whole-brain mutant
phenotype [Michel et al., 2004] is not-
cell-autonomous, but rather results from
cell–cell interaction. The cell-autonomy

issue has broader implications, for instance,
for understanding the phenotypic variation
of many X-linked MR disorders in het-
erozygous human females, whose brains are
mosaic due to X-chromosome inactivation
[e.g., Braunschweig et al., 2004]. Further-
more, while it is tempting to assume that
mushroom body neuron dendrites and
axons have excessive branching in
whole-animal dfmr1 mutants, it would be
prudent to determine their structure di-
rectly by using Golgi or another high-
resolution method.

Elsewhere in the brains of dfmr1
mutants, neurite extension defects were
seen in DC neurons, which are impor-
tant for emergence of the adult after
metamorphosis, and in the circadian-
pacemaker LNv neurons [Morales et al.,
2002]. Both types of neurons also
showed pathfinding or projection errors,
but their phenotypes differed in that DC
neurons frequently showed reduced axon
extension and ectopic branching, while
the LNv neurons showed axon overex-
tension but only rarely [Morales et al.,
2002]. Given the complexity of CNS
anatomy, the presence of phenotypes af-
fecting many neuron types and the ap-
parently nonautonomous behavior of
�/� axons at the midline raise the non-
trivial question of which phenotypes are
primary and which are secondary to
other defects.

In the PNS of dfmr1 mutant larvae,
axon terminals at the neuromuscular
junction are larger than normal, with
similar increases in branch and synaptic
bouton numbers [Zhang et al., 2001]. In
other words, the junction is larger, but
proportionately so. Neurotransmission
from the larger junctions is also increased,
indicating a roughly proportionate in-

Fig. 1. Abnormal mushroom body structure in dfmr1 mutants. Confocal micoroscopy analysis using anti-Fasciclin II to visualize the mushroom body �
and � lobes. In the wildtype (A), the � lobes approach, but stop before, the midline (arrow). In the dfmr1 mutant (B), the �-lobe axons have grown across
the midline and fused with the contralateral fibers (arrow). [adapted from Michel et al., 2004].
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crease in functional synapses [Zhang et
al., 2001]. On the sensory side, the phe-
notype is slightly different. Dendritic ar-
bors of mutant larval body wall sensory
neurons show increased higher-order
branching, but remain restricted within
their usual segment boundaries. Hence,
the overall footprint of the arbor is nor-
mal, but within that region there are
more terminal branches [Lee et al.,
2003]. For both the motor neuron axon
terminals and the sensory neuron den-
drites, overexpression of wild-type
dFMRP induces the corresponding op-
posite phenotypes, consistent with the
conclusion that dfmr1 wild-type function
is to limit the extent and complexity of a
neuron’s terminal arbors, whether axonal
or dendritic.

Given these neuronal defects, it is
not surprising that movement is adversely
affected by dfmr1 mutations. Specifically,
larval crawling is abnormally circuitous
(although normal in speed), another in-
dication of a more prominent neurolog-
ical phenotype than in mammals. One
might guess that this results from a com-
bination of motor and sensory defects,
but it can be rescued by selective expres-
sion of wild-type dfmr1 in the sensory
neurons, suggesting that the altered loco-
motion is due primarily to aberrant sen-
sory input to the motor system [Xu et al.,
2004]. Adult flight performance is re-
duced in dfmr1 mutants [Zhang et al.,
2001], but the underlying cause is un-
known.

It is worth considering how similar
fly and mammalian phenotypes need to
be in order to validate the fly system—
although it will be some time before a
clear answer emerges. Take, for example,
the fragile X testis phenotype. Both
mammalian and fly mutants have testic-
ular enlargement. In the former case, it
occurs after puberty and is due to Sertoli
cell hyperplasia [Slegtenhorst-Eegdeman
et al., 1998], whereas in the latter it is
seen transiently in young adults and
caused by disorganized bundles of sper-
matids [Zhang et al., 2004]. Behavioral
phenotypes are more difficult to com-
pare. Is the reduced courtship interest of
dfmr1 mutant males [Dockendorff et al.,
2002] a reflection of reduced libido or is
it a counterpart of social anxiety and
avoidance seen in FXS males [Cornish et
al., 2004]? For now, I would argue that
the phenotypic details may matter less
than the molecular pathways underlying
them, for, if mechanisms are similar, then
drug-based treatments should be similar
as well.

The recent successful pharmaco-
logical rescue of dfmr1 phenotypes

takes the fly model of FXS one giant step
forward. When dfmr1 mutant larvae are
fed a diet supplemented with one of sev-
eral mGluR antagonists (including both
competitive and noncompetitive agents),
the resulting adult flies show normal
memory in the courtship conditioning
assay and normal mushroom body mor-
phology [McBride et al., 2005]. The fur-
ther result of that study, showing that
memory can be rescued by treating flies
only as adults, is striking for two reasons.
First, the developmental mushroom body
defect is not reversed by the adult-treat-
ment protocol, which is hardly surprising
given the bulk of misdirected axonal pro-
jections that would have to be retracted.
Second, and most important, the ability
to achieve behavioral rescue by treating
“postnatally”—without needing to “fix”

a major morphological defect and with-
out needing to replace the defective
gene—gives great hope for effective
postnatal therapies for developmental
brain disorders. One is reminded of the
extraordinary plasticity of young human
brains that enables their functional reor-
ganization after major trauma such as
hemispherectomy [Vargha-Khadem et
al., 1997].

Biochemical studies revealed that
dFMRP exerts translational control
through RNA interference mecha-
nisms [reviewed in Siomi et al., 2004],
and this led to similar findings for the
mammalian protein. Drosophila FMRP
associates with an RNA-induced silenc-
ing complex (RISC), through which
cells destroy specific transcripts, and is
also involved in microRNA pathways of

translational repression [Caudy et al.,
2002; Ishizuka et al., 2002; Schenck et
al., 2003; Jin et al., 2004]. These studies
led to the finding that mammalian
FMRP associates with the microRNA
pathway [Jin et al., 2004]. This is a clear
case of the fly system leading, rather than
merely following, the field.

Functionally relevant protein part-
ners and target transcripts of dFMRP
have also been identified using a combi-
nation of genetic and biochemical ap-
proaches. The first of these was futsch,
which encodes the microtubule-associ-
ated protein MAP1B and has an NMJ
mutant phenotype that is opposite of the
dfmr1 phenotype; in double mutants, the
two mutations suppress each others’ ef-
fects and the resulting NMJ is close to
normal [Zhang et al., 2001]. This led to
the demonstration that dFMRP associ-
ates with futsch RNA and negatively reg-
ulates its translation [Zhang et al., 2001].
Two independent biochemical screens
identified mammalian MAP1B tran-
scripts as FMRP-associated [Kaytor and
Orr, 2001]. Similarly, dFMRP associates
with the fly counterpart of human CYFIPs
(cytoplasmic FMRP-interacting proteins),
which has mutant phenotypes that are
generally opposite those of dfmr1
[Schenck et al., 2003]. In the sensory
neurons whose dendritic arbors are con-
trolled by dFMRP, the protein binds and
negatively regulates transcripts encoding
the GTPase Rac1 [Lee et al., 2003] and a
degenerin/epithelial sodium channel
family member [Xu et al., 2004]. Re-
cently, a genetic screen for mutations that
interact with dfmr1 revealed Lgl, encoded
by lethal(2) giant larvae, as a close associate
of FMRP in both flies and mice
[Zarnescu et al., 2005]. Together, the
available data point to considerable
mechanistic similarities between fly and
mammalian FMRP function.

In summary, neuroanatomical, be-
havioral, biochemical, and pharmacolog-
ical data provide compelling support for
the use of Drosophila as a genetic model
system for fragile X syndrome and, indi-
rectly, for other hereditary MR disorders
as well.

PROSPECTS FOR DRUG
DISCOVERY AND
DEVELOPMENT

In light of the structural and func-
tional similarities between human MR
genes and their fruit fly counterparts, and
the recent report of successful treatment
of dfmr1 mutants, there is an extraordi-
nary opportunity to use the Drosophila
system as a drug-screening tool for MR.
There are two general strategies for mon-

. . . the ability to achieve
behavioral rescue by

treating “postnatally”—
without needing to “fix”
a major morphological

defect and without
needing to replace the
defective gene—gives

great hope for effective
postnatal therapies for
developmental brain

disorders.
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itoring effects of an MR-relevant drug:
rescue of a mutant phenotype (whether
at the biochemical, neuroanatomical or
behavioral level) or modulation of the
function of an identified drug target. In
the first case, one need not know specific
drug targets in advance and the mecha-
nism of action is a secondary matter. In
the second strategy, one needs an assay
for the activity of the known target.

In Drosophila, bioassays based on
whole animals or on cultured cells each
have particular advantages. For whole
animals, there are multiple options for
routes of drug administration, including
feeding, topical application, injection,
and aerosol exposure [e.g., Hirsh, 2000].
One can then assess the resulting behav-
ior and brain structure as well as more
general outcomes, such as viability, lon-
gevity, and fecundity. On the other
hand, in vitro cell-based assays have the
advantage of bypassing the anatomical
barriers around the CNS, from integu-
ment and gastrointestinal tract to circula-
tory system and blood–brain barrier,
structures that may differ considerably
between insects and mammals. Further-
more, compared with whole-animal as-
says, cell-based assays are more likely to
be amenable to automation and, hence,
to higher-throughput screening meth-
ods.

Cellular assays can be divided into
those using established cell lines and
those using primary cells or tissues freshly
explanted from wild-type or mutant an-
imals. The Schneider-2 (S2) cell line,
which can express transfected genes, has
revealed molecular mechanisms of cell
adhesion [Hortsch and Bieber, 1991],
much as Xenopus oocytes have done for
ion channel function. Drosophila Neuro-
glian, whose human counterpart, L1 cell
adhesion molecule (L1CAM/Nrg), is de-
fective in a complex set of MR disorders
[Weller and Gartner, 2001], controls
axon pathfinding by regulating adhesive
interactions between neurons [Hall and
Bieber, 1997; Hortsch et al., 1998]. S2
cells expressing mutant forms of Neuro-
glian could be used to screen for drugs
that restore cell adhesion. When S2 cells
grow on a flat substrate they can be in-
duced to send out long, thin processes,
and this property has recently been ex-
ploited to demonstrate that dFMRP-
containing ribonucleoprotein granules
are transported along microtubules in the
neurite-like processes [Ling et al., 2004].
For now, this has been important for
understanding dFMRP transport mecha-
nisms, but it suggests that S2 cells with
processes may provide a drug-screening
tool for MR-related functions.

Primary culture methods have the
obvious advantage of allowing the size,
shape, and growth dynamics of actual
neurons from intact animals to be as-
sayed. We developed culture methods for
genetically marked Drosophila mushroom
body neurons harvested at specific devel-
opmental times. In vitro, these develop-
mentally plastic neurons grow a neurite
arbor with distinctive morphometric fea-
tures and respond with greater out-
growth to physiological levels of an en-
dogenous steroid hormone [Kraft et al.,
1998]. Moreover, mutant neuronal phe-
notypes, including stunted growth, ex-
cessive growth, and altered branching
structure, can be detected [Kraft R, Es-
cobar M, Kurtis J, Restifo L, manuscript
in preparation]. If mutations in Drosophila
MR genes disrupt neuronal morphology
in vitro, then cell culture could be used as
a screening assay for drugs that normalize
them.

CLOSING REMARKS: WHAT IS
NEEDED TO OPTIMIZE THE
VALUE OF THE FLY SYSTEM?

Despite the powerful genetic tech-
nology afforded by the Drosophila system,
a number of additional or modified tools
would greatly boost its value as a model
for MR and other neurobehavioral dis-
orders. In particular, a “standardized neu-
rological exam” for evaluation of mutants
would be a major advance. One can
imagine two versions, starting with a rel-
atively simple exam that could be per-
formed in any Drosophila laboratory. This
would be analogous to a screening exam
performed by a nonspecialist physician,
covering all the major neurological func-
tions. The importance of multisystem as-
says is exemplified by the study of asso-
ciative learning, which requires an
assessment of sensory acuity and reactiv-
ity to the punishing stimulus in order to
interpret behavioral deficits [Connolly
and Tully, 1998]. While it would be
desirable to devise a test not requiring
sophisticated equipment, one can envi-
sion a maze-like gadget within which
environmental stimuli could be con-
trolled and fly behavior observed. Ideally,
the basic test would include a behavioral
overview, reminiscent of the Mini-Men-
tal State Exam [Bassuk and Murphy,
2003], an imperfect but rapid screening
test of cognitive function that can also be
used to follow individuals over time. If
abnormalities were detected in the mu-
tants on the basic test or if subtle defects
were suspected based on gene expression
patterns or other information, then the
mutant strain could be referred to a spe-
cialty lab for further analyses. Many of

the behavioral tests currently in use for
Drosophila measure population responses
(although courtship conditioning is as-
sayed on individual males). Emphasis on
additional single-fly tests, especially those
that could be repeated on the same indi-
vidual, e.g., to monitor effects of aging,
would be a particularly good investment.

Another area that is poised to make
rapid and very important advances is
functional neuroanatomy. Until very re-
cently, the understanding of localization
of function in the Drosophila brain has
been comparable to that in the mamma-
lian brain in the mid-20th century. The
correlations made between brain mor-
phological phenotypes and behavioral
deficits in mutants were analogous to
structure/function studies based on post-
mortem studies of stroke and tumor pa-
tients many decades ago—an essential
first step, but allowing only a crude, low-
resolution map of functional zones with
lots of question marks between them. In
part because of its small size, D. melano-
gaster has not undergone extensive neural
circuit analysis, at the level of either an-
atomical or functional connectivity.
There has been a great temptation to
extrapolate from studies in larger insects,
but insects comprise extraordinarily di-
verse taxa and many of the cross-species
assumptions have never been tested.
Thus, it is very exciting that optical im-
aging and Drosophila genetic technology
have recently converged to allow direct
monitoring of neuronal activity in living
preparations exposed to various stimuli
[Fiala et al., 2002; Ng et al., 2002]. Dur-
ing the classical olfactory conditioning
paradigm, one can observe rapid, short-
lived spread of synaptic activity into new
regions within the antennal lobes [Yu et
al., 2004]. At the moment, these innova-
tive methods have been used only for
superficial regions of the brain, but that is
likely to change with the incorporation
of higher-sensitivity and higher-resolu-
tion microscopy.

In conclusion, the obstacles to MR
therapeutics are formidable but not in-
surmountable. The perspective of phylo-
genetic conservation provides much
cause for optimism that novel therapeutic
strategies will emerge from a synergistic
synthesis of advances in human and Dro-
sophila neurogenetics. f
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