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COEXYSTENCE OF COMPETITORS IN A STOCHASTIC
ENVIRONMENT: THE STORAGE EFFECT

Peter L. Chesson

The pre-reproductive, or juvenile stages of an crganism, are often the most
precarious. These are the stages in the life cycle that are most subject to the
vagaries of the environment, while potentially reproductive adults tend to have
both higher average survivorship and more predictable survivorship. It follows
that recruitment to the adult population is often much more variable than adult
survivorship. This difference in variability is increased in some species by a
tendency of adults to teduce reproductive effort when conditions are paor thus
increasing their own survivorship or enhancing later reproductive success {Mur&och
1966, Goodman 1974, Nichols et al, 1976, Tyler and Dunn 1976).

High variability in recruitment, together with both less variable and high
adult survivorship is a characteristic feature of many populations of commercially
exploited fishes (Gulland 1982). The low adult death rates mean that the adult
population can be maintained for a long time by a single large recruitment event,

" Essentially, the adult population stores up recruitment events subject to a yearly
discount equal to the adult death rate. As a consequence, the adult stocks are
not nearly so variable as the speradic recruitment might suggest. The interaction
between variable recruitment and high, less variable, adult survivorship that leads
to these population characteristics will be called the sforage effect. The
storage effect is present whenever recruitment is variable and generations overlap,
but the effect is strongest for leng-lived species.

Variable recruitment and long-lived adults are also features of perennial
plant populations (Harper 1977, Grubb 1977, Hubbell 1980) but the consequences of
the storage effect for these populations is not nearly so well documented.

For a guild of competing species, the storage effect can have quite surpris-
ing consequences: it can be the mechanism of coexistence. Chesson and Warner
(1981) investigated the storage effect in the lottery model of competition for
space among reef fishes. Only in the presence of beoth variable recruitment and
overlapping generations was coexistence possible; that is, the storage effect was
found to be essential for coexistence. Is this result merely a special feature of
the lottery model or can it apply more generally? To answer this question I shall
discuss a generzl mathematical model incorporating the storage effect. I shall
then go on to consider a variety of examples that may be useful in applicatioms,
and which illustrate the generality of situations where the storage effect may

promote coexistence of competing species. A companion paper (Warner and Chesson,
manuscript) discusses the biological implicatioms of the storage effect, and
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suggests procedures for testing the hypothesis that storage is indeed the mechanism

of coexistence in field situations.

1. THE GENERAL MODEL

To model the storage effect, let Xi(t] be the population density of adults
of species 1 at time t; Gi is the adult death rate and Ri(t) is the per capita
recruitment rate during (t,t+1}. It follows that

X, (£41) = (1-8;)%; (£) + Ry ()X, (£). (W

In this equation Ri(t) will generally depend on Xi(t), the other species present
in the system, and the state of the environment, E(t), during (t,t+3}. Thus we

have

Ry (€ = £ (E(E),X, (£),..,X (0)), (2)

where fi is some function. For simplicity the death rate §; is assumed to be
constant, but, as can be seen from Chesson and Warner (1981} and Chesson (1982),

§; may vary with the environment without substantially altering the conclusions
below. Moreover the death rates can he made to depend on population densities to a
limited degree. However, in general we shall think of the adult death rates as
small and relatively constant while the recruitment rates are highly variable.

To analyze the model we define

oy (t) = R (£)/s;. (3)

Species i increases when pi(t) > 1 and decreases when pi(t) < 1. Persistence
of species 1 depends on its mean instantaneous growth rate at low density, Ai’

vwhich is given by the formulae

e
"

£ log X, (t+1)/X; (1)

E og {1+5,{p, (13-11}, S

evaluated for Xi(t) =0, If Ai > 0 then species 1 persists in the sense of
invasibility (Turelli 1578), i.e., species i tends to increase from low values.
Invasibility often implies persistence in the more satisfactory sense of stochastic
boundedness or 's.b. persistence' {Chesson 1978, 1982). S.b. persistence means
that Xi(t) is stochastically larger than some positive random variable U, uni-

formly in t, in symbols

P(X;(t) > X} > P(U>x).
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To determine invasibiiity by calculating Ai it is usually assumed that
(E(t),xl(t},...,xk(t)} approaches some stationary process when Xi(t) = 0; and the

expected value is taken for the stationary distribution, or more commonly, for some
approximating distributien. In this study the stationary distribution is not always
available but we do find stationa:y lower bounds teo pi(t) which allows us to
deduce conservative conditions for invasibility. If these conservative conditions
are satisfied, and the lower bound to pi(t) is an independent and idemtically
distributed (i.i.d.) function of E{t), then Theorem 5.1 of Chesson (1982) can be
modified to prove s.b. persistence for the regular examples given below. However,
in general, we shall be content to show that a species satisfies the invasibility
criterion.

To determine invasibility, we note from Chesson (1982) that
8; > 6,E[log o, ey > 1]PG, > 1) + Log - §0P(p; < 1). )
It follows that Ai will be positive whenever
Ellog p;lp; > 1] » c(8;)P(p; < 1/Pk > 1) (6)
where-
ctéi) = -log(l-3,)/68, (7)

and c[Gi) is ¢lose te 1 for small Gi.

The expression (6) provides a highly conservative yet very useful criterion
for persistence in the sense of invasibility. Note that the criterion does not
depend on the magnitude of L the ratio of the recruitment rate and death rate,
during perieds of population decrease. Referring to periods of population increase
and decrease respectively as favorable and unfavorable, we see that the criterion
(6) depends only on the mean magnitude of 1log LBy during faverable periods and on
the frequency of these periods relative to unfavorable periods. Thus a species can
persist provided only that some of its favorable periods are sufficiently favorable
(as measured by log pi) relative to their frequency of occurrence. This is the
storage effect in operation: 1large recruitment events are stored in the adult
populiation reducing the significance of the actual magnitude of log Py during
unfavorable perieds. A general tendency for population increase can be maintained
by favorable periods alone. )

The magnitude of log Py during unfavorable periods becomes important when
criterion {6) is not satisfied. If the unfavorable periods are not greatly
unfavorable then persistence can occur with substantially poorer favorable pericds
than suggested by {6). Precise relationships between mean favorability, variance

in favorability and adult death rate, can be found from an obvious reinterpretation
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of the figures in Chessen and Warner (1981).

The fact that a species may persist by having only occasional good recruit-
ment periods has important consequences for a set of interacting species, If the
interactions are negative, so that not all species can have favorable periods
simultaneously, coexistence may nevertheless occur, Each species simply needs to
experience favorable periods that are sufficiently favorable relative to their
frequency of occurrence. Such perieds may be brought on by fluctuations in the
environment, or by fluctuations, which may or may not be environmentally induced, in
other species.

We now illustrate these ideas with a variety of specific examples, Addi-

. tional examples can be found in Ellner {1983} and Shmida and Ellner (1983).

{i} The multispecies lottery model.

This first example shows that the stovage effect may promote coexistence not
just in a two-species system, as shown by Chessen and Warner (1981}, but in systems
with many species. .

In the lottery model of Chesson and Warner each adult individual holds a umit
of space, calied a "home™ which may be a defended territery (e.g., same réef fishes)
or simply room to grow (e.g., trees or bushes). The total number of homesites
available is assumed fixed and sites become availahle to new recruits only by death
of adults. Thus the amount of space becoming available durirg (t,t+l) is l
zsixi(t}. The Bi(t)Xi(t) juveniles of species i compete for this space with
juveniles of all species. The outcome is assumed to be a random or biased random
division of space among the individuals of the k species. 1In the slightly simpler

completely random case we have

Bi(t)Xi(t)

k
R, (£3X, (t} = _21 8% (t) - (&)

k
32
j£1 B (3% (%)

The parameters Bi(t) representing birth and survivorship to the age of recruitment,
are assumed functions of the environment E£(t). The process E(t) 1is assumed to
be stationary in all examples, and for proofs of stochastic boundedness we make the
stronger assumption that it is an 1i.i.d. process, Formula (8) involves the
implicit assumption that the total number of juveniles exceeds the available space,
and hence that all space is filled at each recruitment period. Measuring density
as the proportion of space that a species occupies, it follows that ‘zgsl Xi{t) = 1
For species 1 at zero density, pi(t) (= Ri{t)/ﬁi) is given by
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T8, (1)
oy () = 27 R (9)
i : I FHONm
min §.
s s B (t)
ji . i _
S T N (10)
i

The general result (6) implies that species 1 will persist if pi{t) tzkes on
values that are sufficiently large relative to their frequency of occurrence. The
inequality (10) thus shows that the species will coexist if each species has periods
when its birth rate, Bi(t), is sufficiently superior to the birth rates of the
other species. Thus coexistence results from sufficient variability in the birth
rates of each species relative to the others. Moreover since (10) is independent of
the population densities it is an i.i.d. process when (sl(tJ,...,Bk(t)},
t=20,1,... is an i.i.d. sequence of random vectors. It follows that each
species will be s.b. persistent when there is sufficient variability in birth
Tates.

Although inequality (10) helps show that coexistence will occur with suffi-
cient variability it does not give a very useful indication of the amount of varia-
tion necessary. [t suggests that the necessary variation increases quite sharply
as the number of species increases, however the equality (9), which gives a much
better indication, suggests a substantially milder increase in the necessary
variability. For pi(t) ta be large in {893, Bi{t} has to be large relative to,
not the maximum birth rate for the other species, but to a weighted average of their
birth rates, the weights being the species' densities.

Coexistence results from a sufficient storage effect in the multispecies
lottery model; the storage effect is also necessary for coexistence. When genera-
tions are nonoverlapping, equation (6) of Chesson and Warner (1981) shows that the
species with the largest value of E log Bi(t) eventually dominates the system. In
a constant environment, the species with the largest value of Bi/Gi, is the only

one that persists.

(ii) The lottery model with vacant space.

The application of the previous model may be restricted by the assumption
that the total number of juveniles surviving to the recruitment stage always exceeds
the available space. To remove this assumption for the two-species case we let
Y(t) =1 - Xl(t) - Xz(t}, the amount of unoccupied space. The recruitment term,
Ri(t)xi(t), of the lottery model is modified to

B; (£)X; (1)

. (11
B COIX, (€77, (D)X, (6]

min ;Bi(t)xi(t}, [Y(t)+6lxlft)+62X2(t]}
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In this new model, if there are more juveniles than the space can hold, allocatiom
is at random, otherwise the density of new recruits of species i 1s simply the
density of juveniles.

For Xi{t)-= 0 we have

Y(t)+6.X, (t) } B, {t)
pi(t} = min ;1, 3] f 1

| (12)
Bj[tJXj(t) 5]
8, B.(t)
>_min;1,sj%(—l-é—i— (13)

From {13) we see that coexistence will occur if each species has periods when the
ratio of its birth rate to its death rate is large both absolutely and relative to
the ratio for the other species. This is not much different from the lottery model
because the lottery model really only makes sense when Bi{t} z_di. Consequently,
when Bi(t)/ai is large rtelative to Bj(t)/éj, it must also be large absclutely.
However the above criterion for coexistence is conservative when there is empty
space. Indeed {12) sﬁggests that coexistence will occur under more general condi-
tions, especially if the amount of empty space can be large.

Although we make no attempt to explore more general conditions for coexist-
ence, one thing is clear: the storage effect is essential. To see this consider
first the case of a constant environment. For species i to persist Bi/Gi > 1.
Thus if both specles persist, all space is filled in finite time, and as in the
lottery model, the species with the smaller value of Bilsi becomes extinct. When

generations are not overlapping
X, (£+1)/X, (£+1) = (8, (t)/B,(£))X, (£)/X,(2). 14

This equation alsc holds for the lottery model and it follows that the species with
the smaller value of E log Bi(t) becomes extinct. Thus the interaction between
variable recruitment and overlapping generations (the storage effect) is essential

to coexistence.

(iii) The lottery model with other kinds of competition.

Competition need not be restricted to a single time in the life of an
organism. For example in addition to lottery competition for space at settlement,
competition among adults may affect reproductive success. Provided this competition
among adults does not affect adult death rates, it still fits easily into the
general model above. Another interesting possibility involves competition among
juvenilies before they reach the settlement stage. We model just this latter
possibility because the former situation, invelving adult competition, can be
modeled as a minor modification with very similar conclusions.

To add presettlement competition we do not need to change equation (8) of
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the lottery model; we just need to make the Bi{t) density dependent as follows,

for the two-species case,
B, (t) = By (t), (B, (£)X, (1) -B; (t}xj {£)}. (15)

Here Bi(t) is the birth rate and so Bi(t)xi{t) is the number of juveniles before
presettlement competition, while the function fi represents the fractional reduc-
tion in Bi(t} due to this- competition. The result, Bi(t), is the potential
recTuitment rate because it is the number that would recruit, per adult, if the
space were available.

The interpretation of the model is aided by the following definition of
generalized competition coefficients {c.f., Abrams 19753).

ag; (25,20 = - a:;j log £ (45,8,), 13, (16)

and ey is defined analogously. These competition ceoefficients represent the
relative depression of species 1 juveniles by each additional juvenile of species
j and species 1 respectively. Making the assumptions fi(G,U] =1, Xi(t} =0, -

we now obtain

J,Ej(t)
8.8, (t} a..(%,0)-a,.(0,8)de
p; (1) = ﬁ‘i@-ﬁ e® H ‘ an

Inspection of (17) shows that coexistence must always occur if birth rates
vary sufficiently in the following sense. Let p and L be fixed positive

constants and

P(B,(t]) > M, Bj (t) < L) > p, (s}

i#3;4i, j=1,2. By increasing M, variability is Increased in the sense of an
increase in the difference between the small and large values that the birth rates
take on. Expression (18) also insists that some periods of low birth rate for
each species coincide with scme periods of high birth rate for the other species.
With sufficiently high variability (high M) coexistence occurs in this model of
general presettlement competition with lettery competition at settlement.

Although we have used a very general definition of high variability it does
not cover all cases in which variability may lead to coexistence, especially for
particular forms of the model where quite different definitions of high variability
can be adequate. The present definition has the property that EBi(t) will be
large when varisbility is large, however E log Bi(t) need not be large. Chesson

(1982) discusses the relative merits of different ways of defining high variability.
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To see what happens in a constant environment we use the general definition

of coexistence in terms of an attractor block given by Armstrong and McGehee (1980).
In a constant environment we say that the species coexist if there is a positive
number ¢ such that both species densities rise above e and remain there, given
any positive initial densities. With this definition, a necessary and sufficient
condition for coexistence is Py > 1, i = 1,2. Inspection of (17} is sufficient to
give the general features of coexistence in a constant eanvironment. We consider
four cases.
(A) Gij < ujj’ i#3, i, j =1,2 (intraspecific competition exceeds interspecific

competition). Coexistence occurs if 5231/8261 = 1, but also in many other

situations. In general, coexistence is favored by any of the fellowing:

6251/3261 i$ near 1; the Bi are large in absclute value; the differences

¢.. - o,. are large.
3] 1]

(B) o

ij > ujj’ i#3,1i, j =12, {interspecific competition exceeds intraspecific
competition). Coexistence never occurs for this case.

©

LLo< . L > O i i i i ompeti . Coexistence can
Gl] UJJ’ aJl %54 (species i is a superior competitor) st
occur if the presettlement competitive advantage of species 1 1s balanced by

a large value of SiBj/ejBi giving species j an advantage with respect to

birth and adult survivorship rates. However it is possible for this ratio to
be too large so that species 1 does not persist.

(D) “ij = gjj’ i#3, 1,35 =1,2 {interpsecific competition equals intraspecific

competition). The case is equivalent to the lottery model and so coexistence

cannot occur in a censtant environment.

Coexistence in a constant enviromment occurs for subcases of only two of the
above cases, however coexistence will always occur in a sufficiently variable
environment, as discussed above. Thus a stochastic environment broadens the range
of situations in which ceexistence can occur.

Although not obvious from our analysis so far, it is not just the stochastic
environment that is important but its combination with overlapping generations, le.,
the storage effect. Without overlapping generations coexistence remazins impossible
in case (D}, because this case is equivalent to the lottery medel, while in case

(B) Al + A2 = E log Pyt E log Py < 0, so that it is impossible for both species

to satisfy the invasibility criterion. In addition, although it is possible that a
stochastic environment could lead to coexistence without overlapping generations for
some instances of (A) and (C), these instances necessarily belong to a subset of
cases where the storage effect yields coexistence. This follows from the general

result for the lottery model (Chesson and Warner 1981), which applies here also,
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that smaller death rates favor coexistence.

(iv) The storage effect in a Lotka-Volterra model.

In addition to the storage effect, the above models have all invoived lottery
competition. To see that lottery competition is not essential to coexistence by the
storage effect we now consider a model in which there is no lottery competitionm,
Instead, competition of the Lotka-Volterra kind occurs among juveniles and among
adults.

Let Li(t) be the number of juveniles born to the Xi(t) adults of species

t in (t,t+*1), then the recruitment term takes the form

0 i(t)Li(t)
+aii(t}Li(tJ+uij(t)Lj(t)

R (e)X;(E) = 5 (19)

This equation is the hyperbolic form of Lotka-Velterra competition in discrete time
(Leslie 1958). It represents the reduction in juvenile survivorship due to
competition among juveniles. The parameter @i(t) is per capita juvenile
survivorship in the absence of competition; aii(t) and aij(t) are the competi-
tion coefficients. Although these parameters are possibly time dependent they are
assumed to be staticnary stochastic processes not invelving adult or juvenile
densities.

Birth rates of juveniles are affected by competition among adults and the

model is completed by the equation

. B, (£)X; (2
L. {t) = (203
i 1+Yii(t)xi{t)+yij(t)xj(t)
with the same assumptions as applied toc (19} on the time varying parameters,
For species 1 at 0 density we obtain
0. (t)B, {(£)/8,
= i i i
oy(t) = ;5 (8B, (K (] (21)
[1+Yij (t)xj (t)]]1+ Ty, (TIX, (0)
13 3
The behavior of pi(t) depends on the behavior of Xj(t) when Xi(t) = 0.
Assuming Xi(t) = 0, (19} and (20} iwmply
X.(t+1) < (1-8.)X.(t) + o.(t L. {t). 22
J( =< J) J( ) J( )/aJJ{ ) (22)
it foliows that Xj(t} is bounded by the random variable
t t-1 s ]
) = (1-8.) X, (0) + 1-8.)79.(t-s . (t-s). 23
EJ{ Y= JJ J( ) I« J) 3( )/aJJ( s) (23}

5=0
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The significant feature of (23} is that the birth rates are not functionally
invelved although this does not deny statistical dependence. Substituting in (21}

we conclude

0, (£)B, (£) /8, _
o 5 (t) BJ- (t)jj (t)
1+ Y55 (t)Ej {t}

Py (t) > (24}

[2ov;5 (€5 (8] [1 +

It follows that if Bl(t) and Bz(t) are large at different times, both plit}
and pz(t) can take large values., Thus coexistence can ecccur by the storage
effect.

In a constant environment with species j alone, Xj{t) converges to the

equilibrium Valﬁe
0.B./8.-1)}/ (v, .*a..B.). 25}
] J/ 1 Mt i 1] J) (

Te see when species 1 can invade, this equilibrium value is substituted in
expression (21) for Py (values of Py 2 1 indicate invasibility). Inspection of
the resulting formula reveals that ceoexistence can occur if interspecific competi-
tion coefficients uij and Yij are smail while the Bi are large, On the other
hand, if the uij are large, the species cannot coexist for any values of the Bi’
While no attempt has been made to delineate precise regions of coexistence, it is
clear that the storage effect does indeed lead to a breoader range of situations of
coexistence: with the storage effect coexistence can occur for any values of the

interspecific competition coefficients.

2, SUMMARY

It is not uncommon for the rate of recruitment to an adult population to be
much more variable than adult survivorship. 1If adult survivorship is high, while
recruitment is guite variable, the average growth rate of the population will be
dependent mostly on the strength of good recruitments and little dependent on the
strength of poor recruitments. It is possible that the population is maintained by
infrequent strong recruitment events. The interaction between variable recruitment
and low adult death rates, that leads to these population properties, is called the
storage effect. Because the storage effect can permit a species to have a positive
average growth. rate if its goed recruitments are sufficiently beneficial, indepen-
dently of the paucity of recrultment at other tiﬁes, it can promote the coexistence
of species that compete quite strongly. For coexistence, each species simply needs
periods when its recruitment rate is sufficiently high relative to the frequency of
these periods.

Several different competition models are given which iilustrate the variety
of situations in which the storage effect promotes coexistence.
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