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INTRODUCTION

Field ecologists are often impressed by the variability of ecological processes (26).
In spite of this, mathematical models for predator-prey interactions have been
mostly deterministic. Stochastic components are included simply by modifying a
deterministic model—often with considerable arbitrariness. There has been a ten-
dency to regard stochasticity either as noise obscuring a deterministic signal or
simply as a destabilizing influence. However, variability (stochasticity) plays a fun-
damental role in predator-prey population processes; it helps to explain observable
population phenomena. In this review we explore ways in which deterministic
models are inadequate and suggest some methods of modelling variability.

Variability can be classified according to its origin into five categories. These
different kinds of variability affect population dynamics in different ways. Especially
interesting is the effect of variability in the presence of population subdivision—i.e.
when the populations are not homogeneously interacting because movements are
not unlimited. In this situation it can be shown that within-individual variation, or
demographic stochasticity as it is usually called, does not have a vanishingly small
effect as the population gets large. This is contrary to current opinion (41, 57) based
on models of populations that interact homogeneously.

The idea of a structural model is introduced below. Such models make qualitative
assumptions and are designed to allow different models to be compared within a
single organizing framework. Structural models also yield qualitative predictions
depending only on their qualitative assumptions and are therefore especially useful
for testing ideas in ecology. Current modelling procedures place too great an empha-
sis on specific models. More general approaches are needed, which depend less on
particular models.

Stochastic systems require stochastic stability concepts. The idea of stochastic
boundedness is an outgrowth of the concept of tightness of a class of probability
measures. As a stability concept, stochastic boundedness seems more applicable to
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real systems than do the usual deterministic stability notions. In particular, stability
of this kind can be directly estimated from observed population fluctuations.

Although this review deals mainly with population models, it is not suggested that
variability is unimportant at the behavior level. To the contrary, variability is
fundamental at the behavior level because individual predators and prey are vari-
able; they experience, and must respond to, highly variable phenomena (65). Simple
stochastic behavior models are sometimes used to justify the mechanism of deter-
ministic models; for example, the Nicholson-Bailey host-parasite model (63) de-
pends on a random encounter submodel.

Five Kinds of Variability in Predator-Prey Systems

Perhaps the most obvious feature of animals is variation between individuals—i.e.
differences in phenotypes; but the variability present in classical stochastic models
of predator-prey systems (7, 8, 10, 11, 12, 45, 47, 48, 67) is of an essentially different
nature: In these models, individuals in the same population are treated as identical
in all aspects of the phenotype that matter. Variability, or randomness, enters as a
within-individual process having the same probability distribution for every individ-
ual regardless of its phenotype. This within-individual variation may be compared
with the toss of a coin. The outcome (heads or tails) is unpredictable not because
this coin differs from other coins unpredictably, nor because the environment of the
toss is unpredictable, but as a result of unpredictable factors inseparable from the
particular toss of the coin. Within-individual variation is usually given the label
“demographic stochasticity.” To continue the coin analogy, between-individual
variation arises in a population of biased coins where the degree of bias varies from
coin to coin.

Environmental variation has both spatial and temporal aspects. Unpredictable
temporal changes in the environment are usually called random environment (17,
25, 41, 53, 68). The environment may also vary spatially since, for example, not all
places make equally good homes for animals. This is a kind of phenotypic variation
between locality that we shall call berween-patch variation. Here a patch may be
delineated by genuine environmental discontinuity or may simply correspond to an
observer’s convenient subdivision of what is essentially a continuum.

Individuals in a population spread over a large area do not interact homoge-
neously with all individuals in the population, nor do they interact homogeneously
with all individuals in any other population on the area. For example, the risk to
any prey individual of predation by a given predator individual, in the time interval
(¢, t+1), will depend on how close the individuals are at time ¢. Because of this, local
variation in population size is important. Within-patch variation refers to the ran-
domness present in population numbers for a given locality or “patch,” and it arises
from the combination of the random component of migration (to and from the
patch), within- and between-individual variation, and that part of temporal environ-
mental variation (random environment) that is local to a patch. The latter kind of
environmental variation is discussed by Crowley (24).

We shall take a probabilistic view of variability, although in some cases variation
may be described deterministically. The latter point of view can be considered within
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the probabilistic framework by conditioning on the event that a particular pattern
of variation is observed.

Of the five kinds of random variation in our classification two kinds, within-
individual variation and random environment, have received the bulk of modelling
attention. Moreover, within-individual variation has been discounted by determinis-
tic modellers (57) because of the belief that it is unimportant in large populations.
We shall see that this is not so; within-individual variation contributes to within-
patch variation and therefore has a direct effect on local dynamics.

Stochastic Population Models

Population models usually consist of a specification of the way in which the state
of a system develops from past states. The state of a system at any particular time
t is represented by variables Z(t) = [Z,(¢),Z (1), . ..]. For example Z,(¢) and
Z,(t) may be respectively prey and predator population sizes, and there may be
variables representing age structure, environmental conditions and so on.

A discrete time deterministic model can take the form

Z(1+1) = g(Z(1)). 1.

In this model the state of the system at time ¢+1 is determined by, or is a function
of, the state of the system at time ¢ More generally the state of the system at
time ¢+1 can depend on both Z(¢) and Z(¢-1) or perhaps even the entire history
Z(),Z(t-1), .. .. The model then takes the form

Z(tt]) = g@Z(nZ(1-1), ...) 2.

Further generalizations make g time-dependent.

Continuous time deterministic modelling replaces the difference equations 1 and
2 by differential equations (56). Both discrete-time and continuous-time determinis-
tic predator-prey models have been thoroughly reviewed recently (37, 58, 61).

In a stochastic model the state of the system at 741 is not determined exactly by
previous states; instead, a probability distribution is given. In essence for every set
G of possible values for the state of the system, the model specifies the conditional

probability that Z(¢+1) belongs to G, given Z(¢),Z(¢-1), .. .. The mathematical
notation for-this probability is

PEZ(++1) EGZ(1),Z(1-1), .. ) ' 3.
or

P(Z(1+1) EGH,),

where H, is simply an abbreviation for the history Z(¢),Z(¢-1), . . ..

As an example we present the following simple stochastic predator-prey model,
which is called Model I for later reference. Model I is based on within-individual
variation alone but this fact is irrelevant to our present discussion.

Take Z,(¢) = X(¢) = prey population size at time ¢, and Z,(¢) = Y(¢) = preda-
tor population size at time £ Given the history, H,, the number of prey dying in
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the interval (¢4 t+1] is a binomial random variable with parameters {X(¢), 1-exp
[-dY(0)]}; that is, the probability that x prey die is

(¥ 1-exp[-d ¥(0)]] lexp[-d ¥ ()}~ 4.

The number of prey born is Poisson with mean 6X(¢). Predators die according to
a binominal distribution with parameters (¥ (£),1-e-%) and are born according to a
Poisson distribution with mean 8X(¢) Y(¢). For the present we shall assume that,
given H,, prey birth, prey death, predator birth, and predator death are independent.
It is very important to note that we are conditioning on (are given) H,, for these
processes could hardly be independent otherwise. Assuming population size changes
occur only through birth and death we have enough information to calculate the
probability

P(Z(t) EGH,) 3.

for any set G. For instance if G is the set {X(#+1)=0}, then expression 3 represents
the conditional probability that the prey are extinct at time ¢+1 given the history
up to time £ According to our model this probability equals

(1—expl-d Y(£))Xe-b¥(n,

Model I is a Markov process since the conditional probabilities, expression 3, are
functions of the state at time ¢ alone (9, 70).

A deterministic model is said to be the analog of a stochastic model if the
deterministic model agrees with the conditional mean of the stochastic model (9).
For example, the expression

E[Z(++1)H,] : 5.
represents the conditional mean of Z(¢+1) given the history, H,, and in Model I

E[X(t+1DH,] = X(e)(b+edt®)

6.
E[Y(+DH,] = Y()(e+BX(1)
and the analogous deterministic model is
X(1+1) = X(r)(bte-¥) ;

Y(r+1) = Y(r)ed3+BX(1)).

The conditional mean is quite different from the mean. The conditional mean
expresses future mean trends as a function of past history. Past history is stochastic,
i.e. it has random variability. The mean averages over this random variability in the
past history. Equations 7 are typical of a predator-prey model in that they are
nonlinear; it is a direct consequence of this nonlinearity that the means fail to satisfy
equations 7. By direct calculation

EX(++1) = EX(¢)(b+eEVO) +E(e-Y(N_g-dEYNE X(£)+C(e-97), X (1))
EY(t+1) = EY(:Xe*+BEX(£))+BC(X (1), Y(2)),
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where C(U, V) is the covariance between the random variables U and ¥ and EU
is the mean of U. Because X(¢) and Y(¢) are random variables, Eexp }-d¥(¢)} and
exp {-dE Y ()} will differ; in general the covariances will be nonzero, so that the
result of the deterministic model will differ from the mean of the stochastic model.

This illustrates a major difference between deterministic and stochastic models.
If the analogous deterministic model is nonlinear, the mean of the stochastic model
will almost always differ from the result of the deterministic model (12, 29). The
magnitude of the difference between the mean of the stochastic model and the
analogous deterministic model depends on a number of factors but the main one is
the degree of nonlinearity of the conditional mean equation over the likely range
of values for the past history of the process. For example, consider the Markov case
where

E[Z(++DH,] = g(Z()).

If the probability distribution of Z(z) is concentrated on a set G, on which g is almost
linear, then Eg(Z(¢)) will be approximately the same as g(EZ(¢)) and the determin-
istic model will agree approximately with the mean of the stochastic model. Since
all differentiable functions are approximately linear in a small neighborhood of a
point, it can be expected that the mean of the stochastic model will agree approxi-
mately with the deterministic model when the variance of Z(¢) is small. This is not
a general theorem, however, because in extreme circumstances the behavior of g on
a set with very small probability can be overriding.

A stochastic model contains much more information about the state variables
Z(t) besides the mean EZ(z). The mean is simply one measure of location of a
random variable; by looking beyond the mean, interesting phenomena can often be
discovered. For example, O’'Waugh (66) considers a stochastic exponential growth
model for a single-species population that incorporates only within-individual varia-
tion. The analogous deterministic model is the standard exponential growth model.
This is a linear model, and so the deterministic model agrees exactly with the mean
of the stochastic model. However, the actual realized population sizes in the stochas-
tic model may show an Allee effect—i.e. apparent depressed population growth at
low population numbers. Neither the mean of the process nor the deterministic
model (the two are the same) indicate this possibility.

Sometimes the mean can actually be quite misleading. This is so in models of
exponential population growth in a random environment (52). In these models the
actual realized population sizes may approach zero while the mean approaches
infinity. This happens because the probability distributions for population size are
highly skewed and become more so as time progresses.

The mean is useful and can be a good indicator of actual population density in
the following situation (which I discuss at length in the section below on Within-
Patch Variability). Suppose that Z,(z), which equals (X;(¢),Y;(#)), is the vector
giving predator and prey population sizes on a patch. Average population density
for k patches is

k_l«él Z,-(t).
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Under conditions to be discussed below, this average population density is near the
theoretical mean value, EZ,(¢), for any one patch, provided % is large.

A final general feature of stochastic models is their variety. For example, in a
deterministic model it generally does not matter how the rate of increase of a
population is divided into births and deaths, but in a stochastic model this is not
so. In a broad class of stochastic population models (7, 47, 48) the variance of the
process depends directly on the separate mean magnitudes of the births and deaths
making up the overall mean rate of increase. The same mean rate of increase is
compatible with a range of values for the probability of extinction, for example, and
also with varying degrees of disagreement between the mean of the stochastic model
and its analogous deterministic model. Thus the deterministic model hides the
variety of different possibilities for actual population behavior compatible with the
same mean rate of increase.

WITHIN-INDIVIDUAL VARIATION

The earliest stochastic models to be applied in the predator-prey context considered
only within-individual variation (7, 8, 47, 48). Stochastic predator-prey models based
on within-individual variation are generally formulated as continuous-time Markov
processes. Because they are generalizations of the so-called birth-death processes
(44), population sizes are whole numbers, although some models (47, 48, 67) use
discrete-time continuous random-variable approximations. Demographic stochas-
ticity is the name given to the random element of population size fluctuation in
models based on within-individual variation.

Consider the prey death process in Model I. This process can be derived by
assuming that each prey individual has probability 1-exp{~dY(z)} of dying in the
time interval (¢ r+1] and that the deaths of different prey are (conditionally)
independent. No consideration is taken of characteristics of an individual that affect
its chance of dying; death is treated as an intrinsically within-individual phenome-
non. The other processes in the model have similar within-individual variation
bases.

Although the within-individual variation basis of a continuous-time Markov
process is rarely pointed out, it is readily apparent when the process is expressed
as a limit of discrete-time processes such as Model 1. Kurtz’s (45) stochastic Lotka-
Volterra model is exactly a limit of Model I, while Bartlett’s model (7) is a minor
modification of this limit. To obtain the limit, modify Model I so that it applies to
changes over time intervals of length 4 rather than of length 1, and put b = b*A,
d =d*h, B = fB*h 8 = 8*h Now letting -0 a continuous-time process is
obtained. In this limiting process

E[X(t++h)-X(H,} = hX(t)(b*-d* ¥(1))
E[Y(++h)- Y(t)H,] = hY(£)(-0*+B*X(1))

when / is small. Thus it is a stochastic version of the Lotka-Volterra model (7, 8,
31, 45). As one would expect, Model I also satisfies expressions 9 for small A.
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In Model I the probability of death, for example, of an individual prey during
(¢, t+1} is simply a function of the predator population size, ¥(z). This is equivalent
to assuming that every predator in the population has the same chance of causing
the death of the prey individual. It does not take account of local population
densities and how they change through time. An alternative assumption could be
that local density is always proportional to some fixed distribution of density—i.e.
that changes in density at different localities are always proportional. Neither as-
sumption seems very realistic but the first may be approximately true for small
populations on a small area. We shall call the assumption that conditional probabili-
ties for birth and death depend simply on total population sizes or densities, as
opposed to local population sizes or densities, the homogeneous interaction assump-
tion. All existing stochastic predator-prey models based on within-individual varia-
tion make the homogeneous interaction assumption. Later we shall see the
important implications of this assumption.

Stochastic predator-prey models have generally been developed as analogs to
already existing deterministic models. While this is understandable, it has led to
somewhat arbitrary addition of stochastic features without much attention to the
particular kinds of stochasticity relevant in the predator-prey context. One omission
can be illustrated by a defect in Model 1.

In a predator-prey system, death of prey contributes directly to the well-being of
the predator population and presumably to its growth; but in Model I, growth of
predators and death of prey in the interval (7+1] are in lependent, given H,. In
this situation growth of predators can only depend on the expectation of what they
might get to eat on the basis of prey abundance at time «. To overcome this objection
assume that, given x prey die in (,¢+1], predators are born in this same time
interval according to a Poisson process with mean yx = x8/d. This is equivalent
to assuming that predators give birth to offspring independently according to Pois-
son distributions with means proportional to the individual predator’s food intake.
The actual predator birth process now consists of a Poisson process generalized by
a binomial distribution. Although the new mean of the predator birth process is
different from its previous value, the more significant change is that prey death and
predator birth in (#,7+1] have correlation

fy lexpld Y ()]+1 10.

as opposed to a previous correlation of zero.

Clearly this model is only appropriate if the time unit in this discrete-time process
is long enough for conversion of prey to predator to occur. When the time scale is
altered to yield a continuous-time process, the correlation (expression 10) becomes
(Y '+1)™, and the unrealistic situation arises in which the death of a single prey
instantaneously gives rise to a Poisson distribution of predator offspring. This is a
general feature of continuous-time Markov models of the predator-prey situation—
if predator birth is at all correlated with prey death, then instantaneous conversion
of whole prey to whole predators occurs. In most formulations only a single individ-
ual dies or is born at a time and so a single prey is converted into a single predator!
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This is a feature of Bartlett’s model (7); in every other model considered in this
review, prey death and predator birth are independent.

This is not intended as a major criticism of work in the field; after all, a model
cannot include every feature of reality. It simply indicates that modelling of within-
individual variation has not attempted to include the kind of stochasticity inherent
in predator-prey systems. When stochastic models are considered more for their
own sake, rather than as analogs of deterministic models, more pertinent features
of stochasticity can be expected to be included.

Large Populations and the Homogeneous Interaction Assumption

Stochastic models based on within-individual variation do give different results from
their deterministic analogs. These differences are most striking when populations are
small (see next subsection) or do not interact homogeneously (see the section below
on Within-Patch Variability). Where populations are both large and homogeneously
interacting the differences between the results of the stochastic and deterministic
models can be very small. To see how this occurs we need a meaningful proce-
dure for scaling the parameters in a model so that the population can become large.
Kurtz (45) has given one such method, which can be explained with reference to
Model L.

Let X(¢) and Y(¢) be prey and predator population sizes on an area of size 4 (the
“size of the environment”). Replacing d by d/4 and 8 by 8/4, in Model I, the
chances of birth and death for any individual become dependent on average popula-
tion density over the area rather than absolute population size. Increasing the area
allows the absolute population size to increase.

Define X ,(¢) = X(2)/A4, Y ,(t) = Y(t)/A (these are the average population
densities); then

E[X,(:+1)H,] X () (b+e-a7A)
Y, (1)e3+BX (1)),
and the conditional variances are

VX, (t+1DH,) = 47X, (1) [o-+expl-ad ¥, ()](1-exp[-d ¥4 (1))}

1.
E[Y,(++1)H,]

12.
V(Y (t+1)H) = 47 Y, (0l -D+BX, (1)}

The conditional variances approach 0 as 4 gets large, provided X,(¢) and Y,(¢) do
not approach =, which means that (X,(¢), Y,(#)) very nearly satisfies the determinis-
tic difference equation 7, for large 4. This statement can be made precise using
resuits in [(14), section 3] and making use of the fact that the conditional means and
variances are continuous functions of X,(¢) and Y,(¢). It can be shown that if the
initial densities behave nicely, that is (X;(0), ¥,(0))=(X(0), Y(0)), then the whole
process converges as A gets large, (X,(¢), Y,(£))>(X(£), Y(£)), and the limiting
process, (X.(?), Y.(?)), satisfies the deterministic difference equation exactly (here
“—"" means *‘converges in distribution to’’). All of this means that as 4 gets large
the stochastic model behaves very much like its deterministic analog.
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This sort of result will be true for a very wide class of models in which the
stochastic element is entirely within-individual variation. Since population size at
time ¢+1 is a sum of independent and identically distributed processes of birth and
death for individuals alive at ¢, the law of large numbers is applicable. Continuous-
time processes have this structure in an infinitesimal sense and corresponding results
hold which show that the analogous deterministic model (a differential equation
model) gives a good description of population dynamics in large populations (45).

In the continuous-time case there is also a central limit theorem (46), which says
that the difference (Z ,(¢)-Z.(t)) is of the order 4-"; specifically, 4"(Z ((1)-Z.(1))
converges to a diffusion process, as 4 — <, with probability distribution known in
terms of a differential equation for the characteristic function. As well as giving the
rate of approach of the stochastic process to the deterministic solution, this result
gives an asymptotic method of studying the behavior of the stochastic deviations
from the deterministic path when A is large.

The diffusion approximation has been applied to the situation in which Z ,(0) is
close to an equilibrium point Z,, of the deterministic equations (6, 60). It is found
that the approximating diffusion process is of the Ornstein-Uhlenbeck kind, with
mean expiM# (Z,(0)-Z,)4", where M is the community matrix of deterministic
modelling. Then, if the deterministic equilibrium is locally stable the stochastic
process can be expected to fluctuate about this deterministic equilibrium. Eventually
the process will leave any neighborhood of the equilibrium, but in the deterministic
stable case the waiting time can be large if 4 is large (6).

As with most asymptotic results there are no clear formulae for how large 4 must
be for these diffusion approximations to be applicable. Some information is available
from simulation studies but considerable caution is necessary when attempting to
extrapolate to other models or even parameter values. Even more caution is neces-
sary when relating these results to nature, for crucial assumptions, such as homoge-
neous interaction, may be violated. Leslie & Gower (48) and Poole (67) simulated
predator-prey models approximating those for which the asymptotic diffusion pro-
cess has been demonstrated. Leslie & Gower found good agreement with the asymp-
totic predictions in a situation where the deterministic equilibria were of the order
of 100. However Poole, using a two-prey-species/one-predator-species model, found
one prey-species population behaving in a nonstationary manner at variance with
asymptotic predictions. The deterministic equilibrium of this prey species was near
40 while the other species had equilibrial populations of more than 100.

The diffusion approximation does not seem to have been applied to predator-prey
systems during transient phases of population development—i.e. for populations
away from equilibrium. However Becker (12) has exact results applicable to tran-
sient phases of population development in a number of predator-prey population
models. These results emphasize that as ¢ increases, the deterministic model may
provide progressively poorer descriptions of population dynamics. Becker’s first
model always allows arbitrarily large—even infinite—deviation between the mean
of the stochastic model and the deterministic analog. This happens for large but
finite values of ¢ when variability is dominant, and neither the mean nor the
deterministic model provides a very useful description of population dynamics. The
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simplicity of Becker’s models, which enables their exact solution, restricts their
application mainly to transient phases of population development.

It cannot be emphasized too strongly that the conclusions of this subsection
concerning the behavior of stochastic models when populations are large depend
crucially on the homogeneous interaction assumption. Therefore their relevance to
real systems is in doubt.

Extinction and Small Populations

The phenomenon of extinction reveals striking differences between deterministic
models and stochastic models based on within-individual variation. First of all, the
stochastic model may predict extinction of a population over a short time span,
while the analogous deterministic model predicts stability (48, 67). This is most
likely when the deterministic equilibrium values are small. In some cases the sto-
chastic model may leave to chance just which of several populations will become
extinct in the short term. There is no way the analogous deterministic model can
do this.

A deterministic model may correctly predict that a species goes extinct but it
never handles the extinction process very well. This is partly because waiting times
for extinction can be extremely variable, thus necessitating stochastic description (5,
6, 48, 67). Additionally, extinction never really occurs in most deterministic models;
it is only achieved in the limit as 1. To see this, consider the usual formulation
(56) of difference equations for predator-prey models:

X(e+1) = X(OX(®), Y()
Y(r+1) = Y()g(X(1), Y (2)),

where f and g are strictly positive functions. Clearly, extinction in finite time is
impossible. When one redefines extinction as some small positive population level,
as Gilpin does (30), then extinction in finite time does occur; but this modification
is inconvenient in analytical models embedded in more complex models; it destroys
the analytical structure, especially if differential equations are used. Moreover, we
are still left with the question of whether extinction at some fixed nonrandom time
makes much sense. For example, as May [(57), p. 94] points out, a limit cycle that
comes near an axis should be regarded as unstable because in a real population
chance processes will cause extinction eventually. However, on many approaches
to O the population may increase and escape extinction just by chance. It follows
that the waiting time for extinction is essentially stochastic. Models that rely in any
way on the timing of extinction events will be in error if they are not stochastic.

The majority of Markov process population models based on within-individual
variation predict certain eventual extinction of at least one population. Some authors
have found this disturbing (15). It has led others [as Reddingius observed (70)] to
believe that Markov processes are inappropriate for modelling population dynamics.
However, the prediction that extinction must eventually occur does not contradict
what we see in the real world; the waiting time for extinction is often so long that
we may never expect to observe it (6); in effect, extinction within any observable time

13.
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span may not occur. A similar situation is accepted in statistical mechanics, where
systems apparently moving irreversibly to equilibrium actually visit nonequilibrium
states infinitely often [(16), page 149). Moreover, this property of certain eventual
extinction is a feature of a broad class of models where population sizes are whole
numbers. Since if the probability of eventual extinction of the prey (predator) given
H, is greater than some strictly positive function f(Z(?)) of Z(¢) alone, then either
the prey (predator) becomes extinct or the sum of prey and predator population sizes
approaches © as t—», with probability 1. This result is a trivial generalization of
results given by Breiman [(16), Chapter 5, problems 9 and 10). If population sizes
are not allowed to become arbitrarily large it seems that, in the absence of evolution,
eventual extinction is a fact of life. It is certainly not a reason for rejecting Markov
process models.

When populations are small, as they often are locally, extinction in the short term
is predicted by stochastic models. This is not unreasonable, since local extinction
commonly occurs in nature (2). Leslie & Gower (48) and Poole (67) present detailed
analyses of factors affecting extinction in small populations. As indicated above,
stochastic models are essential for this kind of study.

For small local populations the assumption of homogeneous interaction may not
be unreasonable; the Markov process models used to model within-individual varia-
tion may be appropriate to this case. For small populations these models demon-
strate that variability is dominant and neither the mean nor the deterministic model
give very useful descriptions of population dynamics (12). However, the mean can
be a useful description of average population density for a large number of local
populations. Thus it is important to recognize that a small population for at least
one species, some of the time, can lead to appreciable differences between the mean
of a stochastic model and its deterministic analog. These differences can be extreme
for transient phases of population development (11, 12). This suggests that in
situations where local populations are dominated by such phases—e.g. are increas-
ing or going extinct most of the time—large differences will appear between deter-
ministic and stochastic models for collections of local populations (see the section
below on Within-Patch Variability).

VARIATION BETWEEN INDIVIDUALS

Model I is derived by assuming, for example, that each prey individual has the
probability 1-exp{-dY(#)} of dying by predation in the interval (zz+1]. If individu-
als vary in their susceptibility to predation, then an appropriate assumption is that
d varies from individual to individual according to some probability distribution.
In this situation the probability that a randomly chosen prey dies in (7,2+1] is
1-¢( Y(1)) where ¢ is the Laplace transform of the random variable d. For exam-
ple when d is a gamma random variable the probability of death takes the form
1-[14a Y(£)]* where A and a are parameters of the gamma distribution. The
difference between this functional form and the previous form depends on the
variance, a?\, of 4.
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Bailey, -Nicholson & Williams (4) modified the Nicholson-Bailey host-parasite
model in this way. Their model is basically deterministic, but their host death rate
agrees with the prey death rate of Model I. The functional form 1-exp{-d¥(¢)} is
derived on behavioral postulates (63), but the equality of the ds for each host is a
separate postulate that is relaxed in the later treatment. With a=1 and A<1, d has
a J-shaped distribution, and the new model is stable, whereas the original model is
unstable.

So far in our discussion we have not taken account of the fact that an individual’s
survival of one period alters its chance of surviving the next period, since the d’s
vary from individual to individual. If fis the probability density of & for an animal
alive at time ¢, then the appropriate density, if it survives to 7+1, is

Ad)et"0/(Y(1)). 14.

For an animal born at a time s and still alive at time ¢ the density for d that applies
for the period (4¢+1] is

Fdyexph-d S Y(l/d(E Y(w). 15,

Considerable complications have appeared, for this probability density depends on
both the age of the individual and past predator population sizes. In principle this
model can be handled by replacing X(¢) with the vector X(¢) = (Xo(¢), X,(¢), . - .)
where X;(?) is the number of prey of age i. The model is no longer a Markov process
because

P([X(¢), ¥(t)] EGH,) 16.

depends on the history of the predator population back to the birth of the oldest
prey. Thus variation between individuals can involve age structure in population
dynamics and it can also introduce non-Markovian properties. Additionally, be-
tween-individual variation will have a genetic component that may lead to changes
in the function f from generation to generation as a result of selection.

Such complications can be avoided in the short term (e.g. before the next prey
reproductive period) and so the short-term effects of between-individual variation
are not difficult to study. Also, variation between predators (e.g. in their voracity)
need not introduce non-Markovian phenomena or involve genetics, yet it can still
lead to population dynamics different from those predicted by models that ignore
between-individual variation (12).

Another possibility we have not considered is that individual animals change
through time. The value of &, for instance, is a function of an individual’s age. This
leads to a direct involvement of age structure. For a deterministic discussion see (3),
where further references can be found.

At the behavior level it is very easy to demonstrate significant effects of between-
individual variation. We give an example from selective predation theory. Manly et
al (55) proposed the following formula for the probability that a given predator
captures an animal of species 1 as its next prey: AX (AX+X,)". X, and X, are the
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numbers of prey species of types 1 and 2, and A is the preference for type 1, which
is assumed constant for a given predator. This formula can be derived from a simple
stochastic model (18). However, preference can vary between predators to a consid-
erable extent (61); it is best to think of A as a random variable. When there are many
predators present the ratio of type 1 to type 2 consumed after each predator has fed
is close to

(X /X)) [EAMAX X)) [EAX +X)'T! 17.
In this situation Murdoch and Oaten’s C (61) is given by
C(X1/X3) = [EMAX 1 +X,) [EAX +X,) )L 18.

Here the means (or expectations) are taken with respect to the probability distribu-
tion of A. When C is an increasing function, switching occurs (61). On the other
hand, if C is decreasing, the representation of a given prey species in the diet,
compared with its relative abundance, increases as it becomes rarer. This may be
called “anti-switching.” Evaluating C we find C(0)=E\,C(«) = (EX-!)-! If there
is any between-individual variation at all, EX > (EA-')"! (the arithmetic mean is
greater than the harmonic mean). So the overall population appears to be anti-
switching even though individuals do not change their preference. This result is
capable of substantial generalization. In particular, it can be shown (20) that anti-
switching is uniform over the entire range of values of X/ X,.

RANDOM ENVIRONMENT

Suppose, for example, that the birth rate of the prey increases when more favorable
weather results in an increased abundance of food. Model I should then be modified
so that the parameter & varies from year to year. The simplest situation is when
b,, the value of b for year ¢, is a random variable independent of previous years.
In this case Z(t) = (X(¢),Y(¢)) remains a Markov process, but instead of the
distribution of prey births being Poisson it is a mixture of Poisson distributions with

e KOBX (1))

P(x prey births for year {H,) = f por -f(b)db 19.

0
where fis the density function for 5. The most noticeable effect is that the variance
is now greater than the mean rather than equal to the mean as in the Poisson process,
but this variance also behaves rather differently, as we shall see.

Applying Kurtz’s space scaling (as in the section above on Within-Individual
Variation) the average density process Z ,() converges to a process Z.(t), but this
limiting process does not satisfy the deterministic equation 7. Instead we have

X (t+]) = X (1)(b,+e d¥=(D)
Yu(t41) = Yu(t)e¥+BX.A(1)),

which is a random difference equation. The randomness due to within-individual
variation has vanished, but the random environment part, b,, persists undiminished.

20.
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Within-individual variation is modelled as conditionally independent and so it tends
to cancel out when averaged over a large number of individuals. On the other hand,
random environment is modelled totally dependently because all individuals in the
population, living in a common environment, arg subject to the same environmental
fluctuations. This results in the variance of the number of births per unit area
converging to (X«(#))*V(b,), compared with O before. Thus a random environment
can lead to random fluctuation in average population density over a large area,
whereas within-individual variation may not.

The above analysis essentially assumes that environmental fluctuations in differ-
ent parts of the range of the populations are perfectly correlated. The conclusions
remain true if this correlation does not decrease too rapidly to 0 with distance.
Crowley (24) points out that some effects of the environment may not remain
correlated over large distances. However, this seems unlikely to be the case for
weather when considered over a reasonable time span. Even so, some random-
environment models assume independence between different places (71-73).

These results do not indicate that within-individual variation is far less important
than environmental variation. They simply indicate that within-individual variation
is much less likely to produce random fluctuation in average density over a large
area. The mechanistic role of within-individual variation persists, as we shall see,
when we consider the more realistic model of spatial interaction in the next section.
In geometrically growing populations (41) the effect of environmental fluctuations
becomes extremely severe when the population gets large. Fluctuations due to
within-individual variation are effectively swamped if the population can continue
increasing forever. However, within-individual variation may cause early extinction
of the population, and, without it, extinction in finite time is impossible. Further-
more, when populations are not allowed to grow indefinitely, the effect of within-
individual variation can still be felt (54).

From the point of view of a deterministic modeller, random environment is a
destabilizing influence (57), but it can also have mechanistic effects—e.g. it can
produce quasi-cyclic population oscillations (17, 35, 64).

The usual approach to modelling a random environment is to assume that the
environment is independent from one time interval to the next, as we have done.
For continuous-time processes the environment is independent at every instant; in
the usual case where the probability distribution does not depend on time (a station-
ary process), the environment process is called white noise (33). In a study of
stochastic logistic models Roughgarden (75) found a greater variety of possible
behavior when the environment process is correlated. Therefore alternative ap-
proaches are needed.

The analytic advantage of using white noise is that the resulting population
process is a Markov process. However, it is possible to remain within the Markov
family of models if the state variables Z(¢) include the environment. For example,
if Z(t) = (X(2), Y(¢),b,) in Model I, and b, is a Markov process, then it follows that
Z(t) is a Markov process. The environment can be arbitrarily highly correlated from
one time to the next and the theory of Markov processes can still be used in the
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analysis. This idea is applicable quite generally but has not been exploited in preda-
tor-prey models. The major disadvantage is the increase in dimension of the process.
Other approaches have been suggested by Goh (32) and Cumberland & Rhodes (25).

Generally random environment models have required linearization to make them
tractable. Nisbet et al (64) have examined, for a few specific examples, the error
involved in linearization. Ludwig (54) has demonstrated an asymptotic method that
obviates linearization.

WITHIN-PATCH VARIABILITY

Within-individual variation, between-individual variation, that part of temporal
environmental variability which is specific to a patch, and movements into and from
a patch, combine to form within-patch variability.

We shall discuss a simple model (Model IT) showing the effect of within-patch
variability; it is, however, capable of substantial generalization. The major feature
of this model is that the individuals in the populations do not interact homoge-
neously; local randomness thus has a direct effect on population dynamics. In
particular the model demonstrates that the effect of within-individual variation does
not disappear as the size of the environment increases.

The total range of the populations is made up of & patches. The population totals
(X (1), Y(2)) are divided up into subpopulations (X,(2), Y,(2)), . . ., (X (), ¥3(2)) on
each of the k patches. At the beginning of each time interval migration occurs. At
other times growth occurs, and during this time the populations are effectively
isolated so that the chances of survival and reproduction for any individual are only
affected by other individuals living in the same patch.

In Model 11, k~'Z(¢), which equals (k' X(¢),k~! Y(2)), gives the average popula-
tion densities. The size of the environment is increased by simply increasing &; the
nature of the patches remains unchanged. As k—,k~1Z(¢) converges to a determin-
istic process Z*(¢) = (X*(¢), Y*(#)) in the same way that Z ,(¢) of Model I converges
to the deterministic process Z.(r). So with this new model the average density
process also becomes very close to a deterministic process as the size of the environ-
ment in which the populations live is increased. However, there is a very important
difference between the limiting average density process Z*(¢) of Model 11, and the
corresponding process, Z.(t), from Model 1. Whereas Z.(?) is the deterministic
analog of the stochastic model, Z*(z) is not. Replacement of any stochastic sub-
model of Model II by the deterministic analog leads to an average density process
different from Z*(¢). '

There are two basic reasons for these differences. First of all, in predator-prey
systems the dynamics are nonlinear. Second, the probability that a particular indi-
vidual dies in the time interval (4,z+1] is a function of Z,(¢) alone, when the animal
is in patch j for this time interval. So we can write this probability as p(Z,(?)).
Increasing the number of patches does not change this, and the variance of Z(r)
does not approach 0. On the other hand, the corresponding probability in Model
I is a function of the average population density over the whole area. In both models
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the average population density becomes deterministic as the area increases. In
Model I this probability is dependent on an approximately deterministic process for
large 4. In Model II this probability is dependent on a stochastic process that does
not approach a deterministic process as k— . The same kind of statement also holds
for birth probabilities. For Model I conditional means become nonrandom as
A—x, but for Model II conditional means remain random variables as k—co.

The magnitude of these differences depends on the degree of nonlinearity of the
conditional means and on the magnitude of the variance of the Z;(¢). Factors
contributing to this variance do not change greatly as k—o because they are
generated mostly within a patch that does not change as k—«. A greater effect will
occur with the migration process because it is the only process directly dependent
on the number of patches. As k—e, no large changes occur in the relative impor-
tance of the four recognizable components of within-patch variability mentioned at
the beginning. As anticipated, the contribution of within-individual variation per-
sists as k—o. For a proper understanding of what happens we must examine the
mathematics. The nature of this article precludes giving full details, but these will
appear elsewhere (21).

In-Model II, H, denotes the history of the populations on each of the k patches.
For every interval (z,¢+1], ¢+ denotes the time before which migration occurs and
after which growth occurs. Migration is of the simplest possible kind: Different
animals migrate independently. An individual prey (predator) occupying patch i has
probability m/(k-1) (u/(k-1)) of migrating to patch j=i. Given H,,, the Z;(z+1)
are independent and the conditional distribution of Z,(¢+1), given H,4, is simply
a weakly continuous function of Z,(s+). We use the notation

P(Z(t+1)EGH,4) = Y(Z(1+),6). 21.

Y may, for example, simply specify the same process of birth and death that occurs
for the whole area in Model I, scaled down to patch size, of course. We have specified
the dynamics as a Markov process but this is not essential.

It is assumed that Z,(0), ...,Z;(0) are symmetrically distributed, as can be
arranged by random labelling of the patches, and that the variance of the Z/(r)
remains bounded as k—w, as it will be in most cases. If the observed or empirical
distribution of the Z,0) approaches a theoretical probability distribution, in the
sense of weak convergence in distribution, then the methods of P. Chesson [(19),
section 3.6] apply, and it can be shown that

1. Z4(¢) has a limiting distribution 7, independent of j
2. k-'Z(r) converges in distribution to the process Z*(¢+) = EZ(t) = Szdm (2).

It is important to remember that Z(¢) is stochastic in the limit while Z*(¢) is
deterministic.

The limiting distribution of the process Z,(t) is easy to describe. Given H,,
emigration of prey is binomial with parameters (X (¢),m) and immigration is Pois-
son with mean mX*(¢). For predators, u replaces m etc. We shall use the notation
X(Z*(1),Z(1), G) to denote P(Z,(++ )YEGH,) which is specified by these migration
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processes. The internal patch dynamics are the same for all k£ and therefore in the
limit we still have P(Z,(++1Y€GH, ) = y(Z(t+),G). m, is now defined by the
iterative formulae

m,+1(G) = f‘)’(zl,G)X(Z'(’),Zo,dzl)dﬂ':(zo),
Z*(t+1) = fzdm,\(2).

This model has at least three distinct stochastic parts that can be made determinis-
tic, namely the movement processes, the internal patch dynamics, and the variation
in the initial value Z,0). Deterministic analogs are found from the appropriate
conditional expectations.

To make movement deterministic, treat Z,(#+) as though it equals E[Z(¢+)H,],
namely Z(¢)+M(Z*(t)-Z(t)) where M is the diagonal matrix with diago-
nal (m, u). Internal dynamics become deterministic by equating Z(t+1) with
E[Z,(++1)H 4] = hy(Z,(¢+)) where h, is a function that can be specified in any
particular case. Variation in the initial value is eliminated by putting Z,(0) = Z*(0).
Doing all this simultaneously we get the deterministic model (Model III):

Z(1+1) = hy(Z;(t+ )} and Z(1+ ) = Z(1). 23.
In this model, Z,(¢) is equivalent to Z*(¢). If the internal dynamics are described

by Model I then this deterministic model agrees exactly with the deterministic limit
of Model 1. To see the deviation from the limit of Model II note that, in Model II

Z*(1+1) = Ehy(Z, (1))

and 24.
Z*(t+) = Z*(r) = EZ(1+) = EZ\»).

Because of nonlinearity, Eh(Z,(1+)) = ho(EZ(¢+ )), in general, and so Model III

and the limit of Model II disagree. It is instructive to examine just what the deviation
actually is in the case where internal patch dynamics are described by Model 1. Here

hoZ) = [X(He—dy)

22.

P 25.

and the deviation is:

Ehy(Z;(1+))-ho(Z*(1)) = [

Efe-d"M_e-dV*O]X*(r) +C(e~"™), X (1+4))
BCXj(t+), Y, (1 1)

This may be compared with equation 8 tor Model I, where the deviation between
the stochastic mean and the deterministic model is similar. The difference here is
that the deviation terms do not vanish as the size of the environment increases.
Although Model II has not yet received detailed analysis, a number of simple
predator-prey models have been published (38, 39, 59, 79) that are similar to Model
I1: They are based on patchy environment and contain at least some within-patch
variation and nonlinearity in internal dynamics or migration. These authors chose
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unstable deterministic internal dynamic processes, which, because they are deter-
ministic, correspond exactly to Model III. Thus removing all within-patch variation
in these models—i.e. taking away randomness in movements and variation in initial
values—Ileads to unstable processes. However, all of these models allow coexistence
of predator and prey for wide ranges of parameters, thus demonstrating the essential
role of within-patch variation.

Hastings (38) also discusses, but dismisses as unrealistic, a modification of his
model in which internal dynamics are stochastic. The latter model is actually more
stable than the model with deterministic internal dynamics. The stochasticity in the
internal dynamics is introduced by replacing a constant waiting time for extinction
by an exponentially distributed one. Since such waiting times can be highly variable
and can have skewed distributions, the stochastic alternative need not be unrealistic
(48, 67). Moreover, Keilson (42, 43) shows that, in broad situations, Markov pro-
cesses have asymptotically exponentially distributed exit times. See also Barbour (6).
Thus the modification of Hastings’ model provides a further demonstration of the
effects of within-patch variation.

Another area of deterministic predator-prey modelling concerns production or
elimination of spatial or temporal patterns through movements, with growth and
interaction dependent on local population densities (1, 22, 27, 36, 49, 50, 62, 74, 76,
77). Although initial population densities may vary, these models are deterministic
in both movements and local dynamics. A comparable model can be obtained from
Model II by replacing movements and within-patch dynamics by their deterministic
analogs but retaining the variation in the initial values. We shall call this Model IV.
Our models contain less-realistic movement processes than the models cited above;
in the latter, animals migrate to nearby places, while in ours the migrating individu-
als are scattered at random in space. However, this is not an essential feature of our
models and does not affect our conclusions.

Since we are interested in changes in spatial patterns through time, we shall
compare the development of Z,(¢) from its initial value, to the stochastic counterpart
E[Z;(t)H,)], which represents the conditional mean population sizes—given, or as
a function of| the initial conditions. As before, within-patch variation, together with
nonlinearities in dynamics, produces differences between the stochastic and deter-
ministic models. For deterministic models to be applicable, within-patch variation
must be small. This means that local random environmental variation must be small
and that populations must be locally dense and must interact homogeneously.

To show how these differences appear, Model IV is written as

Z(1+) = Z(tHMZ*(1)-Z(1))
Z(1+1) = hy(Z(1+)).

Z*(z) is still defined by formula 22, with appropriate deterministic substitutions for
the dynamics. In Model II,

E[Z,(++)H,] = E[Z,()Ho] +M(Z*(1)-E[Z,(1)HL])
E[Z(++1)Hol = E[ho(Z{(+))Hol.

27.

28.
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Thus we see that the variation in Z,(r+), given Hy, and the nonlinearity in h, results
in deviation between the stochastic and deterministic models. If movements are
nonlinear as in (34), a second source of deviation is produced.

BETWEEN-PATCH VARIABILITY

Not all places make equally good homes for animals. Parameter values for internal
dynamic processes and migration may differ from place to place. Looking at this
from the point of view of random environment one might say that the probability
distribution for the state of the environment is space-dependent. Prey refuges pro-
vide an extreme case of this berween-parch variability, which can have significant
ecological effects (61). In addition, Comins & Blatt (23) have demonstrated stabiliz-
ing effects of space-dependence of the migration process in a predator-prey model;
Gurney & Nisbet (34) show how local exponential growth can be stabilized by
between-patch variation and nonlinear migration.

Since between-patch variability is assumed to be fixed for all time, it does not
matter greatly whether its origin is regarded as random or deterministic. However,
when it is treated as random it is easily incorporated in Model II of the previous
section. When this is done, patches vary in type with /; representing the type of patch
J. As k—, Z,(1) has a limiting distribution and k~'Z(¢) converges to the determin-
istic process Z*(#) = EZ/(¢). The most easily observable difference is that the
limiting Z,(¢) are no longer Markov processes but mixtures of Markov processes.
Thus between-patch variability can produce non-Markov behavior. However, the
enlarged process (f;,Z;(¢)) is a Markov process. The determination of general effects
of between-patch variability awaits more detailed analysis of this model.

MODELLING AND STABILITY
Structural Models

The classical Lotka-Volterra predator-prey model and Model I are examples of
specific models. They are'specific because the precise form of the interaction between
predator and prey is specified in the model. The only things not specified are a few
parameters—e.g. b, d, 3, and 8 in Model 1. Specific models rapidly become difficult
to analyze and interpret as more features are included to increase their realism (51).
Conclusions based on specific models are specific conclusions—i.e. they are valid for
the precise form of predator-prey interaction specified in the model. Such models
are incapable of furnishing the material for a general predator-prey theory. It could
be argued that concurrence of a large number of specific models can lead to general
theory; however it is possible to take a more general approach.

Model I is a general model of the kind we shall call a structural model. In Model
II the precise form of the interaction between predator and prey is left unspecified.
If patch dynamics are specified to follow Model I then Model IT becomes a specific
model. However, it is not necessary to make Model II into a specific model before
worthwhile conclusions are available. For example, in the section above on Within-



342 CHESSON

Patch Variability, Model II is used in its general form to draw conclusions about
differences between stochastic and deterministic models. Its use there is a means of
exploring relationships between models falling within a general framework. But the
conclusions apply more generally than just to models, for they indicate that field and
laboratory studies should consider variability and should not restrict attention to
mean tendencies. Structural models have also been used in this exploratory manner
in the study of animal movements (19).

Can a structural model be more than exploratory; can it explain or predict
real-world phenomena? Model I does yield predictions when qualitative assump-
tions are made about the predator-prey relationship. For example, using Model I
it is possible to determine the way the correlation between local predator and prey
density is affected by such factors as predator dispersal rate and the existence of
alternative prey for the predator. When only qualitative assumptions are made, the
model retains its structural character and so remains general. Model I needs further
study to see what other predictions are available. A worthwhile investigation would
be to seek general conditions under which predator and prey densities are stable in
the sense to be discussed below (“‘stochastic boundedness™). To make Model I really
useful we must modify it to include (@) more general movement processes, and
(b) dependence between the random environment processes for different patches.

Mathematics can be very general (69); but the application of this general mathe-
matics to the real world is mostly indirect: It is used to study specific models.
General mathematical results are in use in population ecology; for example, Kol-
mogorov’s theorem (17, 57) is a general result used in the study of specific models
of the predator-prey interaction. In the section on within-individual variation we
have seen a general result on the inevitability of population extinction. In both of
these examples the list of assumptions is essentially a structural model, i.e. the
assumptions are qualitative. Predator-prey theory will benefit from attempts to
formulate structural models whose conclusions will apply directly to field situations.
Only in this way ean field data actually refute not the irrelevant details of specific
model but rather the idea being tested. The real ideas being tested are nearly always
qualitative and should not be tied to specific models.

What general conclusions do apply to predator-prey systems? Only by seeking to
prove or disprove general results can we begin to find answers. Specific models do
have a place in this process, as examples, counterexamples, and guides to intuition.

A predator-prey system can be divided into several levels of organization. The
most basic level is behavior. Behavior contributes to the birth, death, and movement
processes of individual animals. These in turn lead to local dynamics, which then
yield the dynamics of average population density. To consider too many levels at
once would lead to highly complicated models. A method more likely of success is
to make assumptions at one level—e.g. that of local dynamics—and use these to
draw conclusions about the next level—in this case the dynamics of average patch
density. Field studies and models for lower levels can suggest appropriate assump-
tions. In this scheme, within- and between-individual variation and local environ-
mental variation can be studied for their effect on local dynamics but need not be
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considered explicitly in studies of average population density for many patches.
Their effects should be implicit in the assumptions about local dynamics.

Stability Notions For Stochastic Systems

The usual notions of stability for deterministic models are difficult to relate to
real-world population phenomena (15, 40). In the real world, stochastic phenomena,
especially of the random environment kind, constantly alter the state of the system.
These stochastic effects are not external to the system; they are an inseparable part
of it. _

The stability notions of Wu (78), and Botkin & Sobel’s #-persistence (15), are
essentially deterministic concepts and are not suitable for stochastic systems. Recur-
rence of any particular set of states (15) is an aspect of a system'’s stability, but
nonrecurrence for a particular set would not necessarily lead us to conclude that
the system is unstable.

Ludwig (54) has suggested judging the stability of a model by the expected waiting
time to extinction. However, this idea is difficult to relate to the field, where such
waiting times will only be available for local populations and will in most cases still
be very difficult to determine. For average density over a large area the waiting time
for extinction may be enormous and, correspondingly, models for limiting average
density, such as the limit as K-+ of Model II, may not allow extinction over the
total area at all.

One might say that a model for limiting average density is stable if there is no
possibility that the populations will decline to zero or increase in an unbounded way.
This idea can be formulated mathematically so that it applies to one of several
populations in a model. This is done below. However, it is not difficult to extend
the definition so that it applies simultaneously for several populations. Let Z(¢) be
the average density of one population in the model. The model is assumed to be of
the limiting average density kind, for example the limit of model IT as k. Z will
be stochastically bounded if for every positive probability € there are numbers
U< and L >0, such that for any ., Z(r) is greater than L, with probability at
least 1-€ and less than U, with probability at least 1-e. Consider as a simple
illustration the case where log Z(¢) is normal with mean u(¢) and variance o-3(¥).
Then for e = .025 we find

log L, = min p(r)-1.960(¢), and
t

log U, = max u(1)+1.960(¢).
t

Clearly the maxima or minima could be >« in which case Z is not stochastically
bounded. Notice that for any given time the probability that Z(¢) is between L and
U, is at least .95 for € = .025.

The bounds L, and U, can be estimated from observational data—e.g. in the
lognormal case from the estimates of w(r) and o%(f)—and so U, and L, have
genuine meaning for real-world systems. The magnitudes of L, and U are quantita-
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tive measures of the amount of fluctuation in a system. In model systems, especially
of the structural kind, the aim should not be to find L, and U, explicitly; this will
often be difficult or impossible. Success is more likely in proving their existence or
nonexistence, which is equivalent to proving or disproving the stochastic bounded-
ness of the model population. In models where U, and L exist, factors affecting
their size and difference should be important objects of study. Stochastic bounded-
ness corresponds to the concept of tightness from the theory of convergence of
probability measures (13, 14); therefore the latter theory is directly applicable to the
study of stochastic boundedness.

In Model II there is no common component of random environment for the whole
collection of patches. As a result, limiting average density is deterministic; in this
case, stochastic boundedness reduces to the deterministic notion that the density is
stable if it always remains within certain fixed bounds. Stochastic boundedness
applies in a more interesting way when environment is random. Stochastic logistic
processes as studied by Feldman & Roughgarden (28) provide an interesting appli-
cation. For these processes L, and U, can be calculated directly from the distribu-
tion of Z(¢) given by the model.

Stochastic boundedness can also be considered on a local scale. For an individual
patch or collection of patches U, and L, are defined as before. However, since
local extinction is to be expected, it is not useful to insist that L, > 0 for every
€ > 0 before a population is regarded as stable. Instead say that a population is
stochastically bounded, in the local sense, if U, < for all €20 and there is an
€<1 such that L_>0. For this definition to be sensible some kind of recurrence
condition is also required (15). As a simple illustration consider this concept in
relation to Hasting’s model (38) with average population densities at equilibrium.
For a single patch we find U¢=1 for all €. L ¢=0 for ¢<p (equilibrium density), and
L =1 for ep. In Hasting’s system patches are statistically independent, therefore
the binomial distribution can be used to calculate L¢ and U, for the average density
of a collection of n patches. Alternatively one can use the normal approximation
which, with €=0.25, leads to

U, =~ p + 196n~ [p(1-p))*
and
L, =~ p-1.96n~" [p(1-p)]".

In cases where there is statistical dependence between patches, U, and L, will also
depend on the geometry of the collection of patches. This kind of model analysis
again allows direct comparison with the real world because L, and U, can be
estimated from observational data.
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