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Summary

This paper considers a class of asymptotically normal estimators
defined implicitly in terms of asymptotically normal statistics, The
estimators are used as a basis for a general goodness of fit test where
asymptotic null and non-null distributions are obtained. Certain
standard tests are obtained as special cases of these results.

1, Introduction
Let X, be a sequence of random vectors with components X (),

L
i=1,2,...,k. It is assumed that nt (X, —u(0))—>N(y, V(D)) where
0eQ is a ¢-dimensional vector of unknown parameters, v is in the
range of V and ¢<rank V=p(V)=I<k.

Define the general class of estimators of 0, 0,, implicitly by

® (X, en)=07 O =(Dy, ... ’mq)

where @ satisfies the Implicit Function Theorem at (u(0), 0) i.e.
®((0), 6)=0 and the continuous derivatives satisfy

det (3,(u(6),0)/26,) 0.

Then 0, is consistent for 6 and »? (0, —0) is asymptotically normally
distributed.

In the paper the use of 6, in certain goodness of fit tests is
examined. Specifically, we investigate situations where goodness of
fit is measured by closeness of X, to (6,). The aim of the work is to
establish general procedures which include some standard tests as
special cases. The results are later generalized to allow the usual
norm, n!, to be replaced by a sequence of random variables I,. The
structure is also used to discuss minimum quadratic form estimation
first introduced, in a limited context, by Gurland and Dahiya (1972).

2, Main Result

To obtain the main result of this paper we make use of the
following important lemma. The proof may be found in Rao and
Mitra (1971, p. 173).
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Lemma 1. Tet Y be distributed as N(p,X) and 27 be any
generalized inverse (g-inverse) of L i.e. ZXL =X, If p is in the range
of X, then X'2Y has a y2(d,)) distribution where d=p(2) and A=p 2.,

Throughout this paper it is assumed that p(0) has continuous
first order partial derivations with respect to BEQ and ®(X,,6) has
continuous first order partial derivatives Wlth respect to X, and 0<Q.

We now define for ¢, r=1,2,. and j=1,2,...,k, M=
[0D,/0.4,]; N =[—80,/90,] ; Q—[au,(e)/aemndz —(I-4") V(I—A4)
where A7— =QN1M. We ma,ke the further assumptions that the
Iéange of Q(0) is contained in the range of V(0) and that N-! exists for
=§)

.When p(V)=I<k we introduce a (¥ —1)x k matrix H such that
|4
VH'=0 and p( H) =k. Such a matrix always exists.

Theorem 1. If W,=n(X,—u(6,))’ E-+M'M-+HH) (X,—u®,)
then W, is asympiotically distributed as y2(1—gq,)), where

A=y (I—4) [B+M'M+HH] (I—A")y.

Note (i) M and N are evaluated at (u(0),0) and @, V and H at 6.
However, if V is a continuous function of 0, 0 can be replaced by a
congistent estimator in (X+M'M+H'H)' without altering the
asymptotic result. For instance, 0, is a suitable candidate.

(ii) Implicit differentiation of ®(u(0),0) with respect to 6 shows
that MQ =N and ¢(Q)=

e (M N MH' .
(iii) Since ( H) (QH’)=[O HH,], o(M"H'y=q+k—1

(iv) The assumption that N-! exists is a restatement of the
Implicit Function Theorem property of @.

Proof of Theorem 1. The essence of the proof is that since

nM X, —w(0)SN(y,V), X, >u(0). The Implicit Function Theorem
guarantees the existence of a suifably regular function f such that
0,=f(X,). This is enough to engure that

R (X, —u(0)) >N (I —A"y,Z)

and Lemma 1 then gives the reciuired result. We now provide details.

From the Implicit Function Theorem, it follows that there exists
a neighbourhood of (1(0),0), K, and a vector function f such that
0,=f(X,) whenever (X,,0,)eK. The components of f have continuous
first order partial derivatives a.nd f (0))=06. Moreover, if Df is the
matrix [of,(x)/ox;], then Df=N—1
Thus the vector function h(x) _a:—p,(f(m)) is continuously differ-
entiable and Dh=I—QN-1M=I—A’. Hence

nd B(X,) =nd(X, —u(0,)

has the same asymptotic distribution as nd (I—A4A')X, p.(e))_>
N((I—A')y,2) where
T=(I—-ANYVI—-A).
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Now let X7 be a g-inverse of X and notice that since y is in the
ge of V,(I{—A'yyisin the range of 3. It follows immediately from

Lemma.l that
(X, —(8,))’ =9 (X, —u(6,)3%3(d,A)
where d=p(Z) and A=y'(I—A4") Z9 (I—A)y.

'  Now V=PJWIWP where P is non- singular and I¥=diag
--(1, .« +s1,0,...,0), there being{1'’s, and X =(I —A") P'[BIW P(I—A)=
JI'H, say.

' Clearly o(X)=p(#), EM'=0, EH'=0 and hence the null space of
‘F has dimension greater than or equal to o(M':H')=¢+k—Il. Thus

pB)<k—q—k+l=l—q.

i Butfor kX% matrices B, and E,, o(E,)=r and p(B,) =s, p(&,£,)>
r-}-s——k Put E,=I®P, E,=(I—A), then p(IWP)=l and p({—4)=
tr(I —A)=k —q and p(E)>l+k—q—k=Il—q. Finally, o(X)=l—yg,
p(E’ M'iH'Y=Fk and a g-inverse of X is (X+M'M+H'H)!, Rao

"’(1973, p. 34).

: We may note, from the conditions of Theorem 1, that there is

fressentlally a unique solution of the equation ®(X,,0,)-=0 which is a

F*éonmstent estimator of 6. This is because, if 0, satisties the equation

xand is a consistent estimator, (X, 0,) belongs to K with probability
tendmg to 1 and so 0,= f(X,) with probablhty tending to 1. However,

ﬁn the presence of multlple solutions, we are still left with the problem

%of deciding which is the consistent estimator.

- Some of these solutions can be eliminated, at least in theory, on
‘the grounds that they do not correspond to functions determined
inphcltly at points (1(0),0) for 6=Q. To discriminate between the
premaining solutions we need some condition on w(8). One possible
‘gondition is, for fixed 0 and every 3 >0 there exists an £>>0 such that
g'[[ﬁ 0,]| >3 implies [[u(6) —wu(0,)|]|>e. This condition embodies the
»Ba.me idea as Rao’s assumption 1.1, Rao (1973, p. 359).

. If f is the function implicitly determined by @ at (w.(0),6) there
‘are gpherical neighbourhoods M and N of «(0) and 6 reSpectlvely such
._tha,t {(f(2))|wcM} is the et of zeros of ® in MXN. Suppose g
;s another function determined implicitly by ®. Either g is part of
-2n extension of f to a continuously differentiable function f* satisfying
L ®(w,f*(x))=0 ; or for every zeM g(z)¢N. Only the latter case is of
goncern.

Let & be the radius of N, then for #€M,||0—g(2)||>3 and so
- le(0) —p(g(2))|[ > which implies that if ||a: w(0)|| <e/2, then

7‘ &—pu g(a:))||>s/2 We see from this that X ->p.(6) implies that
X, —u(g(X,))]| /2 with probability tending to one where ¢ is
dependent of g.

‘.;';1' .~ On the other hand ||.X, —u(f(X, ))|[->0 Hence an asymptotically
i dcceptable means of discriminating between the remaining solutions

;‘ I8 to choose 0, as the solution of ®(X,,0,) =0 corresponding to implicit

‘functions determined at points (12(6),9), '9eQ, for which [|.X, —u(6,)]] is
Mminimal, Under this procedure Theorem 1 remains valid.

It seems more natural to use W, for the purpose of choosing the
#ppropriate solution of ®(X,0,)= 0. This also leads to a valid
@asyrnptotlc procedure if there is only & finite number of implicit

i

?
.
i
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functions. In general, however, different conditions on w(0), or
alternatively conditions on ® and V, are necessary if W, is to be used
to choose 0,.

3. Random Norms and Numerical Solution of ®(X,,0,)=0.

In some practical situations the usual norm nt is replaced by a
sequence of random variables I,. That is we agsume a limit law of
the form

L
I(X,—w(0)=>N(y,V)
by
where 1,—0.

This kind of behaviour is observed as a result of sequential
estimation procedures (see Anscombe (1952)) or in connection with
point estimation of parameters from realizations of stochastic processes
(see Heyde (1973)). On the other hand, more mundane situations
covered by these extensions arise, for example, when the sample size
N is beyond the control of the experimenter and is determined by a

P
latent random process with parameter «. In this case N may —-o00 as
x—>c0, Say, « being unknown. One may wish to use the random
norm N,

In the present case there is no additional difficulty in defining a
consistent estimator, 6,, implicitly by the equation

(D(Xn’ en) =0
since the assumptions of this section guarantee the essential require-

ment X,,£>y.(9). Following similar reasoning to that given by Rao
(loc. eit., p. 387), for the special case I,=nt, it is easy to see that
I(X,—w(0,) has the same asymptotic distribution as

(I—AL,(X, —u(0)).
This yields a corollary to Theorem 1.

Corollary. Let the conditions on w, V and ® imposed in Section 2
hold, then

Wo=I3(X,—u(0,)) (S+M'M +HH) (X, —u(0,)

s asymplotically distributed as y*(l—q,\) with )\ as in Theorem 1.

In some cases I, may be a function of 9, I,(0) say. This is
certainly likely when I, is the information about 6 as defined by
Heyde (loc. eit.) for stochastic processes. If log I (9) is continuous

I,(6)

at 0 uniformly in », almost surely, then W)—J;l where §° is any

consistent estimator of 6 e.g. 6,. In this case the corollary holds with
I,(6) replacing I,(6).
In applications the equations ®(X,,0,) =0 may not be soluble in

closed form. Numerical procedures will have to be sought and the
appropriate methods will probably be dictated by the form of ® and p.
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However, a general iteration procedure is obtained by using
0, =0,4-D + N-3@(X,0,6-1)

where NV is evaluated at 0,9-D. An initial guess, 0,9, is required and
this will have to be set on rational grounds. The usual care must be
taken in particular cases but, for large »,0,'9" will converge to 0, with
high probability.

4. Specializations

(a) Standard Goodness of Fit Tests
Let ¥ be a random variable with distribution function F(y,0),
0eQ & g-vector of unknown parameters. For y,=—oc0 <y, <y, < . ..
<yp=00 put
2i(0)=F(y,0) —F(y;,,9), =12, ...,k
A random sample of size » is taken from F(y,0) and N, is the number
in this sample for which y;_, <Y <y,. The theory of Section 2 will be
used to establish certain classical results with regard to the distribution
)2

of the test statistic W,= X (N, —»p,(0,))%/n p;(0,), where 0, represents

i=1

certain estimates of 0. R
It is known for instance that when 0,=0,, the maximum likeliliood

estimator, then W,,—];x?(k—g—l). This result holds whenever 6,, is
replaced by an asymptotically efficient estimator 0; since then

n‘(O;—an)—};O.

In the notation of Section 2, put w(0)=p(0), X, =N, V=
AN I—p9")A-Y, A-1=diag (p}(0), . . . ,pk(0)), p=A—11, and let H=
1'=(1,...,1). Given an appropriate ® Theorem 1 states that

L
X, —p(0,))" (Z+M' M +11')1 (X, —p(0,))>x*(k—g—1).

For the non-null case consider a sequence of alternatives by
replacing F(y,0) with F,(y,0)=F(y,0)+n %G(y). Under the alter-
native n.X, i3 2 multinomial with mean np(0) +n iy where v'1=0. It

can be shown that n ¥ X, —p(@))iN (v,V). Notice that v belongs to
the range of V since p(V)=k—1 and ¥V1=0. Hence Theorem 1 applies
giving the asymptotic distribution of

X, —p(0,))" (5 +M'HM+11")71 (X, —p(0,)) as x*(k—g—1,))
with A specified by Theorem 1 and the circumstances of the problem.

(i) Maximum Likelihood, 6, —0..
When 0 is estimated by maximum Likelihood ®, takes the form

. % A
®(X.,,0,)=Z X, dlnp,(6,)/30,=0.
j=1
The condition ®(p(6),0)=0 of Theorem 1 is satisfied and in this case

M=R'A for R=AQ; N=R'E=J, the information matrix with
assumed inverse J—! for 0e() ; and o(M'il)=¢—+1.
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Let W,=n(X,—p(0,))A? (X,—p(0,), then using the special
forms of M, Q and N

3 =A-1[I—RI-'R'] (I —po'] [[—RI'R'IAL,

Straightforward algebra shows that A? is a g-inverse of £ and p(X)=
p(AZA)=tr[I —RJR’' —p¢']=k —q—1 thus establishing the classical

result W,,ixz(k —g—1). In the non-null case Wnixz(k—q-—l,i\)
where A=y'A(I —RJ'R’)Ay.

(ii) A Moment Estimator, 6,=0,.

Let Tz[tlj]7 tszg.;’ j=1’.2’ s s . ’k, 'i=1’2’ « s e ,q, y-je(yj—l’yj]
then a moment estimator of 0 is defined by

®(X,,8,) =T(X,—p(0,) =0.

In this case again ®(p(0),0)=0, M =T, N =T¢Q and N-! is assumed to
exist. Moreover, p(7"{1)=¢+1 and the general results of Theorem 1
can be applied using these special forms of M and N.

(ifi) Minimum Chi-square.
This case is covered by the next section.

(b) Mimimum Quadratic Form Estimalors.

Let
4(9,,8(8,)) =(X, _@(61))'8(61) (X, —(6y)

where 8(0;) is positive definite for 0,6Q. Then the minimum
quadratic form estimator for 0, 0y, is defined by

A(O;,S(e;)) =min A(GI,S(OI))
0,e(2

Thus A(0y,8(05)) is a measure of agreement between X, and u(0).

The asymptotic distribution of a cerfain quadratic form in

X, —u(9;) will be derived with help of Theorem 1. In order to do this
we need conditions which ensure that the minimum occurs in the
interior of 2 so that 94.(0,8(0))/00,=0 at the minimum.

Suppose w(0) satisfies the condition at 6 that for every 3>0
there is an ¢ >0 such that [|6 —0,|| >3 implies ||n(0) —u(6,)|| >e. Let
M(0;) and A (6,) be maximum and minimum eigenvalues of 8(6,)
respectively. Suppose that A,(6,)>c¢ for all 0,eQ, ¢ being a positive
constant. Fipally, assume that 0 lies in the interior of Q.

Now choose §>0 such that the spherical neighbourhood of 6
with radius J is contained in Q. TLet 0, satisfy [|0—0,/|>>3 so that
[|w(8) —(6,)]| ¢, where ¢ is independent of 6,. Suppose [|.X, —u(0)||
<e/2 then || X, —u(0,)||>¢/2. From a well known inequality for
quadratic forms A(0,,8(0,))3>(/2)%,(0,) > (¢/2)%2 But A(6,8(0))<
M(0))| X, —w(0)|]? and it is therefore clear that with probability tending
to one as m—oo, A4(0,8(8)) is less than 4(0,,8(0,)) for [|6—0,)|>3.
Thus the global minimum satisfies ||0 —0;]| <8 implying that 6}
belongs to the interior of Q again with probability tending to ome.
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Note also that & can be made arbitrarily small and so 0y is consistent
for 0.
Set
D(X,,0)=04(6,8(0))/29;
= —(X,—u(0))"8(0)u.,(6)
21X, —u(0)) S ONX, —u())

when 1;(0) =0p.(0)/00, and 8,(0)=08(0)/06,. Note that P(u(0),0)=0
and in the previous notation ¥ =Q’'8¢, M = —¢’S and

Z=(I—-Q(Q'89)7Q'8) V(I—-8Q(Q'8¢)'Q").

Hence O satisfies the Implicit Function Theorem at 0 provided it is
continuously differentiable and ¢ is of full rank.
If 0, is in the interior of Q, an event with probability tending to
one, it satisfies
D(X,,0r) =0

and since 0, is consistent for 8§ it must correspond to the implicit
function determined by ® at (1(0),0). Thus under the conditions

above, there are two asymptotically equivalent ways of defining 0,
and Theorem 1 can be applied with 0,=0;.
On the other hand if 3,(8) is not bounded away from zero, the

first definition of 6; may not yield a uscful estimator since 0, may not
belong to the interior of Q or may not even exist. The second
definition is still available, however, and leads to a useful estimator
since Theorem 1 continues to apply in a particularly satisfying way.
To see this note that M and N do not involve derivatives of S(6) and
any fixed positive definite matrix does satisfy the eigenvalue condition.

Hence defining *8, by
A(*8,,8(8)) =min 4(0,,5(0))
0,202
it is clear that n}(X,—u(0,)) has the same asymptotic distribution
whether 6,=60, or 6,=*0,. Therefore this is also true of W,.

If V is of full rank a natural choice for S is V-1. It can be
verified that V- is a g-inverse of X and p(¥)=k—¢. In the null case

W, =X, —(00)) V(05) X, —(65)) 512k —q).

In the non-null case v belongs to the range of V since p(V)=Fk, and a
lon-central %2 results with A=y'(V —Q(Q VQ)71Q")y.

The above theory trivially extends to the situation considered in
the Corollary.

Bramples

(1) Consider a continuous and strictly monotone distribution function
Which is specified up to a ¢ dimensional vector of unknown parameters,
P(y,0), 0:Q. A random sample ¥, ¥, . . ., Y, is drawn and let

pp J=1,2, . . . ,k, be the p,th quantile statistic defined in the usual
way, p,<p,, 1 <j.
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It is well known that under mild conditions the vector X,=
(Xpm, . . . ,Xp{M) is asymptotically normally distributed with mean
vector 4 =(¥py, - - . ,¥p;) and covariance matrix n-'V, where for i <j

V5 =p.:4:[f¥»:) f(ypj)]_l

with p;,=F(¥p;), 4;,=1~p, and f=F', Cramér (1946, p. 367). Since I
depends on 6 it follows that, in general, yp, =F~1(p;) and V also depend
on 6, y,,(9) and V(0) say. The previous results now apply with
1(0) =y(6) and S(8) =V (8).
For the non-null case consider a sequence of alternatives of the
form
F.(y)=F(3,0) -0~ G(y).

with suitable conditions on & it can be shown that

M(X,—y(0) >N (y,V)

where v;,=—G(yp;)/f(yp;). Since V is of full rank y belongs to the
range of V. Theorem 1 applies and W, is asymptotically distributed

as
12— @N), A=Y(V =@ V1Q)7'Q")y.

In the case where F is normal, 0'=(u,0), ¥»,(0)=wp+oca; and

Pi=(2‘ﬂ7)_i‘[

and V, is independent of §. We are in a position to use *0, since
minimizing

a

" exp{ —t/2}dt

n( X, —y(0,)) VX, —»(6,))
is equivalent to minimizing
(X, —y(0,)) (6*V)™ (X, —¥(0,))

with ¢ fixed at the true value. Explicit- expressions for *u. and *o

are given by

_VV,X o'V la—a' V71X, 1V, la

*c — _1 ’Vl —1(11’ V‘l —-an +1, Vl_llaI, Vl_l.Xn
1'V,"Ua'V,~la—(1'V,1a)*

where 1"'=(1,1,1, .. .,1). These results continue to hold whenever 0,

and 0, are location and scale parameters.

The idea ot using order statistics to measure goodness of fit has
been presented from a different point of view by Bofinger (1973).
(2) Suppose the sample ¥,, . . . ,X, is obtained using Steins double
sampling procedure for estimating the mean of a normal distribution
with fixed precision, so that n is replaced by a random variable N, [see
e.g. Wetherill (1966, p. 189)].

A preliminary sample ¥, ...,Y, is taken and the sample variance
s% calculated. N, is chosen as the least integer not less than

*

max {m,m2s5/(m —2)%?}.
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'.We assume that m is kept fixed but let ¢—0. Then N,,--—l-;oo and the

;1dua,ntﬂe statistics X;:(ngi, . X(")) calculated from Y,,...,Yy,
‘gatisfy the limit law
; L

Ne (X.—y)=>N(0,V).

This follows since it is true for the conditional distribution of N, and
X.given ¥, ...,Y, . Ittherefore holds for the marginal distribution
as well.
~ From the Corollary we econclude that the asymptotic quantile
‘goodness of fit test in Example 1 18 still valid. Clearly asymptotic
“goodness of fit tests based on proportions, as discussed in Section 2(a),
7glso 1emain valid with this stopping rule.
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