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Introduction

Many poﬁulations occur in environments that vary substantially in time. Some
of this variation is regula;, for example, seagonal variation, and some of it is
stochastic, i.e., has a strong element of randomness. Although I shall focus
mainly on this stochastic variation there are many parallels between the effects of
regular and stochastic'variatioﬁ and some of the mathematics below holds equally
well for both kinds of temporal environmentsl variafion.

The presence of significant stochastic variation suggests that stochastic
models, not deférministic models, should be used to describe population dynamics.
Yet they rarely are. The lack of emphasis on stéchastic models seems. in part due.to
the difficulty in analyzing stochastic models and in part due to the feél;ng that
elither stochasticity is mostly noise obscufing a deterministic signal or its ekfect
1§ one that destabilizes systems. Discussions of these views are to be found in
Goh (1976), Turelli (1978a), Murdoch (1979), Chesson and Warner (1981), and Chesson
(1982). The-perception that envirommental variability is destabilizing‘might well-
have encoﬁfaged the use of stochastic models; instead it has léad to an emphasis on
features in deterministic models that ought to prevent destabilization by
stochasticity (Beddington et al. 1976, Goh 1976), However, if destabiliiation is
equated with the likely extinction of one or more specles, then the conclusion that
stochasticity is generally destabillzing is not correct. Recently there have
appeared a number of models in which the effect of st?chasticify is to promote
coexistence of competing species (Chesson and Warner'l981,‘0heas§n 1982, Chesson, in
press, Ellner, in press, Shmida and Ellner, in press, Abrams, ms). In&eed;
stochastic models have a variety of interesting and important behaviors that cannot
be guessed from their deterministic counterparts. Thus no longer is there any good

Justification for the low emphasis on stochastic models.
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There is a particular broad class of models where a stochastic enviromment
seems especially likely to promote coexistence of competing species. HModels im
/

this class contain a feature that has been called the storage effect (Chesson, in

press, Warner and Chesson, ms).

The Storage Effect

For many organisms the 1ife cycle is maturally divisible into pre-reproductive
individuals (juveniles) and reproductive individuals {adults). Maturation to an
adult is called recruitment and the per capit# number of new adults appearing in a
unit of time is called the recruitment rate. The environment can affect adults and
juveniles quite differently. In many organisms, highly variable birth rates and
juvenile survivorship rates lead to highly variable'recruitment rates. On the
other hand, adult survivorship may be relatively constant and much higher than
juvenile survivorship_(Chesson, iﬁ press, Warner and Chesson, ms). These features
are especlally well documented for fish populatiomns {(Gulland 1982) and perennial
plant populations (Grubb 1977, Harper 1977, Hubbell 1980).

To wodel the consequences of variable recruitment rates and iow, less wariable,
adult death ratgs, let xigc) be the adult population size of species.i at time t,
6i the desth rate of adults, and Ri(t) the recruitment rate. With these
definitions

Xi(tﬂ) - {1-61)xi(t) + Ri(t)xi(t)' ' | . (D

The recruitment rate is assumed to take the form

R (8) = £ (§E), X (0), X,(8), ..., X (£)) 2
where fi is some function of the randomly varyiﬂé envitonment,!i(t), and the adult
densities of the n species in the system. For simplicity, the death rate is
constant in this system. However, provided adult death rates are smail, the
results of Chesson and Warner {1981) and Chesson (l982)iextend to show that
'moderate adult death rate variation does not qualitatively affect the results we
obtain below. For definiteness we shall generally assume that the environment
process £(0), £(1), ... is an independent and identically distributed (i.1.d.)

sequence, but many features of our analysis hold more generally.
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To investigate the comsequences of this model for population growth, we define

pi(t) = Ri(t)léi so that
X (1) /X, (8) = 1+ 8 (o (£)-1). | | (3

Thus species 1 increases or decreases depending on whether oi(t) > 1 or < 1. Such
situations of population increase and decrease will be referred to respectively as
favdrable and unfavorable periods. According to the invasibility criterion

(Turelli 1978b) species I will persist in the system if
E logil + 61(pi(t) -l >0 (4)

when this expression is evaluated at 0 density for species i. (It is usually
assumed that the system has a unique stationary distribution in the absence of
specles 1 and {4) is evaluated for this statiomary distribution.)

The LHS of (4) is essentizlly the mean instantaneous growth rate of species i
at low density and it has some quite remarkable properties. For example, a
sufficient, but by no means necessary condition for‘(é), and hence for persistence

is

E[ log o lp, > 1] > c(8)P(o, < /PG, > 1 (5)

(Chesson, in press), where c(éi) = wdzllog(lwéi) 2 1 for small 51. This sufficient
condition 1nvplves only the magnitude of Py during favorable periods: no account
is taken of what hapbens during unfavorable periods. 1In other words, for a given
frequency of occﬁrrence of favorable pericds, & species can persiast provided
suffiﬁient benefit in terms of recéuitment is derived during favorable periods,
independently of the magnitude of the recruitment costs that are incurred during
unfavorable periods. This is not to say that the costs during unfavorable periods
are unimportant, but simply that they are less importént than the benefits gained
during favorable periods.

- Some idea of the effectrof unfavorable periods can be gained from the

approximation

E log{l + Si(pi(t) -1} = 61{391 - 1} (6)
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which holds for small 61 or situations where Py takes only values near 1,

Recalling that E[ X:A ] = E[‘XIA ]P(A), the persistence criterion becomes
E[p 50, <1]+E[p5p,>1] 2P0, # 1. (7

.Clearly both favorable ané unfavorable periods contribute to this inequality. In
particular, values of p, mear 3 during unfavorable periods mean that favorahle
periods do not have to be strongly favorable for the persistence criterion to be '
satisfied. However, 1t is equally clear that favorable periods have a potentially
larger effect: while 0 is é lower limit to pi, so that E[ P3Py <1 ] > 0, in‘
general there is no reason for any particular upper limit to Py Thus

E[ o > 1] has the potential to be large, and will be large if stromg

1 P
recruitments are not too infrequent.

What we have seen is that in populations with small adult death rates and
variable recruitment rates, theré is a definite asymmetry in the effects of
favorable versus unfavorable periods. Strong recruitments contribute quite
significantly to population growth while poor recruitments can be made arbitrarily
poor without causing much decline in the mean growth rate of the population. This
asymmetry between the effects of favorable versus unfavorable periods is célled the

' of recruitment in

storage effect because it comes about by summation or “storage'
the adult population: the aduvit population consists of the sum of past
recruitments, each being discounted every time unit by the adult death rate. The
fact that ;ﬁe'adult population is essentially a sum over a number of periods of
recruitment diminishes the harm that coccurs whenever recruitment fails. The
storage effect is present whenever generatibns are overlapping, 1.e., whenever

Gi < 1, but it is strongest when adult death rates are small, for then the effects

of favorable periods of recruitment persist for a long time.

The Storage Effect as a Mechanism of Coexistence

Consider a group of specles that compete quite strongly, but assume that this
competition mostly affects recruiltment of juveniles to the adult population. Then
if adults are competing, the number and vigor of their offspring are affected by

competition, while competition among juveniles affects their chances of surviving



to adulthood. If competitive dominance varies through time from specles tolspecies,
each species 1s able to have periods of strong recruitment and the asymmetry
imparted by the storage effect means that periods of poor recruitment, when a
specles 1s competitively inferior, need not cancel out the effects of these
favorable periods. In this way the storage effect favors coexistence.

To demonstrate the potential role of the storage effect in promoting
coexistence in a variety of competition models we take a conservative apptoacﬁ
using

Ri{t) = inf £, &, X : (8)

. )_;lxiso ,
which is the minimum value of the recruitment rate that will occur‘for a given
state ﬁf the environment with specles i1 at O demsity. We are considering a worst
case situation for the possible effects of the other species.

If Ri(t) caﬂ bg made arbitrarily large by a suitable choice of values of the
environment E(t), .‘then p i(t) can take on arbitrarily large values, and if there are
such values of £(t) for each species, then there are probability distributions for

ﬁkt) such that the species coexist. For example, if the &, are small, condition

p 8
{7) says that coexistence will occur if P(pi >n) = 1/n fpr éach specles. However,
since the storage effect diminishes the harm to population growth during unfavorable
periods,- there is c.learly a broad variety of probability distributions for &(t) that
permit coexistence.

This ahalysis gives merely sufficient conditions for coexiatence, and because
of its conservatism these sufficien; conditions themselves may not be very useful.
Thus the analysis is best viewed as demonstrating the trend toward coexistence as
variation in the environment is increased in certain broad~girections. It gives
little indication of the actual magnitude of variation neceséary for coexistence.
However, the strength of the analysis is its generalitf.as illustrated by the
examples below. Moreover, the analvsis above is not restricted to the case where
the enviromment is i.1.d. Indeed it demonstrates invasibility with very general

kinds of enviromment processes including both staticnary ergodic processes and

regular environment processes in which H(t) is a periodic function of time, Om the



other hand, retaining the assumption that the environment is i.i.d. allows us to

conclude that each species persists in the strong sense of stochastic boundedness

{Chesson, In press).

Example 1. The multispecies lottery model.

This model involves competition for space. Each adult holds a unit of space
and thus death of adults releases zajxj
(t, t+1). The Bi(t)xi(t) offspring of species i compete for this space with the -

(t} units of space in the time interval

EBJ(t)Xj(t) offspring from all species. Under the assumption that space is
allocated at rapdom, the proportion of available space taken by species 1 is
Bi(t)Xi(t) { ZBj(t)Xj(t). This involves also the assumption that the number of

offspring always exceeds adult deaths, so that space is always in short supply.

It now‘follows that

By (t)
= & ———— . ]
R (r) = (2 jxj(_t)) I sj(t)xj(t) (9
In the simplest case the "birth rates" Bi(t} {which include density independent
juvenile mortality) are simply functions of the environment and we deduce -
t -
i( 61 max Bj(t)lﬁj (10)
3

The ratic Bi(t)lai is a natural measure of the competitive ability of a species.
Thus expression (10) says that all species can coexist in the system if each species
experiences periods when it is sufficiently competitively superior to all of the
other species. This will be achieged with appropriate variation in the envircmment.

This simplest form of the lottery model does not permit coexistence in a
constant envirbnment, nor in an environment with non-overlapping generations
{Chesson and Warner 1981). It follows that the storage effect is essential te
coexistence, -

The storage effect can:also be shown to promote coexistence in a variety of
more complex versions of the lottery model (Chesson, in press, in prep.). These
models allow for such features as density dependence in the Bi(t)’ spatial

heterogeneity, and the possibility that fecundity 1s not always sufficieantly high

LIy
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to fill all of the available space.

Example 2. Generalized Lotka-Volterra Competitionm.
To obtain examples that are analogous with the more usual sorts of competition
models, consider first the case of just two competing species and let Li(t) be the

number of juveniles of species 1 produced in time (t, t+l). The model for Li(t) is

L, () = B, ()X, (O f (X (1), X (1)) (11)

3

where the environmentally varying parameter Bi(t) 1s -the per capita birth rate in

the absence of competition, and the function f, represents the proportionate

i
reduction in the birth rate due to competition among adults. The function fi is
thus assumed decreasing in both arguments.

Competitlion may also occur among juﬁeniles affecting their survivorship to

adulthood. Thus we have
R ()X (2} = 0.1, {t)g, (L (), Lj(t)), _ | (12)

where Bi is survivership without competition and gy is the reduction in survivorship
duevto competition; gy also 1is decreasing in both arguments.

Equations (11) and (12) may ¥epresent discrete forms of Lotka-Volterra
competition as suggested by Chesson {in press) or they may represent somelarbitrary

generalization of Lotka-Volterra competition.

Under thé assumption that zgi(z, 0) has a finite maximum Hi we see that

xi(t+1) < (1-51)x1(t) + O.M (13)

i

and so Xi(t) is bounded above by Ky ™ Giuiléi if it starts below this value. Thus

we cbtain
R;(t) 2 0,B, (t) g, (0, Bj(t)nj)fi(o, xj). o (14)

The monotonicity of g; now implies that Ri(t) will be large whenever Bi(t) is large

3
will coexist provided only -that the density independent components of their birth

provided that B,(t} is not simultaneously large. It follows that the two species

rates (the B;(t)) take on sufficieéntly large values at different times. This
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particular example generalizes quite trivially to cover the cﬁse of an arbitrary
number of specles. Coexistence occurs by the storage effect in the multispecies
case 1f each species has large values of Bi(t) while the values for the other
species are small or modergte.

Without specifying the gi and fi’ it is qQuite possible that coexistence
occurs without the storage effect, either without a stochastic enviromment or
without overlapping generations, but the important point is that the storage-
effect can lead tq-coexistenge regardless of the specific form of thefi and By»
and so there is no doubt that it broadens the range of situatioms iIn which

coexistence can occur.

Comparispn with a spatial model

We have seen:thac the storage effect promotes coexistence in a variety of
circumstances but the analysis gives little indication of how much variation is
necessary for coexistence to occur nor does it say how effective the storage
mechanism is relative to other mechanisms of coexistence. Some idea of the
necessa:ylamount of variation can be obtained from the two-species lottefy model
where this has been well-documented (Chesson %nd Warner 1981). A coﬁparison with
spatial hetexoéeneity lets us judge the relative efficacy of the storage mechanism.
This isrespecially interesting because spatial heterogeneity is commanly
regarded as a 3t£ong promoter of coexistence.

To make the comparison we construct an analogous spatiél mo@el which applies .
to a planktonic larval situation. Local populations of adults are assumed to
exist on discrete patches, their offspring enter a pool of plankton which are then
redistributed to the patches where the larvae may or may not mature as adults
depending on the outcome of larval competitive interactions. The number of patches
in the system; k, is assumed to be effectively infinite, and this assumption ié
justified by the usual convergence of the dynamics of finite systéms of patches to
those of infinite systems (Chesson 1981). Thé_equation describing-the dynamics of

species 1 on patch 3 (s

Xy (e¥D) = (1-6 )X, () + Rij(t)"ii(t) . vo(18)
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In this equation Xij(t) is the number of adults of specles 1 on patch i,

1 .k —
X £j=1 xij(t) (the spatial average of adult numbers), and Rij(t) Xi(t)

is the number of new recruits to the adult population on patch 1. Adults do not

X, (t) =

migrate: the only connection between patches 1s through the larval pool. The local

recruitment rate Ri (t) takes the form

3

R,.(t) = fi(gj(a, xl(t), vees in(t})

ij (16)

vhich esseﬁtially embodies tﬁe idea that the total density of adults of each specieé
in the system determines the size ofrthe larval pool of each species. The local
environment Ej(t) affects both the relative rates of migration of larvae to
different patches, and the outcomes of the interactions among larvae on individual
patches. Ceitainly more complex spatial models are possible but then they must be

compared with models more complex tham {1) for the storage effect. However for

spatial versions of the lottery model it is best te have

Bij(t)xi(t)

LB jl(t)xf’(t)

Rij(t) = (-2‘1 Si,xzj(t)) (17}
so that local recruitment depends 6n the local amount of space becoming available.
But, because the Xij(t) enter (17) 1inear1y,'§£(t) caﬁ be substituted for xzj(t)
without altering the results we obtain (Chesson, in prep.). Thus it is sufficient
to work with the genmeral form (16).

To model spatial heterogeneity it is as.aumed- that gl(t), Ez(t) .. .+ are i,1.d.
for fixed t, and that fhe distribution of the Ej(t) does not depend on t. These.
assumptions provide spatial variation, and permit temporal variation locally in
space, but do not allow ahy temporal varlation that is correlated over all patches.

With these assumptions the dynamlcs of the spatial-averages of.pqpulation

]
numbers are given by the equation

X, (tt1) = (-8 )X (€} + ¢, (X, (), cees X (£))X, (1) (18)

where
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(g ey x) = BE (D), Xp, oany X)), B ¢ )

—

Note that {18) is a simpla difference equation and so the xi willlbehave determin~
istically but this deterministic behavior depends on spétial heterogeneity through
its effects on the ¢i.

If%(t) is substituted for g.j(t) in (16), the subdivision of the total
population into local populations becomes irrelevant and equation (18) no longer
holds, at least not exactly; instead, the El(t) satisfy the storage model (1).

With this observation the assumption that B(t) and Ej(t) have the same probability
distribution establishes a one-one correspondence between the storage model and the
apatial wodel. However, the correspondence goes beyond a mere formal relationship
for the two models actually converge to each other numerically as the death rates
are made small. To see how this happens let 51 = hél, fi - hfi. b, = h¢i.
Decreasing h decreases death rates and lengthens the lives of individuals, The
recruitment rate also decreases with h. In genergl this'is necesgary to prevent
unbounded growth in the total reproductive ontput-of an individual in its lifetime,
but in tﬁe lottery models it 1s an automatic consequence of decreasiag tﬁevéi
with h,

Défininé 3£(t) = (ii(t/h), ey iﬁ(t/h)} for the spatial process, and
}h(t) = {xl(tlh), vess xn(:/h)) for the storage model, we can view these models,
appropriately, on a time scale commensurate with the life expectancy of an adult.
A general theorem of M,F. Norman applies. In the presence of qild regularity
conditions (Noerman 1975) the differgnce gh(t)Jgh(t) converges in probability to 0,
provided §h(0) = E%(O). Thus the storage model and the spatial model are .
essentially indistinguishable for long-lived organisms: at least for long-lived
organisms, the storage effect promotes coexistence just as effectively as does
spatial hetefogeneity.

The results of Norman (1975) are actually stronger than this simple conver-

k

gence im probability for he shows that the rate of convergence is of order h*:

specifically,
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converges weakly in distribution to a diffusion process Z(t). If 3#(0) = 5* is
an equilibrium point for the spatial process (such points do not depend on h), then
Z(t) has an especially.simple structure., It 1s a multivariate Ornstein-Uhlenbeck

process and the distribution of Z(t+s) given Z(t) is
As 8 _Au AT
N(ez(t), [z e Ydu) - (21)
where N(p, I) means multinormal with mean p and variance matrix I,

3! )
A= (x; rax—;(g_t*a . Xo - x;xj*'ﬁ{ fi(’g(t) ,5*), fj (E(t) ,g*)}) and G means covariance.

In the event that the eigenvalues of A have negative real parts so that the
spatial model is locally stable at 5* for small h, the process Z(t) converges as
t »= to a stationary stochastic process with mean 0 and variance
I = f: exp(Au)Zoexp(ATu)du. Thus for large t and sgall h, gh(t) will be

approximately a statiopary process with distribution
N )
R{x , hI). _ ‘ (22)

This means that for longrlived organisms the storage model will give us small
fluctuations about the spatial equilibrium, with the variancé of these fluctuations
being proportional to the adult death rates.

On the other hand, i{f any eigenvalue of A has a positive real part, the spatial
model will be locally unstable at §* and the storage model will shoﬁ 1ncreasinély
severe fluctuations about the_value 3*. This close link between stability in the
two sorts of model further strengthens our conclusion that the stabilizing effectsr
of spatial heterogeneity are matched in the analogous models of the storage effect,
Examgle:- The multispecles lottery model. -

The spatial version of the lottery model (Chesson, in prep.) has

B .
i} .
$,(x) = (T8,%,) E . : (23)
127 278 zzﬁzsz



Equilibrium points satisfy the equation

T

i
E”zuz* 1 (24)
T 8 * *6*/ 8 * In the 1 mod Al 0 ei
where 1 " Bij/ 5 and vy = x4, Zi R n the lottery el, has a 0 eigenvalue

because Exi(t) = g gonstant (the total amount of space in the system). However if
the distribution of (Pl’ ceny Fn) is n-dimensional, i.e,, cannot be supported by a
linear space of fewer than n dimensiona, then 0 is a simple root of the character-
istic equation of A while the other eigenvalues have negative real parts. It
follows that small h and feasibility of the solution to (24) give stability of the
spatial model at §T'and they give small fluctuations abour this value in the storage
model. | |

An instructive special case is obtained by assuming that (Fl, ...,Fn) has an
exchangeable distribution, i.e., (r"1’ cens P“n) has the same joint distribution for
all permutations (nl, ey ﬂn) of (1, ..., n). An exchangeable distribution gives
a model of similar species, and for this model (24) has the feasible solution
x: - 6;1/21621. 1f the distribution of (Tl, eeay Pn) is also n-dimensional, the
storage effect leads to coexistence with small fluctuations about §*, for small h.

An n-dimensional and exchangeable distribution for (T rn) is

1: LR ]
consistent with arbitrarily small but positive variances for the Fi. Thus this
particular example provides an important complement to our previcus results for it

shows that in the lottery model similar species can coexist by the storage effect

with arbitrarily small amounts of temporal environmental variability,

Summary

In many organisms the product of the birth rate and the juvenile mortality rate
(the recruitment rate) 1s highly variable while the adult death rate is low and
relatively less variable. These conditions lead to an asymmetry between the
contributions of favorable and unfavorable periods to population érowth. This
asymmetry Is called the storage effect and it can permit a species to persist
provided favorable periods convey sufficient béenefit regardless of the costs
incurred during unfavorable periods. The storage effect is a stochastic mechanism

of coexistence capable of acting in a broad variety of situations. For long-lived



organisms its efficacy appears comparable to that of spatial heterogeneity.
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