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This paper studies population models which have the following three ingredients: 
populations are divided into local subpopulations, local population dynamics are 
noniinear and random events occur locally in space. In this setting local stochastic 
phenomena have a systematic effect on average population density and this effect 
does not disappear in large populations. This result is an outcome of the interaction 
of the three ingredients in the models and it says that stochastic models of systems 
of patches can be expected to give results for average population density that differ 
systematically from those of deterministic models. The magnitude of these 
differences is related to the degree of nonlinearity of local dynamics and the 
magnitude of local variability. These results explain those obtained from a number 
of previously published models which give conclusions that differ from those of 
deterministic models. Results are also obtained that show how stochastic models of 
systems of patches may be simplified to facilitate their study. 

1. INTR~OUCTI~N 

The chances of survival and reproduction for an individual organism 
depend on the physical environment and other organisms in the place in 
which it lives. In self-sustaining natural populations there will be spatial 
variation in the numbers of individuals. This variation alone leads to spatial 
variation in the chances of survival and reproduction for any individual. 

There is also temporal variability: local populations do not converge 
towards an equilibrium, but fluctuate; and to the extent to which these fluc- 
tuations are independent from place to place, they create an ever-changing 
spatial pattern in population numbers, which in turn leads to an ever- 
changing spatial pattern in the chances of survival and reproduction for an 
individual. 

Does this variation somehow average out so that average population 
density, set wholly by deterministic forces, is all that needs to be considered? 
Classical population models in ecology make this assumption (e.g., 
Lotka-Volterra and Nicholson-Bailey) and it has been sustained in the 
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majority of recent developments (see May 1976). On the other hand, 
Andrewartha and Birch (1954) emphasized spatial and temporal variability 
as important mechanistic aspects of population development. Since then 
there has been occasional reemphasis (DenBoer, 1968; Birch, 1970; Levin 
and Paine, 1974; Wiens, 1976; Connell, 1978; Caswell, 1978; Murdoch. 
1979) but the mathematical development of these ideas is relatively recent. 

In recognition of the effects of spatial variation in population numbers 
there is now a number of models for population development in both space 
and time. (See reviews by Levin, 1976; Mimura et al., 1978; McMurtie, 
1978.) However, because these models are deterministic they omit an 
important temporal aspect of local population development; they do not take 
account of the randomness involved in births, deaths and migration on the 
local scale, i.e., they do not take account of within-path variability (Chesson. 
1978). As a result these models underestimate both temporal and spatial 
variation in population numbers; indeed many of these models predict the 
eventual disappearance of all spatial and temporal variability (Levin, 1974: 
Allen, 1975; Hastings, 1978b; Conway et al., 1978). When this happens in a 
model. it loses its usefulness for the study of the effects of the sustained 
spatial and temporal variability that we see in the real world. Within-patch 
variability is a factor omitted from these models that maintains spatial and 
temporal variability. 

There is now a growing list of simple models dealing with at least some 
aspects of within-patch variability (Maynard Smith, 1974; Roff? 1974a. b: 
Slatkin, 1974; Hastings, 1977, 1978a; Zeigler, 1977; Caswell, 1978: Gurney 
et al., 1978a, b). Even these simple stochastic models give strikingly different 
conclusions from deterministic models (Chesson, 1978). Unfortunately there 
are two difftculties with these models. Firstly, in most cases local 
populations are described by species presence or absence and this permits 
only a very limited range of kinds of local population dynamics. Secondly 
there are no suitable deterministic analogues for most of these models 
because the description of local populations by presence and absence 
variables is very unnatural in deterministic models. In deterministic models 
continuous descriptions of local populations are much more sensible. Thus 
the two classes of models that we wish to compare differ in ways other than 
the presence or absence of stochasticity. Consequently the reason for the 
differences between the predictions of the two sorts of models has remained 
unclear. 

In this paper we present a class of models which overcomes both of these 
difficulties. Local population sizes are nonnegative integers; local population 
dynamics can be of any form and the sensible deterministic analogues are 
easily identified. These models are compared with two different kinds of 
deterministic models, those of the classical form that do not take account of 
spatial variation in population numbers and also models that do take 
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account of such spatial variation. It is shown that in general the stochastic 
model can be expected to give different results from the deterministic model 
even though total (but not necessarily local) population sizes are very large. 
Indeed there is an important systematic difference between the results of 
stochastic and deterministic models that does not depend greatly on 
population size and therefore does not disappear in indefinitely large 
populations. The approximate agreement between deterministic and 
stochastic models claimed by some authors (e.g., May, 1974a, b) for large 
populations is based on models that ignore the effect of spatial variation in 
population numbers. 

The results obtained here depend heavily on the assumption that local 
population dynamics are nonlinear as they are in most real populations. 
Indeed this paper is best described as a study of the interaction between three 
properties of real populations: within patch-variability, nonlinearity and the 
fact that a population spread over a large area is subdivided into local 
populations (inhomogeneous interaction). 

Model Ingredients 

Inhomogeneous Interaction 

We shall use the term inhomogeneous interaction to mean that the chances 
of survival and reproduction for an individual can not be determined simply 
by the spatial averages of population densities for the area but depend on the 
individual’s movements and the spatial arrangement of the populations. The 
converse situation, homogeneous interaction (Chesson, 1978) is implicit in 
the classical kinds of models where the only variables in the model are total 
population sizes for an area or equivalently the spatial averages of 
population densities for the area. 

To model inhomogeneous interaction we consider a system of patches 
supporting local populations and connected by migration. While an 
individual is present in a given patch, its chances of survival and 
reproduction are assumed to be a function of conditions in that patch. 

Within-Patch Variability 

Within-patch variability (Chesson, 1978) deals with random variation that 
is simultaneously spatial and temporal. It can be defined as the totality of 
patch specific random temporal events affecting local population density. 
Since these events are patch specific, different patches will experience 
different changes in density and this leads to the spatial aspect of within- 
patch variability. Within-patch variability is made up of randomness in 
migration processes, within-individual and between-individual variation and 
random changes in the local environment. 
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Within-patch variability is a dynamic property of a patch and this 
distinguishes it from between-patch variation which refers to those physical 
differences between patches that do not change with time. 

Temporal environmental variability has two components, that which is 
common to all patches, and that which is specific to a patch and therefore 
forms part of within-patch variability. The part common to all patches is 
distinguished from within-patch variability by the fact that it is purely 
temporal and has no spatial component (its effect is by definition the same 
everywhere). 

Nonlinearity 

We assume that population dynamics within a patch (“internal 
dynamics”) are nonlinear because, as we shall see, linearity occurs only 
under very limited conditions that do not persist in nature for very long 
periods of time. 

Let z(t) = (z,(r),..., z,(t)) be the population sizes of r different species. A 
discrete time deterministic model takes the form 

Z(f + 1) = f&z(t)). (1) 

Generally g is said to be linear if g(z) = a + AZ, where a is a constant vector 
and A is a constant matrix. For g to be a sensible growth function g(0) = 0 
and g(z) > 0 for all z > 0. These restrictions imply that a = 0 and A is non- 
negative. For the single species case, linear models represent geometric 
growth. For several species models, the diagonal elements of A are geometric 
growth terms while the off-diagonal elements can only represent density 
independent mutualism or commensalism. Thus exactly linear models are a 
very restricted class. Linear approximations to nonlinear models can be 
adequate for some purposes, for a small range of population sizes, and such 
approximations need not satisfy the strict requirements of exactly linear 
models. However, in this paper we are interested in the effects of local 
density variation over large ranges of local population sizes where linear 
approximation is not adequate. 

In our stochastic models, the function g represents a mean population 
growth function within a patch. Instead of z we use Z to indicate that it is a 
random variable and we add a second subscript to give Z,(t), which is the 
population size of the ith species in thejth patch at time t. 

2. STOCHASTIC MODELS ASSUMING INHOMOGENEOUS INTERACTION 

In this section we define stochastic models that incorporate all three of the 
ingredients listed above. The first, called the finite stochastic model, has a 
finite number, k, of patches while the second, the infinite stochastic model. 
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has an infinite number of patches and is defined so that it will approximate 
the finite model for large k. Large k means that the populations will occupy 
a large area and this corresponds to large total populations for the area. 

The approximation of the finite model by the infinite model leads us to our 
first conclusion, namely that when k is large, within-patch variability causes 
little random variability in the spatial average of population density. 
However, we see in Section 3 that there is a systematic departure from the 
predictions of deterministic models. 

2.1. The Finite Stochastic Model 

This model is based on the following general assumptions. 

1. The physical environment is divided into k < 03 patches. These 
patches are identical in their physical attributes, i.e., no between-patch 
variation is involved. 

2. Migration of organisms is separated in time from the processes of 
population growth and intra- and inter-specific interactions. For each time 
interval (t, t + 1) migration occurs during (t, t + h) and population growth 
processes take place during (t + h, t + l), t = 0, 1, 2,... . Population changes 
in any patch during (t + h, t + 1) are therefore assumed to depend only on 
the population sizes in that patch at time t + h, and random events specific 
to that patch (within-patch variability). Thus the model embodies 
inhomogeneous interaction. 

3. It is assumed that organisms are highly dispersive so that all patches 
are equally accessible to a migrating orgnism. Moreover there is no 
interaction during migration-individuals are assumed to migrate indepen- 
dently. 

4. The system as a whole is closed. There is no immigration to, nor 
emigration from, the system as a whole. 

Of these assumptions, the least realistic is that all patches are equally 
accessible to a migrating organism. Although it can be argued that highly 
dispersive organisms may find all patches equally accessible when the 
number of patches is small, this is not likely to be so when the number of 
patches is large, which is the case of most interest here. Fortunately, as 
discussed in Section 6, our principal conclusions do not depend at all on 
equal accessibility, but it is assumed here because it leads to far simpler 
mathematics. Equal accessibility results in a greater degree of population 
mixing, reducing spatial variation and erring on the side of conservatism. 

We now state the model in mathematical terms. For this we define Z,(t) = 
(Z,,(t),..., Z,(t))‘, the vector of population variables for patchj at time t. The 
average population densities are the components of the vector z,(t) = 
k-’ z=, Zj(t), i.e., they are defined as simple spatial averages. The symbol 
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H, is used to represent the history of the system up to and including the 
time t. 

Assumption 2 means that Z,(t + l),..., Z,(t + 1) are conditionally 
independent given Hl+h, and 

P(Zj(t + 1) = Z 1 Ht+h) = Y(Z* Zj(t + h)), (2) 

where y is some function, i.e., given the state of the entire system through 
time t + h, the conditional distribution of the population sizes on a patch 
after the period of growth and interaction is simply a function of the 
population sizes on that patch at time t + h. The conditional expectation of 
Z,(t + 1) given HrLh is 

EIZj(t + l) lH*+hl =x zY(z9 Zj(f + h)) = g(Zj(t + h)), (3) 

where g is some function. 
For assumption 3 we define pi as the probability of migration of an 

individual of species i. Given H,, an individual of species i present in patch j 
at time t has probability ~1J(k - 1) of migrating to patch j’ fj. Different 
individuals are assumed to migrate independently and this means that the 
migration model is of the multinomial kind (Chesson, 1976). 

Assumptions 1 and 4 are implicit in the mathematical statements of 2 and 
3. In particular, assumption 1 is implicit from the fact that y and pi do not 
depend on the patch involved. Thus different patches have identical 
properties and since dispersal is random, the patches are symmetrically 
related to one another. Although the patches are assumed labelled 1 to k, the 
order of the labelling is irrelevant to our considerations here and so without 
loss of generality we can assume that the initial populations (Z,(O),..., Z,(O)) 
have a “symmetrical” or “exchangeable” distribution. This means that 
(Z.i,(0),..., Z,,(O)) has the same distribution as (Z,(O),..., Z,(O)) for all 
permutations (j, ,..., j,) of (l,..., k). By making this additional assumption we 
preserve the symmetry of the system given by the other assumptions. As a 
result the probability distribution of {Zj(t), t > O} will be the same for each j. 
Actual population sizes will of course depend on j and will lead to spatial 
variation. 

It is explained in the Appendix (Al) that the symmetry assumption is 
perfectly natural and in no way biasses the conclusions that we draw. 

EXAMPLE 1. As an illustration consider a single species model where, 
given H,,,. Zj(t + 1) is a Poisson random variable with mean 
K( 1 - exp{-/?Zj(t + h)}) = g(Zj(t + h)). This is a simple density dependent 
growth model where the mean population at time t + 1 approaches a 
maximum value K for large populations at time t + h. For this model 
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Y(zt zj(' + h)) = 
[ g(Z,(t + h))]’ e-g(zj(t + h)) 

2. I 

The randomness specified by the probabilities y is a result of random events 
taking place within patch j during the growth period (t + h, t + 1). 

2.2. The Infinite Stochastic Model 

This model is very similar to the previous model but has infinitely many 
patches. Indeed apart from this change the nonmathematical statements of 
the assumptions are identical. The mathematical statements may seem a little 
surprising but we shall see their justification in the next subsection. 

In the infinite stochastic model there are infinitely many population 
processes (Zj(t), t > O}, j = I,2 ,... corresponding to the infinity of patches. 
These processes are independent and identically distributed. By 
“independent” we mean, as always, statistically independent. Independence 
between the population processes does not mean that the patches are isolated 
and do not affect each other; patches are linked by migration, but the effect 
of the other patches on the immigrants to any given patch depends only on 
the limiting average population densities, namely lim,,, n- i cj”=, Zj(t). This 
limiting vector is equal to EZj(t), by the law of large numbers, and therefore 
is nonrandom, i.e., has zero variance. Thus patches affect each other in a 
nonstochastic manner. In contrast, in the finite model the relevant quantities 
are k- ’ z=, Zj( ), t an since k < co these are stochastic but may have small d 
variance for large k. The precise model for migration is: Given H,, different 
individuals migrate independently. The number of emigrants of species i from 
patch j is binomial with parameters (Zij(f),pi) as it is in the finite model. 
The number of immigrants of species i, to patch j, is Poisson with mean 
,uiEZij(t). This immigration model comes from letting k-+ co in the 
immigration processes of the finite model. 

The model for population change during (t + h, t + 1) is the same as in 
the finite model, i.e., given Ht+h, the conditional distribution of Zj(t + 1) is 
y(., Zj(t + h)). In this model average population density is z,(t) = 
lim,_, n - ’ CT=, Zj(t). As we have observed, this equals EZj(t). Thus, 
average population densities are deterministic, but as we shall see this does 
not mean that average population density will be given by the deterministic 
analogue of the stochastic model. 

2.3. Approximation of the Finite Stochastic Model by the Infinite Stochastic 
Model 

Suppose we let k + co in the finite model, i.e., we allow the number of 
patches to become large, then the probability distribution for the population 
variables on any fixed collection of patches approaches the corresponding 
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probability distribution given by the infinite model. Furthermore the average 
density process z, of the finite stochastic model approaches the average 
density process z, of the infinite model. These results are proved in the 
Appendix (Theorem Al) under conditions that are general, but of a technical 
nature, and need not concern us here because they hold in alomost all cases 
of practical interest. 

These results show that for large k the infinite model is a good approx- 
imation to the finite model and is therefore the appropriate infinite patch 
modification of the finite model. An important consequence of this result is 
that as k + 03 the average population densities z,(t), f > 0, converge to a 
nonrandom or deterministic process z,(t), t >, 0. This at first appears to be 
in accordance with the opinion summarized by May (1974) that deter- 
ministic models provide adequate descriptions of the dynamics of large 
populations. However, we shall see that the correspondence is only partial. 
Our results do say that the average population density of a large population 
(living on a large area) will show little random variability, they do not say 
that the corresponding deterministic model adequately describes the 
dynamics of average population density. 

The approximation of the finite stochastic model by the infinite stochastic 
model provides a useful tool for determining the behavior of the finite model 
for large k because as k + co a number of simplifications occur which are 
expressed in the infinite model. We shall make use of this fact in this paper 
and it has already been used to advantage to determine conditions for 
population stability (Chesson, 1981a). These simplifications are as follows. 

Our results show that as k + co, the different patches become 
(statistically) independent. The reason for this independence is that 
communication between patches occurs through the pool of migrating 
individuals. As k- co, the size of this pool, divided by the number of 
patches. converges to a nonrandom quantity-it is simply a function of 
EZj(t). Thus for large k the effect of other patches on a given patch is simply 
a function of EZj(f), the theoretical mean for any patch. 

Note however, that immigration and emigration are still stochastic 
processes. For any finite k immigration is conditionally binomial with 
parameters (EEL Z,(t), pJ(k - 1)); in the limit it is Poisson with mean 
,uiEZii(f). The chief difference is that for finite k one parameter is a random 
variable, but in the limit the only parameter involved is nonrandom. 

Finally for large k. our results say that the dynamics of the system of 
patches can be studied by restricting attention to the individual patch. In 
order to determine the amount of immigration into the patch, one does need 
to know the average population densities for all other patches; however. 
these average population densities equal the theoretical mean population 
densities, EZj(t), which are the same for all patches and are therefore 
available from the patch under study. 
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3. THE DEVIATION BETWEEN STOCHAS-IIC AND DETERMINISTIC MODELS 

In this section we build deterministic analogues to our stochastic models 
and these are compared with the infinite stochastic model, a model assuming 
inhomogeneous interaction. The stochastic model is found to give different 
results for average population density than both homogeneously interacting 
and inhomogeneously interacting deterministic models. Inhomogeneously 
interacting deterministic models also have predictions about spatial variation 
and local population development and in both cases these predictions differ 
from those of the stochastic model. 

A parallel comparison can be done using the finite stochastic model with 
similar conclusions; but the significant point is that the differences do not 
disappear as k + co, i.e., as the area and total population become large, as 
testified by the infinite stochastic model. 

The deterministic models are built from the deterministic analogues to the 
internal dynamics and movements components of the stochastic models. 
Since 

Wj(f + 1) I~rA/Il = gP,(r + h)) (5) 
the deterministic analogue of the internal dynamics process is 

Zj(t + 1) = g(Zj(t + h)). (6? 

For movements we have 

E[Zj(t + h)( Ht] = Zj(t) + M(Z,(t) - Zj(t)), (7) 

where M = diag(,u, ,..., ,u~) is the diagonal matrix with diagonal (,D,,...,,D~). 
Hence the deterministic analogue is 

zj(t + h) = zj(t) + M(Z(t) - zj(t)), (8) 

where 2(t) is the vector of average population densities. These deterministic 
analogues assume that the population changes will exactly follow the mean 
whereas in the stochastic models, within-path variability causes random 
variation about the mean prediction. 

3.1. The Simple Deterministic Model 

The simple deterministic model assumes homogeneous interaction and in 
the present deterministic setting this means that average population density 
behaves just like the local population density of an isolated patch. Thus from 
Eq. (6) we have 

z(t + 1) = g@(t)). (9) 
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This is a classical deterministic difference equation for average population 
density and it defines the simple deterministic model. The stochastic model 
does not satisfy (9), however. To see this we deduce from (5) that 

Z,(t + 1) = Eg(Zj(t + h)). (10) 

which means that z, can only satisfy Eq. (9) if 

Eg(Zj(t + h)) = g(EZj(t + h)) (11) 

since EZ,(t + h) = z,(r). If g is linear, then Eq. (11) is always satisfied. 
However, when g is nonlinear we have good reason to expect that the 
stochastic and deterministic models will differ. This is best illustrated by 
Example 1, where 

g(Zj(t + h)) = K(l - exp(-pZj(t + h)}). (12) 

Unless Zj(t + h) has zero variance (an impossibility here) then 
E exp(-pZj(t + h)) > exp(-/XZj(t + h)} by Jensen’s inequality, and so 

-Qt + 1) < ,&f&N. (13) 

Since g is an increasing function it follows for Example 1 that the deter 
ministic model always overestimates average population density. 

It is helpful to understand that if pZj(t + h) is small then 

Z,(t + 1) - g@,(t)) % - $*KVZj(t + h). (14 

For larger /3Zj(t + h), higher moments become important also. 
In Example 1 we can see that the deterministic and stochastic models 

must always disagree because Eq. (11) is never satisfied, but for some 
nonlinear g it is possible to find special probability distributions for Zj(t + h) 
that make (11) true. However, for a given nonlinear g there are always 
probability distributions for which (11) is false (A4.1). and the special 
probability distributions that make (11) true are, in the sense discussed in the 
Appendix, quite rare (A4.2). Thus we can state with a high degree of 
confidence that the mean of a nonlinear function is not equal to the nonlinear 
function of the mean. 

Equation (11) has to be true for all t for the deterministic model to 
correctly predict average population density. Our results indicate that very 
exceptional circumstances are required for this to be true for nonlinear g. 

On the other hand it is clear that Eq. (11) will be approximately true if 
there is very little variation in Zj(t + h) about its mean value EZj(t + h). The 
results of Section 4 (below) suggest that this can be so if the mean 
populations on individual patches are always large and there is no local 
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temporal environmental variability. In other situations there are lower limits 
to the variation in Z,(t + h). 

3.2. The Complex Deterministic Model 

This model assumes inhomogeneous interaction and is therefore of the 
same general kind as the deterministic models reviewed by Levin (1976), 
Mimura et al. (1978) and McMurtie (1978). 

This model is defined by Eqs. (6) and (8) and we assume that there is 
initial spatial variation, i.e., ~~(0) *Z(O). This initial spatial variation can be 
described by a frequency distribution for patches with given densities, indeed 
the model can be analyzed quite validly as though the initial pattern were 
stochastic. 

The model remains deterministic in the sense that the mechanisms of 
change in the spatial pattern, given by Eqs. (6) and (8), are entirely deter- 
ministic. However, zj(t) is a random vector by virtue of the random initial 
conditions and therefore has a mean, variance and so on. Thus to complete 
the definition of this model we assume that z,(O), z,(O),... is an i.i.d. sequence 
of random vectors and we define 

z(t) = lim l- f Zj(t) = Ezj(t)* 

n-cc n j=l 
(15) 

Three questions are of relevance: 

(a) How does the density on a given patch change as a function of its 
initial density? 

(b) How does spatial variation in patch densities change with time? 
(c) How does average population density Z(t) change with time? 

(a) A stochastic analogue of the first question is: given the initial spatial 
pattern, how does the conditional mean of Zj(t) change with time, i.e., how 
does EIZj(t)IHo] change with time ? For the stochastic model to give the 
same answer as the complex deterministic model it is necessary that 

E[Zj(t + l)lH~l= g(‘[Zj(t + h)lH,lh (16) 

which is equivalent to 

(17) 

It can be expected that Eq. (17) will be false for nonlinear g in the same way 
that Eq. (11) is likely to be false. Hence the stochastic and deterministic 
models can be expected to disagree in their answers to question 1. 
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(b) In the complex deterministic model. spatial variation can be 
measured by the variance of zj(t), since this variance is equal to the expected 
value of the sample variance calculated in the usual way from a random 
sample of patches. The same result holds for the infinite stochastic model. 

As explained in Section 5 it is easily shown that the variance for the 
infinite stochastic model satisfies the equations 

VZ,(t + h) = (I - M) VZ#)(I - M) + diag@,(f)) M(2I - M) (18) 

and 
vzj(f + l)= Vg(Zj(f + h)) + EV(Zj(t + l)IH(-h)? 

while in the complex deterministic model we have 

Vzj(t + h) = (I - M) I’zj(t)(I - M) 

and 

(19) 

(20) 

VZj(f + 1) = vg(zj(f + h)). (21) 

Thus the stochastic model has additional terms in the variance equations 
which will tend to give it a greater amount of spatial variation. These 
additional terms (due to within-patch variability) always maintain spatial 
variation above some minimum level set by average population density. In 
the deterministic model there is no lower bound on spatial variation, in fact 
it may disappear altogether with increasing f, as it does in those single 
species models which like Example 1 have strictly concave g (see 
Appendix 3). Other authors have also observed the disappearance of spatial 
variation in deterministic models (Levin, 1974; Allen, 1975; Hastings? 
1978b; Conway et al., 1978) but it is clear that spatial variation cannot 
disappear from a stochastic model involving within-patch variability, unless 
all species become extinct. 

(c) It is more dilficult to show generally how the stochastic model and 
the complex deterministic model will differ in their answers to the final 
question “How does average population density behave?” However, we can 
show that in a variety of cases the answers do differ and we can demonstrate 
that in general there is no reason to expect the answers to agree. 

In the stochastic model 

Z,(f) =EE[Z,(f)IH,]. (22) 

For the deterministic model the corresponding equation is true; but because 
it is deterministic E[zj(f)]H,] = zj(t) and so 

z(f) = EZj(f)* (23) 



300 PETER L. CHESSON 

AS remarked above z,(t) and E[Zj(t)lH,] will generally differ in nonlinear 
cases-this is question (a). In some cases, as in Example 1, a strict 
inequality applies, e.g., 

zj(f) > EIZj(r)IHOl* (24) 

This inequality then implies 

i(r) > Z,(t). (25) 

In other cases inequality (24) (or the reverse inequality) may not hold 
uniformly for all possible initial conditions; but since a bias in one direction 
or the other is to be expected in a nonlinear model, only in unusual 
circumstances can we expect that the average of the cases when zj(t) > 
E[Z,(t)(H,] and z,(f) < E[Z,(t)lH,] will yield the equality z,(f) = Z(r). 

3.3. Persistence of Dlflerences as t -+ 00 

Appendix 3 discusses the simple and complex deterministic models in the 
single species case with g strictly concave, as in Example 1. Although it is 
apparent that the simple and complex models will give different answers for 
average population density for all finite C, provided only that there is initial 
spatial variation, these differences disappear in the limit as t + co; i.e. these 
two deterministic models give the same answer for the ultimate or 
“equilibrium” average population density. Other authors (Levin, 1974; Allen, 
1975; Hastings, 1978b; Conway et al., 1978) have also observed broad 
situations in which an inhomogeneously interacting deterministic model 
agrees ultimately with the corresponding simple deterministic model. This 
raises the possibility that the stochastic model might behave in the same 
way, i.e., although it differs from the deterministic model (simple or 
complex) for finite times, in the limit as t + co there is no difference. 

Let us suppose that the simple deterministic model has a globally stable 
equilibrium so that Z(t)+ z* and g(z*) = z*. Is it then possible that 
z,(t) + z*? To answer this question heuristically, suppose that Z,(t + h) 
converges in distribution to some random vector Z*(h). In order for 
lim,_, z,(t) = z* we must have 

z* = Eg(Z”(h)) (26) 

in analogy with Eq. (I 1). But EZ*(h) = z* = lim,_, EZj(t + h) and so (26) 
is equivalent to 

J%P*(h)) = lmz*(h))* (27) 

Since g is nonlinear this equation can not be true in general and in broad 
situations it can be shown that (27) can not be possibly be satisfied; for 
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example, in the single species case with g strictly concave, we know from 
Jensen’s inequality that 

wz*(h)) < id=*(h)). (28) 

Thus if Z,(t) converges at all, the limit must be less than z*. Indeed it is 
possible to show that i%%Z,(t) < z*, i.e., the peaks of the fluctuations of 
Z,(t) must converge to some number less than z*. As we have already 
noted, in this example the complex deterministic model gives the same 
answer for the ultimate average population density as the simple deter- 
ministic model and this means that the stochastic model continues to 
disagree in the limit with both kinds of deterministic model. Unlike the 
complex deterministic model, the stochastic model does not lose spatial 
variation as t increases and this fact prevents it from agreeing ultimately 
with the simple deterministic model. 

(The heuristics involved in the above demonstration can be justified by the 
fact that convergence of z,(t) implies tightness of (Zj(r + h)} and thus a 
subsequence must converge to Z*(h). A mild condition such as bounded 
variance is needed to ensure that lim,+, EZ,(t + h) = EZ*(h).) 

4. STOCHASTIC MODELS WITH HOMOGENEOUS INTERACTION 

In contrast to our findings above, Kurtz (1970) and Wang (1976) find 
essentially no difference between the results of deterministic and stochastic 
models when populations are large. Kurtz’ and Wang’s models assume 
homogeneous interaction while ours assume inhomogeneous interaction. 
However, Kurtz and Wang also use a somewhat different theoretical 
framework giving models that are not directly comparable with ours. Thus in 
order to complete the demonstration that inhomogeneous interaction is 
necessary and sufficient for the differences that we observe between deter- 
ministic and stochastic models, we go on to define our own stochastic 
models with homogeneous interaction. 

In a homogeneous interacting population the chances of survival and 
reproduction of an individual are simply functions of the average population 
densities for the whole area. Although there are a number of ways of tran- 
slating this statement into a statement about how a local population should 
grow, all of these different ways give the same conclusions regarding average 
population density. Thus without loss of generality we can define the finite 
stochastic model with homogeneous interaction by the equation 

P(Zj(f + l) = Z (Ho = )(Zv Z,(t))* (29) 
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The function y is the same as in the finite stochastic model but now average 
population density replaces local population density in this conditional 
probability function. (Movements have been omitted from this model because 
they are no longer relevant.) 

It is shown in the appendix that for large k this finite model is well 
approximated by the corresponding infinite model. In the latter Z, , Z, ,... are 
independent and identically distributed and 

P(Zj(f + 1) = z (H,) = y(z, Z,(t)). (30) 

Here z,(t) = EZj(t) = lim,_, n-’ z=, Zj(t) and 

Z,(t + 1) = g@,(t)). (31) 

Thus in the infinite model, average population density (z,(t)) is described 
by the simple deterministic model and this means that average population 
density in the finite stochastic model with homogeneous interaction is 
approximately described by the simple deterministic model. Thus we see that 
within-patch variability has a vanishingly small effect on the average 
population density in a homogeneously interacting model with large k. Note 
however that within-patch variability itself does not disappear in 
homogeneously interacting models because Z,(f) remains a random variable 
in the infinite model, but this randomness has neither a random nor a 
systematic effect on the average population density for the entire infinite 
collection of patches. 

5. THE MAGNITUDE OF LOCAL VARIABILITY 

The results of Section 3 above show that within-patch variability does 
have a systematic effect on the average population density in models with 
inhomogeneous interaction. This systematic effect appears as a deviation 
between the results of deterministic and stochastic models and is related to 
the degree of nonlinearity of the local mean growth function g and the 
magnitude of the random variability in local population size. Here we 
explore this relationship to find an appropriate measure of variability. We 
then go on to show how various factors affect variability and hence affect the 
deviation between deterministic and stochastic models. For simplicity we 
consider directly only the infinite stochastic model and the simple deter- 
ministic model but the analysis extends to cover other comparisons. 



WITHIN-PATCH VARIABILITY 303 

5.1. The Coeflcient of Variation and the Deciation between Deterministic 
and Stochastic Models 

The relative deviation between the deterministic and stochastic model that 
appears during a unit of time is measured by the quantity 

where we note that gi(Z,(t)) is the deterministic prediction for the new 
average density of species i at time t + 1. There are no exact simple or 
general relationships between the magnitude of (32) and variability, but 
quadratic approximation of g provides approximate relationships. For 
example consider our Example 1 where g(z) = K( 1 - e-m0Z). For small /?. 
g(z) z K(Pz - $‘z’) and hence from (10) we have the approximation 

Z,(t + 1) z K[@,(t) - fP2Px(t) - f/3’VZj(t + h)]. 

Thus an approximation to (32) is given by 

u/‘(Zj(t + h))[ 1 - 2//3Zm(t)]-‘* (33) 

where $(Zj(t + h)) is the coefficient of variation (variance/mean2) of 
Zj(t + h). 

The second factor in (33) is the ratio of the quadratic part of g to g and so 
is a measure of nonlinearity. Thus the deviation between the stochastic and 
deterministic models is expressed approximately as the product of a measure 
of variability (the coefficient of variation) and a measure of nonlinearity. 
This approximate relationship holds in general for the single species case. 

In the multispecies case there is a more complicated interaction between 
variability and nonlinearity and while approximate relationships can be 
found for any particular model there is no simple general form. Nevertheless 
the coefftcient of variation still provides a useful approximate measure of the 
effect of stochasticity. For a random vector Z the coefftcient of variation is 
the matrix 

y’(Z) = (diag EZ)-’ VZ(diag EZ)-‘, 

which has i-jth element equal to the covariance of Zi and Zj divided by the 
product of their means. The formulae given below are for the single species 
case only, but it is quickly seen that the multispecies formulae are direct 
analogues and the conclusions below remain unchanged in the multispecies 
setting. All of these formulae can be derived easily by repeated application of 
the following formula or its multivariate analogue: 

vz = EV(ZIH) + VE(ZIH). 
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5.2. The Magnitude of the Coeficient of Variation 

In order to obtain an explicit formula for the contribution of internal 
dynamics to the coefficient of variation we need to make some assumption 
about the probability distribution of Zj(t + 1) given Zi(t + h). For simplicity 
we shall assume that this distribution is Poisson with mean g(Zj(t + h)). This 
is the sort of model that has been used to model growth processes over short 
periods of time (Bartlett, 1960) and while it is a gross simplification of 
reality this model embodies the essential feature for our present analysis, viz 
the variance is of the same order of magnitude as the mean as can be 
expected in a situation where the within-patch variability is made up of 
within- and between-individual variability alone. 

The coefficient of variation can now be written down as follows: 

#(Zj(t + I)) = l/zg-(t + 1) + W’(g(Zj(t + h)), (34) 

V’(Zj(t + h)) =PU(~ -~)/zzc(t) + (1 -P)’ V’(Zj(t)>* (35) 

These two expressions are for the coefficient of variation immediately 
following a growth period and immediately following a migration period. 
The first term in each represents variability from the immediately preceding 
growth or migration period, while the second term represents a carry over of 
variability from earlier periods. In both cases the newly arisen variability is a 
decreasing function of average density (z,) becoming small for large 
densities but large for small densities. The reason for this result is that in 
these models movements and internal dynamics contain only within- and 
between-individual variation. When local temporal environmental variability 
is added, different results are obtained. 

To add temporal environmental variability to the internal dynamic 
processes we introduce a nonnegative stochastic process pj(t + h) with mean 
1, to represent the state of the local environment, and we now assume that 
given Ht+,, and pj(t + h), Zj(t + 1) is Poisson with mean g(Z,(t + h)) 
p,(t + h). Note that E[Zj(t + l)]H,+,] = g(Zj(t + h)) still, but the variance is 
different. Local temporal environmental variability in immigration can be 
handled by replacing the parameter ,u with a stochastic process tj(t) having 
mean ,D. We now obtain 

v’(Zj(t + 1)) = l/Zm(t + 1) + Vp/(t + h) + [ Vpj(t + h)] w’[ g(Zj(t + h))] 

+ w’[ @,(t + h))l 

and 

v’(Z,(t + h)) =,~(2 - p)/Z,(t) + G!,(t) + (1 - P)* w’(Zj(t))* (37) 
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The first two terms in both expressions represent newly arisen variability. 
The local environmental variance is the second of these terms; it is 
independent of average population density and hence does not decline to 0 as 
average population density increases, indeed it puts a strict lower bound on 
the coefftcient of variation. However, the coefficient of variation still 
becomes arbitraily large for arbitrarily small densities. 

In summary, movements and internal dynamics tend to give the same 
conclusions. By making the population arbitraily sparse. our measure of 
within-patch variability (the coefficient of variation) can be made arbitrarily 
large. Conversely, if these is no local random environmental variation, this 
coefficient of variation will become small at high population densities. 
However, local temporal environmental variation introduces a term that is 
independent of density and this prevents the coefftcient of variation from 
becoming small. 

5.3. Temporal Accumulation of Variability 

The analysis above is concerned only with that part of the coefftcient of 
variation representing newly arisen variability. A detailed examination of the 
behavior of the second part, representing variability accumulated from 
previous time periods, is beyond the scope of this paper but linear 
autoregressive models can indicate the likely short term behavior of our 
models in cases where within-patch variability is small, and so we analyze 
these greatly simplified models. Models of these kinds have been used in 
ecology by Roughgarden (1975, 1977). 

Let z* be a positive constant corresponding to the equilibrium point of a 
deterministic model and let E,, sZ . . . . be an independent and identically 
distributed sequence of random variables with mean 0 and variance 0:. Let 
Z(0) = Z* and define 

Z(t+ l)=z*+p(Z(t)-z*)+E,. (38) 

If 0: were zero then the resulting deterministic difference equation would be 
globally stable at z* for !p! < 1. In the stochastic model EZ(t) = z*. i.e.. is 
independent of t, and the coefficient of variation is simply proportional to the 
variance. For CJ~ > 0 we can calculate 

VZ(I + 1) =p’VZ(t) + 0; (39) 

and so 

VZ(t) = u; i p” = CJg 1 - p”>/( 1 -P’), lPl# 1 
j=O (40) 

2 
= to,, lpi = 1. 
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It is clear that VZ(t) is always an increasing function of t for nonzero p- 
variability is virtually always accumulating. For the cases where the deter- 
ministic model is stable, the variability has a limiting value oi/( 1 - p’) and 
we see that the ultimate magnitude of variability tends to co as IpI -+ 1, for 
all values of cri. A value of Ip 1 near 1 indicates a weakly stable deterministic 
model and in this case there will be a large accumulation of variability in the 
stochastic model. 

In the neutrally stable case (IpI = 1), the accumulation of variability is 
linear and unbounded, but in the unstable case (IpI > 1) the accumulation is 
exponential and unbounded. In a sufficiently realistic population model there 
is likely to be an upper bound to variability, but these results may indicate 
the kind of behavior to be expected before that upper bound is reached and 
instabilities in the model may mean that the upper bound is high. 

5.4. Local Instability 

The results above indicate that instabilities in the deterministic analogue of 
a stochastic model facilitate the accumulation of variability. This conclusion 
is corroborated by the results of Becker (1973) and also by well-known 
results for branching processes (Jagers, 1975). This suggests that instabilities 
in the local dynamics of our models may lead to a large accumulation of 
within-patch variability and hence lead to large differences between the 
results of the deterministic and stochastic models. There is evidence for this 
in published models incorporating within-patch variability (Maynard Smith, 
1974; Hastings, 1977; Zeigler, 1977; Caswell, 1978). In these models 
internal dynamics are deterministic and unstable (except for one of Hasting’s 
models where internal dynamics are also stochastic) and within-patch 
variability is entirely due to migration. Despite these instabilities the 
stochastic versions are stable, i.e., allow species persistence for broad ranges 
of parameters. Thus variability has produced large qualitative differences 
between the results of the deterministic and stochastic models. 

6. GENERALIZATIONS 

There are many directions in which the work described in this paper can 
be generalized. The most important and most difficult direction is the 
consideration of more general types of migration. Other directions are the 
inclusion of other types of variability and non-Markov components. These 
latter directions amount to no more than modification of our framework and 
will not be discussed. 

To include more general types of migration, consider a system of patches 
in which migration between patches and growth and interaction within 
patches are separated in time as in our previous models. Assume that 
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internal dynamics are the same as in our previous stochastic models but we 
make no assumptions about movements between patches. The simple deter- 
ministic model, which ignores all variability, needs no modification to apply 
here; it is simply Z(t + 1) = g@(r)). For this model to agree with the full 
stochastic model’s answer to average population density then the following 
equation must hold: 

EZ,Jt + 1) = Eg(Z,(t f II)). (41) 

that is. Eq. (1 1) of Section 3 must hold here as well. Because of nonlinearity 
and within-patch variability this equation will generally be false and the 
stochastic and deterministic models will give different answers for average 
population size. In a similar manner one can show deviations between 
EIZj(r)JHo] and the variable zj(f) in the modification of the complex deter- 
ministic model to the present setting. Thus our major conclusions about 
deviations between deterministic and stochastic models do not depend on the 
specific form of the migration model chosen. 

Some generalizations of migration remain within the framework 
established in this paper, for example emigration can be made density 
dependent by dividing each population class into migrant and nonmigrant 
individuals. The migrants all emigrate during (t, t + h) and the nonmigrants 
do not emigrate. Internal dynamic processes formally determine how many 
individuals belong to the migrating class and arbitrary density dependence 
can be included here. Death during migration. which is ignored in our 
models. can be accommodated in a similar way. 

7. DISCUSSION 

The stochastic effects discussed in this paper are often ignored by 
population modellers. The justification for doing so is the claim that such 
stochasticity. even though present in all real systems, has little effect on the 
population density of large populations. May (1974a) states this claim 
clearly and the most general demonstrations of the claim are to be found in 
Kurtz (1970) and Wang (1976). Kurtz’s and Wang’s results are based on 
models that make the unrealistic homogeneous interaction assumption. i.e.. 
the chances of survival and reproduction for any individual depend on 
average population density as opposed to local population density. Their 
results concern the behavior of average population density over a large area 
supporting a correspondingly large population. They find that average 
population density will be near the prediction of the analogous deterministic 
model (the model corresponding to our “simple deterministic model”). 
Furthermore, the difference between average population density in the two 
models disappears completely as the area is increased. 
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Our results are to the contrary. We make the realistic assumptions that 
within-patch variability is present; there is inhomogeneous interaction and 
local dynamics are nonlinear. The conclusion is that average population 
density differs systematically from the prediction of the simple deterministic 
model. Moreover, this difference persists as the total area (number of 
patches) is increased to infinity. We do find that average population density 
will be close to its theoretical mean value when the number of patches is 
large, but this theoretical mean value is not given by the simple deterministic 
model. The differences observed here are not simply an artifact of our 
theoretical framework because when inhomogeneous interaction is 
unrealistically omitted from our models we are able to reproduce the results 
of Kurtz and Wang. 

If within-patch variability is taken out of our models leaving 
inhomogeneous interaction and nonlinear dynamics we obtain our “complex 
deterministic model”. It incorporates migration and local population growth 
in a deterministic way and is thus analogous to the models reviewed by 
Levin (1976), Mimura et al. (1978) and McMurtie (1978). The complex 
deterministic model gives different answers for average population density 
than both the stochastic model and the simple deterministic model. However, 
if there is no initial spatial variation it agrees exactly with the simple deter- 
ministic model. Moreover the complex deterministic model tends to 
underestimate spatial variation because it omits within-patch variability. In 
some cases this model predicts that all spatial variation disappears as t 
(time) + co, contrary to the predictions of the stochastic model. When this 
happens the simple and complex deterministic models agree in the limit as 
t -+ 00 and both continue to differ from the stochastic model in their answers 
for averge population density. This disappearance of spatial variation in 
deterministic models is not unique to our models for it has been observed in 
other settings as well (Levin, 1974; Allen, 1975; Hastings, 1978b. Conway et 
al., 1978). 

We have seen that the complex deterministic model fails to describe 
accurately the average population and spatial variation. In addition it gives a 
different answer than the stochastic model for the mean population on a 
particular patch as a function of the initial populations on all patches. 

The reasons for the differences between average population density in the 
stochastic models and the simple deterministic model can be outlined as 
follows: The mean of a nonlinear function of a random variable is generally 
different from the nonlinear function of the mean. Consequently nonlinear 
stochastic models will generally have a mean that differs from the value 
given by the analogous deterministic model. This is found in our models but 
is also a feature of most other models (Feller, 1939; Kendall, 1949; Becker, 
1973; Getz, 1976). However, the difference between the two is small if the 
relevant variability is small. In models that make the homogeneous 
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interaction assumption the relevant variability is in averge population 
density, and this variability will be small whenever the area is large. 
However, for inhomogeneously interacting models, the relevant variability is 
in local population density and this variability does not decrease as the area 
is made large, and so the difference between the theoretical mean local 
density and the deterministic prediction does not disappear as the area is 
made large. Finally, in our models, there is sufficient independence between 
patches for a law of large numbers to be’applicable which says that average 
population density for the entire area will be close to the theoretical mean 
density for a randomly chosen patch. As we have observed, this theoretical 
mean density differs from the prediction of the simple deterministic model. 
Hence average population density in the two models shows a systematic dif- 
ference. 

Essentially the same reasons are involved in the failure of the complex 
deterministic model to correctly predict mean local density and average 
population density of the stochastic model. 

The magnitude of the difference that we observe between deterministic and 
stochastic models depends on the degree of nonlinearity of local dynamics 
and the magnitude of within-patch variability. If local dynamics are linear 
then there will be no difference between the deterministic and stochastic 
answers for average population density. Exact linearity is quite unrealistic 
but sometimes approximate linearity occurs and then the stochastic and 
deterministic models will give similar answers for average population 
density. 

If within-patch variability is large, the stochastic and deterministic models 
can be expected to show large differences. If within-patch variability is small 
the stochastic models will be similar to the complex deterministic model. 
However, initial spatial variation must also be small if these models are to 
give similar results to the simple deterministic model except, perhaps, in the 
limit as time tend to co, when the initial spatial variation may nof matter. 

Within-patch variability will be large if local populations are small or if 
local temporal environmental variability is large. Within-patch variability 
can only be small if local populations are large and local temporal environ- 
mental variability is small. There is also some evidence that unstable local 
dynamics can interact with wihin-patch variability significantly enhancing 
the effect of the latter. 

Population Models 

We have shown that average population density in our more realistic 
stochastic models differs from the predictions of the usual kinds of deter- 
ministic models. However, we do know that average population density will 
not show very much random variation due to within-patch variability, when 
the number of patches is large, and so it is possible that some other kind of 
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deterministic model might usefully describe average population density. In 
fact we can find such deterministic models in some cases. for example, 
Chesson (1981b) shows that in the special case where all organisms migrate 
in every time period, it is possible to find a first order difference equation for 
average population density. However, the stochastic model is required for the 
deduction of this difference equation because it is not the deterministic 
analogue of the stochastic model. In other cases it may be possible to 
approximate the behavior of average population density using a difference 
equation of some order, probably higher than one. 

Thus it appears that average population density may possibly be described 
by models of the classical difference equation kind. One could forget about 
within-patch variability, inhomogeneous interaction and the like, and concen- 
trate on describing average population density in the usual deterministic 
manner. If some temporal environmental variability is added to this it would 
undoubtedly be possible to reproduce most behaviors exhibited by average 
population densities in the real world. However, this is mere curve fitting, it 
does not amount to explanation in terms of the biology of the organisms, i.e., 
the mechanisms. For example, Hastings (1977) gives two simple 
predator-prey models with inhomogeneous interaction and within-patch 
variability. In this system the predator always causes local extinction of the 
prey; but inhomogeneous interaction and within-patch variability make coex- 
istence possible-they are the biological explanation for coexistence in such 
circumstances. Average population density in Hastings’ models could 
reasonably be described by the usual sorts of simple deterministic models. 
However, the use of such descriptions, without reference to the basic 
stochastic mechanisms, does not help explain the observed phenomena; it 
does no more than describe them. 

By showing how stochastic models give different results from their deter- 
ministic analogues, this paper indicates the possibility of stochastic 
explanations for observable population phenomena in a wide variety of 
circumstances. More work on stochastic mechanisms is needed. Deter- 
ministic models will remain useful descriptions of population phenomena 
whenever within-patch variability is small. In other cases stochastic models 
are required. Unfortunately stochastic models are generally more complex 
and therefore more difficult to analyze than deterministic models. However, 
there are methods of simplifying stochastic models by shifting the emphasis 
from deterministic to stochastic mechanisms as has been done in the many 
successful models involving within-patch variability mentioned in the 
introduction; this paper provides other methods of simplification and 
Chesson (198 la) gives necessary and sufficient conditions for the stability of 
the stochastic models introduced here. Stochastic models will become easier 
to study as different approaches are explored. 

Most of the successful previous approaches to stochastic modelling of 
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inhomogeneously interacting populations have dealt with the situation where 
only presence and absence are recorded for the local populations. Caswell 
(1978) gives a review. Models which Caswell terms “open and equilibrial” 
correspond to our systems with infinitely many patches and “open none- 
quilibrial” correspond to our systems with finitely many patches. However. 
the distinction between the two is not as great as Caswell tends to suggest 
because the infinite sytems provide good approximations to the finite systems 
when the number of patches is large. This fact has been discussed for 
Caswell’s model by Crowley (1979). Infinite systems are often easier to 
analyze than finite systems because they tend to be simpler and indeed many 
models of infinite systems have yielded to analytical methods (e.g.. Slatkin. 
1974; Hastings, 1977, 1978a; Crowley, 1979). 

Infinite systems that deal only with species presence and absence on 
patches may superficially appear to be deterministic even though they 
involve within-patch variability. It is true that in these models the relative 
frequency of path occupancy by a given species is a non-random or deter- 
ministic process because it corresponds to the spatial average of population 
density in our models. However, this relative frequency is also the 
probability that the species is present on any given patch, and at the local 
population level these models are highly stochastic. Moreover these models 
can generally be derived as limits of very recognizably stochastic models 
with a finite number of patches. As the number of patches becomes large the 
relative frequencies of patch occupancy become nonrandom but stochasticity 
at the level of a patch persists and the relative frequencies of patch 
occupancy depend in a systematic manner on this local stochasticity just as 
within-patch variability has systematic effects on average population density 
in our models. 

A cautionary remark is necessary in respect of published models of 
infinite systems. Some of these are not genuine stochastic models and are not 
limits of genuine finite stochastic systems because the appropriate 
probability rules are violated. For example, this is so in the models of Horn 
and MacArthur (1972) and Vandermeer (1973), where the occupancy of 
patches by different species is assumed independent despite interaction 
between species on individual patches. 

APPENDIX 

A 1. Symmetric Distributions 

In the text it is assumed that (Z,(O),..., Z,(O)) has a symmetric distribution 
in keeping with the general symmetry of the model. This assumption does 
not restrict the application of the model at all because if (Z,(O),..., Z,(O)) 
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does not have a symmetric distribution, and bl,...,pk) is a random 
permutation of (l,..., k) then (Z,,(O),..., ZJO)) has a symmetric distribution. 
Thus a symmetric initial distribution is always created by simply randomly 
labelling the patches. The labelling of the patches is quite irrelevant to any of 
our considerations here. We are interested in the properties of the spatial 
average of the densities of patches, spatial variation, the development of 
spatial pattern given an initial pattern and the properties of a representative 
patch (one chosen at random). None of these properties depend on the 
labelling of the patches and so we are free to choose the simplest labelling, 
which is the random one. 

A2. Proof of the Approximation of Finite by Infinite Models 

In this section we stated and prove the main theorems in the paper which 
show how the finite space models are approximated by the infinite space 
models. It is necessary to distinguish between the population variables in the 
finite and infinite models and to indicate the dependence on k for the finite 
models. This will be done by adding a superscript k to the population 
variables in the finite models. 

The first theorem concerns models with inhomogeneous ineraction. 

THEOREM Al. Under regularity conditions (discussed below) and for 
every n and every t, the joint distribution of (z,(s), Zt(s),...,Zi(s), 0 < s < t) 
for the finite stochastic model converges to the joint distribution of (z,(s), 
Z,(s),..., Z,(s), 0 < s < t) in the infinite stochastic model. 

As it is stated, the theorem concerns only finite dimensional distributions; 
however, convergence of finite dimensional distributions is sufficient to imply 
convergence of the infinite dimensional distributions on the countable 
product topology (Billingsley, 1968, p. 22). Therefore we can infer weak 
convergence of the distribution of (Z,(t), Z:(t),..., Z:(t), 0 < t < 00). 

The second theorem concerns models with homogeneous interaction. 

THEOREM A2. Under regularity conditions (discussed below) and for 
every n and every t, the joint distribution of (Z,(s), Z:(s),..., Z:(s), 0 < s < t) 
in the finite stochastic model with homogeneous interaction, converges to the 
joint distribution of (Z,(s), Z,(s),..., Z,(s), 0 < s < t) in the corresponding 
inj?nite model. 

Regularity Conditions 

For Theorem Al to be true it must at least be true for t = 0. The behavior 
at t = 0 cannot be deduced from the dynamic parts of the model and so must 
be assumed. However, these assumptions simply amount to saying that it is 
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meaningful to talk about an initial distribution of values for the population 
variables. They are: 

la. There is a probability distribution x, such that, for every nonnegative 
integer vector z, the quantity 

k-’ 4 lJZ;(O)). (AlI 
jTl 

converges in probability to Q(Z). Note that expression (Al) is the relative 
frequency of patches with population variables having the value z. 

lb. EZF(O) + i z h,(z) 

This second condition simply insists that the convergence in la is sufficiently 
regular for the mean to converge to the value given by the limiting 
distribution. 

Some conditions need to be placed on the dynamic parts of the model to 
preclude irregular behavior. Four alternative conditions are given below. 
They are all conditions which ensure that when Z;(t) converges in 
distribution to a random vector Z, then EZt(t) will converge to EZ. 

2a. There is a vector a, and a matrix A such that g(z) < a + AZ for 
nonnegative z. 

2b. There are constants M,, < co such that E 1 Zf,(O)(” < M,, for ail k 
and the moments of the distribution y(., z) are bounded by polynomials in z. 

2c. for every t. 

2d. There are functions p(t) > 0 and K(t) < co such that 

E (Zj”(t)l’ +‘(‘) < K(t) for every k. 

Theorem A 1 is true if la, 1 b and one of 2a, 2b, 2c or 2d are true. 
The regularity conditions for Theorem A2 are the same as those for 
Theorem Al with the addition of the condition. 

3. y(., z) is a weakly continuous function of z. 
Theorem A2 is true if la. lb, 3 and one of 2a, 2b, 2c, or 2d are true. 
The proofs of the theorems proceed by proving that they are true for 

Assumption 2c and then showing that 2a, 2b and 2d each imply 2c. 
Assumption 2c involves the concept of uniform integrability (Billingsley. 

197 1; Chung, 1974). Random variables X, , X2...., are a uniformly integrable 
sequence if 
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If E IX,/‘+“ < K for all k, where K and p are positive constants, then 
x,,x*,... is uniformly integrable because 

We see from this that Assumption 2d implies 2c, and is therefore a special 
case of 2c. In addition, if Y,, Yz ,... is uniformly integrable and IX,1 < I Yjl 
then clearly X, , X, ,... is uniformly integrable. 

Interest in uniform integrability stems from the fact that if X, converges in 
distribution to X and X,, X,,... is uniformly integrable then EX, -+ EX. 
Conversely, if E IX,1 --) E (XI < co then X, , Xz ,... is uniformly integrable 
(Billingsley, 1971; Chung, 1974). These ideas are used in the proofs. 

Preliminary Results 

To prove theorems Al and A2 we need to discuss some aspects of the 
theory of weak convergence of probability measures (Billingsley, 1968, 
1971) and some results about random probability measures (Kallenberg, 
1973, 1975; Chesson, 1976). We also need some lemmas for the proofs of 
the theorems. 

Let z, ,...) Z, be random vectors in R” (real m dimensional space). Their 
empirical distribution is defined to be the random probability measure 
p(B) = k-’ Cj”=, l&), where B is a Bore1 set in R”. The random 
probability measure p has a probability distribution on the space of 
probability measures endowed with the weak topology. The probability 
measure Ep is defined by the equation @p)(B) = Ep(B) for Bore1 sets B. Iff 
is a nonnegative measurable function then E 1 f dp = sf dEp. 

To prove the theorems we need to relate convergence in distribution for 
Z , ,..., Z, to convergence in distribution for their empirical distribution. This 
is done in the following theorem proved elsewhere (Kallenberg, 1973; 
Chesson, 1976). (The symbol ‘5.” means “converges weakly in 
distribution.“) 

THEOREM A3. Let Zf,..., Zi be jointly symmetrically distributed random 
vectors and pk their empirical distribution. Then pk converges weakly in 
distribution to a non random probability measure n if and on!y if 
cz:,..., z:, => (Z, ,-**, Z,), for every n, where Z,, Z, ,... are an independent 
and identically distributed sequence of random vectors with common 
distribution R. 
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We also have to identify conditions under which convergence of pk will 
imply convergence of its integrals Tfdp,. This is the purpose of Lemma A4. 

LEMMA A4. Let pk be a random probability measure on R” such that 
pk -+ 71. where n is non random. Let f be a non negatke continuous function. 
If lfdEp,+Jfdn as k- 00 then .ifdp,-t.ifdrr. 

Proof. Define f, = min(f, M) where M is some positive constant. The 
function f,, is bounded and continuous and so if,, dp, + .i f,, dn. 

Let E > 0. Since& <f 

p (,If dp, > If,, dn - t) > P (J?,, dp, > .[A, dn - $). 

Hence 

F-“, P (!fdPx> jfwdn-;) = 1. 

If j f dn = co then If;, dn -+ co as M-+ co and the result is proved. Now 
assume jfdn < 00. 

Choose M so that 1 f dx - jAw dn < e/2 combining this with Eq. (A2) we 
get 

~2, P (jf dp, > J‘s dn - e) = 1 

for all E > 0. To complete the proof we must show that 

[fdp,< [fdn+E 

643) 

(A41 

for all E > 0. Let c = Jf dn and define 

a(k, E) = P I’f dp, > C - E and P(k,e)=P 
(. 

Let E. E’ > 0 then 

E if dp, > (c - c’)[a(k, E’) - P(k, E)] + (c + E) /3(k, E) 

= (c - E’) a(k, E’) + (E + E’) @(k, E). 

- Hence c 2 (c - E’) + (E’ + a) hm j?(k, E). 
Letting E’ + 0 we see that i&&k, E) = 0 for all positive E proving (A4) 

and hence the required result. 
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The next lemma is needed in order to prove convergence inductively, viz., 
given convergence occurs at time t or t + h to prove that convergence also 
occurs at time t + h or t + 1. 

LEMMA A5. Let U,, V, be sequences of random vectors in R” and R”, 
respectively. Suppose U, 3 U and P(V, E B (U,) = r(B; LJ,), where r(., u) is 
a weakly continuous probability measure valued function of u. Then 
(U,, V,) * (U, V), where V is a random vector such that 
P(V E B(U) = s(B; U). 

ProoJ Let f be a bounded continuous function on R4 then if(v) t(dv; u) 
is a bounded continuous function of u. If g is a bounded continuous function 
on R” then Eg(U,) f (V,) = Eg(U,) j f (v) r(dv; U,) --f Eg(U) J f (v) r(dv; U) = 
Eg(U) f (V), as k + 00, which proves the lemma. 

The last result needed before proving the theorem is associated with 
condition 2b. It shows that the migration processes always satisfy a 
condition similar to that satisfied by the internal dynamics. 

LEMMA A6. In the finite stochastic model the conditional moments of 
Z$(t + h), given Hl are bounded by polynomials in Z”,(t) and 
(k - 11-l IZt+j Z!/(t). 

Prooj Let X be binomial with parameters (n,,u). The cumulant 
generating function of X is thus n log{p(e’ - 1) + l}, which means that the 
cumulants of X are proportional to n. It follows that the moments of X are 
polynomials in n. 

If Y is binomial with parameters (m,,u/(k - 1)) then the cumulant 
generating function of Y is 

It follows that the Ith cumulant of Y is of the form 

m P 
k-l lu a,+% k-l +...+a, ($J]. 

Hence the Ith cumulant is bounded by (m/(k - l)),u[la,l + la,J,u + +.. + 
IacId-‘I. 

If X and Y are independent then the /th cumulant of X + Y is bounded by 
a function of the form K, n + K, m/(k - 1) and it follows that the moments 
of X + Y are bounded by polynomials in n and m/(k - 1). 

The conditional distribution of ZL(t + h) given H( is a convolution of a 
binomial with parameters (Z;(t), 1 -,ui) and a binomial with parameters 
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((k - l)-’ Cl+j Z:,(t), pi/(k - 1)) and it follows that the moments of the 
conditional distribution of Zb(t + h) are bounded by polynomials in Zfi(t) 
and (k - 1))’ C,+j Z;/(t). 

We now prove that Theorem A 1 is true when conditions la, lb, and 2c 
apply. The proof is by induction. At the fth stage assume that the joint 
distribution of (z,(s), Z:(s),..., Z:(s)), s < f, converges to the joint 
distribution of (z,(s), Z,(s),..., Z,(s)), s < t, for every n. Using this we prove 
that it is true for t + 1 replacing t. That the induction hypothesis is true for 
t = 0 is a consequence of 1 a, lb, Theorem A3 and Lemma A4. 

The conditional probability generating function for (Zf,(t + II),.... 
Zf,,(t + h)). given H,: is 

E[@‘-“’ . . . @$n(t+h) IH,) 

Each factor is the generating function of a multinomial. The jth factor 
represents migration from patch j to patches 1 to n. (Chesson. 1976. 
discusses multinomial migration.) 

Observing that 

we see that expression (A5) is a continuous function of (Zik(f), Zfl(r)..... 
ZFn(f). (k - 1 )- ‘). This random vector 3 (Zi,([), Zi,(t),.... Z,,(t), 0), hence 
expression (A5) 3 

jj @i + Oj[ 1 -fli])zij’r) exp PiZi,(f) T;“- (ej - l)/ 
1 j3 

= q~ii”‘h’ . . . ,fd’-“‘IH,], 

Recalling that Z,(t + h) = z,(t), Z,(t + h) = z,(t) and (Z:,(t + II)..... 
Z;n(t + h)). i = l,.... r are conditionally independent given H,, it is now clear 
that the conditional distribution of (Z,(t + h), Z:(t + h),..., Z”,(t + II)), given 
H,, converges in distribution to the conditional distribution of (z,(t + h), 
Z,(t + h),..., Z,(t + h)) given H,. The method of Lemma A5 now shows that 
(Z,(s), z:(s)...., z:(s)), s < t + h * (Z,&), Z,(s), . . . . Z,(s)), s < t + h. 
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TO prove the induction hypothesis for t + 1 we note that the conditional 
distribution of Zt(t + 1) ,..., Z:(t + l), given Htfh, is y(., Z:(t + h)) x . . . x 
~(a, Zi(t + h)), which is a continuous function of Z:(t + A),..., Zi(t + h) since 
the random vectors are discrete valued. By Lemma A5 (Z:(s),..., Z:(s). 
s < 1 + 1) + (Z,(s),..., Z,(s), s < t + 1). To complete the proof we need to 
show that z,(t + l)* z,(r + 1) and since the latter is non random the 
induction hypothesis will be proved for I + 1. 

Define pk to be the empirical distribution of Z’;(t + I),..., Zi(t + 1) and rr 
the distribution of Z,(t + 1). By Theorem A3, pk 3 II. From 2c, EZ;(t + 1) + 
EZ,(t + 1) = &,(t + 1) and so E&(f + 1) + Z,(r + 1). Lemma A4 now 
gives z,(t + 1) + Z,(t + 1) and Theorem Al is proved under assumption 2c. 

As remarked above, assumption 2d implies assumption 2c and so the 
theorem is also proved under assumption 2d. To prove Theorem Al using 2a 
or 2b we can use all the steps in the above proof leading to pk 3 II. 

Assume 2a. Now Ez,(t + 1) = EZj(f + 1) = Eg(Z;(t + h)) and 
g(Zi(t f h)) < a + AZjk(t + h). EZT(t + h) = EZjk(f) + EZj(t)? by hypothesis, 
and so EZj(t + h) -+ EZj(t + h). From this we conclude that Zj”(t + h) is 
uniformly integrable. Therefore a + AZT(t + h) is uniformly integrable and, 
as a consequence, so is g(Zj(t + h)). Hence Eg(ZT(t + h)) + Eg(Z,t + h)) = 
Z,(t + l), that is E&(t + I)+ z,(t + 1) and by Lemma A4 Z,(t + 1) * 
z,(r + 1). Theorem Al is now proved under assumption 2a. 

Assume 2b. We prove Theorem Al by proving that 2c holds. Since 
E I Z:(O)l” + ’ < Mijn + 1 for all k and n it follows that IZ”,(O)l” is uniformly 
integrable for all n and hence E IZ”,(O)(” -+ E IZ,(O)l” for all n. If 

E ) Z~(s)I” ~ E 1 Zij(S)l” < ~ (A7) 

for all n, then 2c holds. We prove statement (A7) by induction. If statement 
(A7) holds for all s Q t then ZT(t + h) * Zj(t + h). Now E[( Zk(t + h)j” lHl] 
is bounded by a polynomial in l/(k - 1) CFtj Z:,(t) and Z:(r) (Lemma A6). 
Using statement (A7) and the inequalities 

E 

it follows that E 1 Zf,(t + h)(” is bounded as k + co, for all n, which means 
IZs(t + h)l” is uniformly integrable for all n, and so statement (A7) holds for 
s = t + h. Similar reasoning, using the fact that the moments of Zjk(f + 1) 
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given HI-,, are bounded by polynomials in Z;(t + h), implies statement (A7) 
for s = t + 1. This completes the proof. 

To prove Theorem A2 we prove that 

(Z,(s), z:(s) ,...) Zk,(s)). s < t * (Z,(s). Z,(s) ,...( Z,(s)), s < t. 

for all tz. using induction on f. The r = 0 case is dealt with in the proof of 
Theorem A I. 

The conditional distribution of Z:(t + l),..., Zz(t + 1) given H, is 

‘u’(*, Z,(t)) x a*. x y(*. Z,(t)), 

which is a weakly continuous function of Z,(t). By Lemma A5 

(z:(s) 1...? z:(s)), s < t + 1 * (Z,(s) ).... Z”(S)), s < t + 1. 

Theorem A3 and Lemma A4 imply z,(t + 1) * z,(t + 1) provided 
assumption 2c holds. Thus Theorem A2 is proved for assumptions 2c and 
2d. The proofs for 2a and 2b are simplified parallels of the corresponding 
proofs for Theorem Al and are therefore omitted. 

A3. One Dimensional Deterministic Models 

Consider the difference equation 

Z fr I = &A 648) 

where g is a strictly concave increasing function on [O. co) with g(0) = 0. 
The function 

g(z)=K(l -e-“) (A9) 

from Example 1 is of this kind. If Eq. (A8) has a positive equilibrium point 
z* then this equilibrium is globally stable, that is, for z0 E (0, m), z, -+ z* as 
t + 03. If there is no positive equilibrium point then zI -+ 0 or z, -+ co. The 
function (A9) has a positive equilibrium if g’(0) = Kp > 1 because g(z) > z 
for z sufficiently small and g(z) < z for z sufficiently large. If I@ < 1, z, + 0 
for this g. We have proved: 

LEMMA A3.1. For example 1, the simple deterministic model says 

f!rlJ f(f) = 0 if K/S< 1. + 
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but ifK/3 > 1 there is a positive number I* such that 

z* = (1 - ee4”) (AlO) 

and lim,_, F(t) = z* for 1(O) > 0. 

We now consider one dimensional versions of the complex deterministic 
model with increasing strictly concave g. We assume ,U > 0. 

THEOREM A3.2. If 0 < Y(O) < 00 and Eq. (AB) has a positive 
equilibrium z* then 

lt’“, zj(t) = f’“, F(t) = z* for all j. + 

ProoJ First of all we note that if zj(t) > a, for all j. where a is a 
constant, then zj(t + 1) > g(a), for all j, because F(t) > a, zj(t + h) = (1 -,u) 
zj(t) +&t(t) > a, zj(t + 1) = g(zj(t + h)) and g(zj(t + h)) > g(a), since g is 
monotonic. 

Now z,(h) a@(o) > 0 and so zj( 1) > g@(O)). It follows that zj(t) > 
g,-,@@(o)), where g,-, is g composed with itself t - 1 times. It follows that 

lim zj(t) > z*. t-411) 

Now ,T(r + 1) = Eg(zj(t + h)) < g(Ezj(t + h)) = g@(t)), the inequality being 
a consequence of concavity of g. Since g is strictly increasing we have 

- lim F(t) < hm g,@(O)) = z* (A121 

Combining (A 11) and (A 12) and using Fatou’s lemma we get 

z* < $rJ f(f) ( lim F(t) ( z*, 

i.e., 
lim f(t) = z*. 

- From (Al 1) we have hm zj(t) > z*. Also, since zj(t + 1) < zj(t) if zj(t) > 7 max(z*, F(t)), we have hm zj(t) < co. Now zj(t + 1) = g((l -p)A(f) +pF(t)) 
-;- 

and so z* < iim zj(f) = g(( 1 -,u) hm zj(t) +,Dz*) which means lim s(t) = z*. 
Combining this with (A 11) we find lim zj(t) = z*. 

A4 Means of Non Linear Functions 

THEOREM A4.1. Let g be a function on R’ satisfying 

f-dW’tz)=g (/-zdP(z)) (A13) 
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for every probability measure P on the non negative integers for which either 
side of (A 13) is defined. Then g must be of the form g(z) = a + b’z for z 2 0. 

Proof: Consider the r = 1 case first. Let a = g(O), b = g( 1) - g(0) and 
define P({O)) = 1 - l/n, P((n)) = l/n. Equation (A14) gives g( 1) = (1 - l/n) 
g(0) + (l/n) g(n), which rearranges to g(n) = a + bn. Defining 
P({n))= 1 -a, P({n + l}>= a we get g(n + a) = a + b(n + a) proving that 
g is linear on R +. 

This one dimensional demonstration immediately extends to show that. in 
general. g must be linear in each variable when the others are held constant. 
In particular g(z,, ZJ = a(zz) + b(z,) z,. 

Setting z, = 0 shows that a is linear in each component of zZ. Setting 
z, = 1 and subtracting a shows that the same must be true of 6. We can 
write b(zz. zj) = a(~,) + /?(z,) zZ and 

g(z13z21 4=4z,.z,) + a(zAz, +PWzlz2 

Thus g(n, n, zJ) = a(n, zj) + a(zj) n +/?(z~) n2. Defining P((O,O. z3}) = +. 
P( {2n, 2n, z }) = i, using (A 14) and the linearity of a in zI we get 

gh 4 z) = 44 z2) + a(zd n + WJ n2. 

which implies B = 0. Hence 

AZ,. z2. z3) = a(z2, z,) + a(q) z, . 

Chasing through variables zj to z,. in this manner one sees that b is a 
constant b, , say. Subtracting b, z, from g(z) and repeating the procedure it is 
clear that g(z) = a + CI=, bizi where a and b,,..., b, are constants. 

This theorem shows that for a given nonlinear function g there will always 
be a probability measure P for which (A13) fails to hold. For some 
nonlinear functions there will be probability measures for which (A14) does 
hold. We now go on to discuss the sense in which such probability measures 
are rare. For simplicity we consider only the one dimensional case. 

A probability measure on (0, 1, 2,...) is defined by a sequence of non 
negative numbers p, , p2 )... with sum < 1 (pO = 1 - CT pi). We ask the 
following question. If p,, p2 ,... are generated by a random mechanism (i.e.. 
are random variables) what is the probability that C g(i)pi = g(C ipi) for 
given nonlinear g? The theorem below shows that this probability is 0 when 
the distribution of ( pI, p*,...) belongs to a general class of infinite dimen- 
sional continuous distributions. Before stating the theorem we need to 
discuss the space on which these distributions are defined. 

Let g be nonlinear and continuously differentiable. Without loss of 
generality we can assume g(0) = 0. Define fi = {p = (p,, pZ,...) ) pi > 0, for 
all i, x pi < 1. C(i + j g(i)l) pi < co }. Thus R is the space of probabilities 
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for which both C ip, and C g(i)p, exist as finite numbers. It is easy to see 
that R is a complete separable metric space with metric 

P(P, 9) = C 0 + I dOI) I Pi - 4il. 

For p E 0 definef(p) = 2 g(i)pi - g(C ip,). For many g the functionf will 
never be 0 in which case we need not proceed further. Otherwise let p,, = 
(pIO, pzO,...) be a point such that f(p,,) = 0. 

To apply the implicit function theorem to f we calculate 

-&f(p) = g(i) - kt (x .bj) i. 

At p,, this is g(i) - g’(C jpjO) i. The derivative can only be 0 for all i if g is 
linear on the integers- a case specifically excluded. Therefore there is an i 
for which this derivative is non zero. By the implicit function theorem there 
is a continuously differentiable function h* of 2 variables defined on an open 
neighbourhood S of (&,ijpj,, z+, g(j)pj,) such that pi = h*(s,i jpj, 
Zj+l g(j)Pj) in a neighbourhood of (pm, cj+ijpjD, s+i g(j)pj,)- Sincepi, 
cj,i jpj, cj,i g(j)p, are continuous function on R it follows that we can 
write 

Pi=h* 1 JlPj, C dj)Pj 
( 

= h(P)9 
j+i jzi ) 

where h is a continuous function on f2, not depending on p,, and the relation 
(A14) is true for an open neighbourhood of p0 in 0. 

We are now ready to prove the following: 

THEOREM A4.2. Suppose that g is continuo&y dtrerentiable and 
nonlinear on the non negative integers. Let (p, , pz ,...) have a probability 
distribution on B such that the conditional distribution of pi, given 
(pi, j # i), is absolutely continuous with respect to Lebesgue measure, for all 
i. Then P(C g(i)pi = g(C ip,)) = 0. 

Proof. If f (p) # 0 for all p E 0 the theorem is proved. Otherwise let pO, 
h and S be as above. Now 

=EWW+-W}I{pj, jZi)) 
=EO=O 

because the conditional distribution of pi, given {pi, j # i}, is absolutely con- 
tinuous. 
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Since the space is separable, the set {f(p) = O} is contained in a countable 
union of open neighbourhoods S on which pi = h(p), for some i and some 
continuous function h not depending on pi. It follows that 

proving the theorem. 
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