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Models are developed in which prey preferences vary between individual 
predators but the preference of an individual does not change with prey relative 
density. These two properties generally lead to the surprising conclusion that the 
aggregate preference of a population of predators does change with prey relative 
density. This phenomenon may result in negative or positive switching, depending 
on the circumstances, with negative switching being the more likely result. Such 
population negative switching is found in previously published experimental data. 
Implications are given for the analysis of ecological data, and some implications for 
the stability of field populations are suggested. 

1. INTRODUCTION 

Murdoch (1969) introduced the term “switching” to refer to the situation 
where the ratio of the abundances of two prey species, in the diet of a 
predator, jncreases faster than proportionately with their ratio in the 
environment. Murdoch believed that switching (to be called here “positive 
switching”) would stabilize prey species densities, and theoretical evidence 
for this was found later (Oaten and Murdoch, 1975; Tansky, 1978). 

P. L. Chesson (1978) introduced the term antiswitching (to be called here 
“negative switching”) to describe the situation where the ratio of two prey 
species in the diet of a predator increases slower than proportionately with 
their ratio in the environment. Switching behavior, i.e., the presence of either 
positive or negative switching, is usually thought of as a behavioral 
phenomenon involving predator individuals: individual predators change 
their preferences for the prey species as prey relative densities vary. A 
variety of mechanisms by which individuals may show positive switching has 
been worked out theoretically (Murdoch and Oaten, 1975; Oaten and 
Murdoch, 1975; Murdoch, 1977; McNair, 1980). However, the interesting 
effects of switching behavior occur at the population level: the predator 
population as a whole influences the stability of the prey populations. To 
obtain the effect of the entire population of predators one must sum the 
effects of each individual. This is a simple matter if individuals are identical 
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in all respects, for then the effect of the predator population is a direct 
reflection of the behavior of an individual. However, if individuals are not 
identical, summing the effects of the individuals can be quite complicated, 
and as we shall see, the qualitative effects of the entire predator population 
may not be predictable from the qualitative behaviors of the individuals 
making up the population. 

In this paper models are introduced where individual predators show no 
switching behavior, yet at the population level switching behaviour occurs. 
The predator individuals in these models differ from one another in prey 
preference, in prey handling time, and in other ways. Thus the predators 
show between-individual variation (P. L. Chesson, 1978). It is to be expected 
that some between-individual variation will be found in almost any quan- 
titative aspect of behavior. For prey preferences, this between-individual 
variation can be quite extreme (Murdoch and Oaten, 1975), and it is shown 
here that between-individual variation can cause both positive and negative 
switching for the population of predator individuals considered as a unit. A 
reanalysis of experimental data of Murdoch (1969) gives empirical support 
to these theoretical ideas. 

The intuitive essence of the findings below can be explained in terms of a 
partial decoupling of the effects of the predator population on the two prey 
populations, as a result of between-individual variation. This is most easily 
seen for the standard type II functional response, which models the effects of 
handling time and satiation. With this functional response, an increase in 
prey density results in a decrease in the per capita predation rate, i.e., a 
decrease in the number of prey eaten per unit time divided by the number of 
prey individuals. Handling time and satiation affect a predator individual’s 
predation rates for both prey species, indeed handling time and satiation 
change the per capita predation rates proportionately for the two species. For 
instance, if one prey species increases in abundance, while the other remains 
constant, the per capita predation rates for the two species decrease by 
proportional amounts due to an increase in total handling time, or the level 
of satiation. Thus in the presence of just one predator individual, or a 
population of identical predators, there is a very close coupling of the per 
capita predation rates for the two prey species. 

The presence of variation in preference for the prey, from one predator 
individual to another, leads to a partial decoupling of the per capita 
predation rates. For instance some predator individuals may have a high 
preference for species 1, and these predators may therefore have little effect 
on species 2, while other predator individuals have a high preference for 
species 2 and little effect on species 1. In this situation, if species 1 increases, 
and species 2 decreases, the per capita predation rate on species 1 decreases, 
while that on species 2 increases. Thus in the diet of the predator population 
as a whole, the ratio of the two prey species varies inversely with their ratio 
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in the environment, i.e., negative switching occurs at the population level 
even though individual predators show no switching behavior. 

Population negative switching effects are given a rigorous general 
treatment below. It also shown that positive switching can result at the 
population level, under certain circumstances, e.g., if the functional responses 
are type III, i.e., accelerating functional responses. 

These population level phenomena provide a new view of the relationship 
between collective and individual behavior. In different circumstances the 
focus can be on phenomena that occur at the individual level, or on 
phenomena at the population level. Distinguishing between these levels poses 
important methodological and statistical problems, requiring more care in 
data collection and analysis. 

Population level switching behavior has implications for population 
dynamics. Indeed, as discussed below, a general tendency toward population 
negative switching might be expected to occur when prey are abundant, 
leading to the possibility of destabilization of the prey populations. 

2. MODELS FOR THE BEHAVIOR OF AN INDIVIDUAL 

In this section we discuss models for individual predators with no 
switching behavior. In later sections we show how switching behavior arises 
for a population of predators with individuals behaving according to the 
models presented here, but with the model parameters varying between 
individuals. 

Let the two prey species have densities H, and H, and let X, and X, be 
the mean rates of consumption of these two prey species by a particular 
predator individual. Murdoch and Oaten (1975) define (positive) switching 
in terms of 

c = W,/Xd/W,IHd. 

Positive switching occurs if c is an increasing function of the relative density 
H,/H, (or equivalently H,/(H, t Hz)) of species 1. Conversely, if c is a 
decreasing function of relative density we say that negative switching occurs. 

Switching behavior can also be defined in terms of preference measures (J. 
Chesson, 1978) which are related to c as follows: 

preference for species 1 = a, = c/(1 + c), 

preference for species 2 = a2 = l/(1 t c). 

Since a, (= 1 -a& is an increasing function of c, switching is positive or 
negative depending on whether a, is an increasing or decreasing function of 
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relative density. These preferences define the proportion of the diet made up 
by species 1 according to the formula 

Xl CH, a,H, 
Xl +x2 =cH,+H,= a,H, + a,H,’ 

At equal prey densities the proportion (1) is equal to the preference. 
The mean consumption rates Xi, as functions of prey densities, are the 

functional responses and we shall denote them by &(H, , H,). Denoting mean 
total prey consumption by fT(H, , H,) = f,(H, , H,) + f2(H1, Hz) we find 
from (1) that 

e&W,, Hz) =fTW,~H2) a R:“:, 
I 1 

H . 
2 2 

Functional responses that give no individual switching behavior are obtained 
from (2) simply by assuming that a, and a, are independent of H, and H,. 
The total functional response, f,(H, , H2), can be of any functional form, but 
in general it will depend on a, and a2. 

The simplest functional response giving no individual switching behavior 
is the linear or type I response where the amount of species i consumed is 
simply proportional to the density of species i: 

fi(H, 3 Hz) = PalHi - (3) 

In this equation no allowances are made for handling time or any changes in 
hunting rate due to satiation or hunger, and no allowances are made for 
possible effects from hunting the other prey simultaneously. The parameter p 
is an overall hunting rate. 

The next simplest functional response is a type II response where the 
predator does take time to handle prey but otherwise the predator’s behavior 
is no different than in the linear response. This is the two-prey generalization 
of Holling’s disk model (Murdoch and Oaten, 1975): 

N-f, 3 HA = 
PiHi 

1 +p{a,r,H, + a2v2H21 ’ 
(4) 

where vi is the mean handling handling time for prey species i and now p is 
an overall hunting rate during search time. 

The disk model (4) originated as a deterministic model, but it can also be 
derived as a mean capture rate in stochastic models (Oaten and Murdoch, 
1975; McNair, 1980). This is important because Oaten (1977) has shown 
that stochastic models are necessary for the adequate representation and 
interpretation of the behavior of an individual animal. Oaten and Mur- 
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doch (1975) and McNair (1980) actually derive equations more complicated 
than the disk equation, for in their models they allow for training effects 
where previous meals influence capture probabilities, handling times, and 
encounter rates. These training effects lead to individual switching behavior, 
but when they are removed, mean capture rates corresponding to the disk 
equation (4) are found. 

In cases when total absolute density (H, + H,) is large, p is large, or 
handling times are large, then searching time is small relative to handling 
time and the disk model (4) reduces to 

which we shall call the saturated disk model. 
In the models presented so far, the predator responds only passively to 

prey density: it simply eats what is available in the time available. There is 
no reduction in the hunting rate at high prey densities due to satiation and 
there are no learning effects at lower prey density that could increase the 
hunting rate to give a type III response. Such effects can be included by 
modifying the linear model so that the hunting rate p is a function of prey 
densities. The hunting rate should change to reflect the total value of prey 
consumed. If V, and v2 are the values of prey 1 and prey 2, then the total 
value of prey consumed is proportional to al v, H, + a,v,H, and the 
linear response is modified by making p a function, p = r(z), of 
z = al v1 H, + a,v,H,. When r is a decreasing function, satiation and hunger 
are being modeled. When r is increasing, learning effects are being modeled. 
This new model will be referred to as the active response model. 

The active response model is most easily analyzed when r takes the form 

r(z) =poz” where p. and v are constants. 

This form does not allow saturation except when v = -1 and so it is not 
realistic at high prey densities. However, for negative v, attack rates do 
decline as densities increase, mimicking the approach to saturation in more 
realistic models. Moreover at low densities, the form r(z) =poz” gives a total 
functional response that approximates the functional responses discussed by 
Real (1977) for one prey species. 

3. BEHAVIOR OF THE AGGREGATE IN THE PRESENCE 
OF BETWEEN-INDIVIDUAL VARIATION 

Phenotypic variation is a characteristic of biological populations and so it 
is likely that there will be variation from individual to individual in the 
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parameters of the functional response of a predator. For example, there is 
evidence that preference may vary considerably among the individuals in a 
predator population (Murdoch and Oaten, 1975). Such variation may be 
modeled by treating the parameters of the functional response as random 
variables. In a situation with n predator individuals, the mean rate of 
consumption of prey species i will be 

where E is the expected value taken with respect to the distribution of 
functional response parameters among individual predators. If n is large and 
the individuals are hunting independently, then (6) will be close to the actual 
number of prey species i consumed by the predator population in one unit of 
time. Indeed the law of large numbers says that the random deviation from 
(6) will be o(n) in probability, i.e., when this random deviation is divided by 
n, the result converges in probability to 0 as n + 00. 

If n is not large the analysis given here still applies but with a different 
interpretation. For small n the symbol E must refer to the finite distribution 
of functional response parameters actually found in the small population. 
Then (6) is still close to the actual rate of consumption of species i provided 
the time interval involved is long enough for within-individual variability (P. 
L. Chesson, 1978) to be unimportant. This will be so when repeated obser- 
vations on the same individual do not show much variation in consumption 
rates. 

In either of the two situations discussed here, we are justified in regarding 
(6) as the functional response of the total predator population or the 
“population functional response.” Below we shall also introduce the terms 
“population preference” and “population switching.” By introducing these 
terms we simply wish to draw appropriate analogies between phenomena 
that occur at a population level, and phenomena that occur at an individual 
level. We do not wish to imply any thinking or decision making on the part 
of the population, just as preference and switching at the individual level do 
not imply thinking or decision making by individuals, even though individual 
decision making may be involved. 

Except in the linear case the population functional response will generally 
be of a different form than the individual functional responses as a conse- 
quence of the well-known result that EfX) is generally different fromf(EX) 
when f is nonlinear (e.g., P. L. Chesson, 1981). We shall see that this 
different functional form often gives population switching behavior. In the 
linear case, however, population switching behavior is not found because 
then Eh(H, , Hz) = p(Ea,) H, so that the population functional response is 
also linear. 
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To investigate population switching behavior for the general case we 
consider the ratio of ratios 

(7) 

or equivalently a: = c*/(l + c*), which we shall call the population 
preference for species 1. Note that c* and a,* are defined in terms of the 
population functional response in just the same way that c and 01~ are defined 
in terms of individual functional responses. Population preference for species 
2 is a; = l/(1 + c*). Like individual preferences, a: + a: = 1. Using (2) we 
obtain 

To convert (8) into a more workable expression define x = H,/(H, $ H,) 
(relative density of species l), y = H, + H, (total absolute density), and 

T(a,,x)=Elf(x,y)l[a,xy+a,(l--x)ylIa,}, (9) 

Here f(x, y) = J;(H, , H,) and y is suppressed in r(a, , x) for notational 
simplicity. We can now write (suppressing y again) 

Expression (10) exhibits the population preference a: as a weighted average 
of the preferences of individuals. Moreover, except in the linear case, the 
weights are functions of relative density which immediately suggests that 
some kind of switching behavior ought to occur for the population. Indeed, 
intuition suggests the following sufficient, but not necessary, criteria: if 
T(a’, x)/r(a, x) is an increasing function of x for a’ > a then a: will be an 
increasing function of x, i.e., positive switching will occur. On the other 
hand, negative switching occurs if this ratio decreases with x. (If not 
obviously true, these statements follow from the general condition (12) 
below. See Appendix I for details.) 

To determine when the above criteria will be satisfied, note that 
T(a’, x)/r@, x) increases or decreases with x, for a’ > a, according to the 
sign of (a/ax){log r(u’, x) - r(a, ~)}/(a’ - a), Letting a’ + a we obtain 

(11) 

Thus population switching behavior is given by the sign of (1 l), assuming 
that (11) has the same sign for all a and x. If the sign changes with x, but 
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not with a, then population preference will be increasing with X, for some 
values of x, and decreasing for others. Thus the graph of a:(x) need not be 
monotonic but can increase and decrease. In such cases switching behavior 
is defined locally, i.e., for a particular relative density x. On portions of the 
graph where a:(x) increases, we say positive switching occurs; where a:(x) 
decreases we say negative switching occurs. It is important to note that the 
switching behavior can also depend on y, the total absolute prey density. 
However, in spite of these various possibilities, in the model examples we 
give here, the same sort of switching behavior occurs at all relative and 
absolute densities, although the strength of the switching behavior can be 
very highly dependent on prey densities. 

If it happens that the sign of (11) changes with a, then (11) does not 
determine population switching behavior and naturally the original criterion 
involving T(a’, x)/T(a, x) fails also. However, a straightforward calculation 
shows that 

aa,* E[T(a,,x)a,(a/ax)logT(a,,x)l -= 
ax ET@, , x) 

~[~(a,,x)a,l~[~(a,,x>(~/~x)log~(a,,x>l 
WhxV 

=O+ 
( 
a,,ilogT(a,,x) , 

1 
(12) 

where SF’ stands for the weighted covariance with weights proportional to 
T(al, x). Thus to see if switching behavior is positive or negative, we ask 
whether on weighted-average (a/%~) log T(a, , x) increases or decreases with 
a,. By way of comparison, when using criterion (11) we ask whether 
(a/ax) log Qa, , x) is always increasing or always decreasing with ai, where 
“always” means “for all a, values.” Thus criteria (11) and (12) are very 
closely related and will be difficult to distinguish in an experimental setting. 

Our criteria for population switching behavior depend critically on the 
quantity r(a,,x), which by definition is the conditional mean value, given 
aI, of 

f (XT Y) 
aIxy+a,(l-x)y’ (13) 

The numerator f(x, y) of (13) is the total functional response, while the 
denominator is proportional to the total functional response that occurs 
when the separate functional responses for the two prey species are linear. 
Changes in (13) as x and a1 are varied result from nonlinearity of the actual 
functional responses. Expressions (11) and (12) can thus be regarded as 
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measures of nonlinearity of the functional responses. Since the linear 
response does not lead to population switching behavior it is not surprising 
that the criteria for population switching behavior involve such measures of 
nonlinearity. 

Criteria (11) and (12) are applied to specific models in the next section. 
However, in some cases these criteria are too difficult to calculate and we 
must rely on a less informative analysis using the idea of average switching 
behavior. The quantity &zT/LJx whose sign is indicated by (11) and (12), tells 
us the switching behavior for relative density changes in a small 
neighborhood of the given relative density x; it gives the local switching 
behavior discussed above. On the other hand, 

I 
I aa: 
o ,-dx=a:(l)-a:(O) (14) 

indicates the average switching behavior for all possible changes in relative 
density, at fixed total prey density. There are many different ways of taking 
an average. The particular method (14) gives the same weight to all relative 
densities. 

To determine the sign of (14) we note from (10) that a:(x) > Ear, or 
a;“(x) < Ea, depending on whether a, is positively or negatively correlated 
with T(a,, x). If the sign of this correlation changes as x changes from 0 to 
1, then the average switching behavior can be determined by this technique. 

4. SWITCHING BEHAVIOR WHEN PREFERENCE Is THE ONLY VARIABLE 

To apply the criteria above to specific models we continue to assume that 
individuals have no switching behavior, but that different individuals have 
different preferences (between-individual variation in preference). When all 
between-individual variation in the functional responses comes from 
variation in preferences, r(a, , x) is equal to expression (13). Evaluating 
criterion (11) for the disk model we obtain 

& log r(a, x) = - PY(fII + %I + @Y)% r2 

11 +PYbvlx+ (1 -a)12(1-411’ * 
(15) 

This quantity is always negative and so negative switching always occurs in 
the disk model. However, for small handling times (vi), small p (hunting rate 
during search time), or small y (total absolute density) the disk model is very 
close to the linear model and so in these cases the magnitude of the negative 
switching effect should be small and indeed this is reflected by a small 
absolute value for (15). 
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On the other hand, if handling times are large 
model is similar to the saturated disk model and 
the following value for the saturated disk model: 

or p or y is large, the disk 
expression (15) is close to 

& log qu, x) = - tllrl2 

@?,X + (1 - a) r2t1 -xv * 
(16) 

Clearly when both handling times are positive the saturated disk model also 
leads to negative switching at the population level. 

To see if the negative switching effect is stronger at saturation, we note 
that when 11, = q2, (15) decreases to (16) as p, y, or r,r, and q2 increase. This 
suggests a stronger negative switching effect near saturation, but there is no 
direct correspondence between the magnitude of (a’/& 3x) log r(u, x) and 
the magnitude of the negative switching effect. Furthermore when vi # q2 the 
behavior of (15) is dependent on the relative density and preference values 
involved. More reliable information comes from a;“(l) -a?(O) which gives 
the average switching behavior. In Appendix II it is shows that the 
magnitude of the average negative switching behavior is always greatest near 
saturation. 

Although average switching behavior appears to give a clear conclusion, 
some caution is necessary. For example, when one of the handling times is 
zero, the value of a?(l) - a:(O) in the saturated disk model is different from 
the limiting value given by the disk model as saturation is approached. 
Indeed the saturated disk model shows no switching behavior at saturation, 
when one handling time is 0, while the disk model continues to show the 
maximum average negative switching effect on the approach to saturation. 
This discontinuity is explained by the behavior of (15) as saturation is 
approached. If q1 = 0, then (15) converges to 0 for all x < 1, indicating that 
&T/ax converges to 0 for relative densities less than 100%. However, for 
x = 1, expression (15) converges to -co reflecting the fact that aaf/ax 
converges to --co for x = 1 (Appendix II). Thus near saturation the negative 
switching effect is confined to a small interval of relative density near 100% 
of species 1. However, the magnitude of the effect in this interval is very 
large so that a:( 1) - a:(O) actually increases as saturation is approached. 
Since it is very difficult to measure preference when one species is present 
almost exclusively, this extreme negative switching near x = 1 is likely to be 
undetectable experimentally and the total absence of negative switching in 
the saturated disk model gives a good indication of what is likely to be seen 
in the real world. 

The conclusions above with one handling time 0 generally indicate the 
situation that applies when both handling times are positive but markedly 
different from one another (Appendix II). When handling times are very 
different, most of the negative switching effect found near saturation occurs 
over a very small range of relative densities. For relative densities outside 
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this range it seems likely that the negative switching effect will actually 
decline as saturation is approached even though there must be an increase 
for the average of all relative density changes. 

For the active response model the criterion (11) is difficult to use without 
specification of r. Because of this problem we first apply (11) to a special 
form of r and use a more limited analysis for the general case. Assuming 
that T(Z) = z”p, for constants v and p,, we obtain 

& log r(a, x) = VVIV2 

[av,x + (1 -a) v,(l -x)12 ’ (17) 

and so population switching behavior is negative or positive depending on 
the sign of v. Negative v, giving negative switching, is the model of satiation 
effects, while positive v, with positive switching, is our model of learning 
effects and gives a type III functional response. It should be kept in mind 
that regardless of the particular function r, no individual switching 
occurs-all of the switching behavior seen here is at the population level. 

For general r we have r(a,, x) = r(ari v, xy + a2v2( 1 - x) y). If r is a 
decreasing function and we define x* = vz/(vI + v2), then T(a,,x) is an 
increasing function of ai for x < x* and a decreasing function for x > x*. 
From the discussion in Section 3 this means that 

al*(x* + 6,) < Ea, < al*(x* - E2) 

for positive ei. In particular a:( 1) ( a:(O) so that negative switching occurs 
here in the general model of satiation. Conversely if r is an increasing 
function, learning effects are being modeled and positive switching occurs. 

Situations in which learning is important at low absolute densities and 
satiation at high absolute densities are likely in the real world. These will 
mean that positive switching will occur for small y while negative switching 
will occur for large y, all of these effects being at the population level. 

5. EXPLANATION OF POPULATION SWITCHING BEHAVIOR 
IN TERMS OF WEIGHTED AVERAGES 

In the examples above, negative switching occurs where the total 
functional response f(x, y) varies less with prey relative density and prey 
preference than the total linear response. The latter is proportional to 
a, x + a,( 1 - x). To see what is happening here, it is instructive to examine 
in detail the case wheref(x, y) is independent of the relative density. This is 
not realistic for small y but provides a simple illustration to explain the 
effects we see. Examples where f(x, y) is independent of x are the saturated 
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disk model with fl, = q2 and the active response model with v = -1 and 
u, = v, . The population preference is given by 

a* = Wb,x+a*(l -W’ 
1 E[a,x + a,(1 -x)] -1 ’ (18) 

Consider two individuals, A with a high czi and B with a low oi. In 
expression (18), A gets more weight than B at low x values. The reason is 
that the linear response predicts A will not consume many prey at low x 
values, but with constant f, A has the same total prey consumption at all x 
values. It follows that A with constantfappears like several A’s with linearf: 
Conversely B with constant f appears like less than one B with linear$ Thus 
at low x the population preference will be more than the average preference 
Ea,, which is the population preference for the linear response. Conversely 
at high x the population preference is greater than the average preference. 
Thus negative switching must occur. 

The above explanation of population negative switching applies generally 
in the situation whereftends to vary less with relative density and preference 
than the linear response predicts. On the other hand, in the case where f 
tends to vary more with relative density and preference than predicted by the 
linear response, population positive switching occurs. Indeed criteria (11) 
and (12) are the precise mathematical statements of these qualitative 
remarks. 

6. SWITCHING BEHAVIOR WHEN PREFERENCE 
Is NOT THE ONLY VARIABLE 

Section 4 considered switching behavior for the case where individuals 
differ only in their preferences. It is clear from (10) that between-individual 
variation of preference is essential to population switching behavior, but does 
variation in other parameters of the functional response significantly alter the 
results obtained above? This is important because other parameters of the 
functional response may well vary just as much or more than preference and 
these parameters may be correlated with preference in various ways. 

Data on the backswimmer Nofonecta hoflmani preying on mosquito larvae 
and Daphnia (J. Chesson, pers. comm.) show wide variation in both 
preference and handling times of mosquitoes among the 19 predator 
individuals but there is no significant correlation between preference and 
handling time (p > 0.25). I know of no other data on covariation of 
preference with handling time and the causes and natures of such covariation 
are likely to be varied and difficult to determine. Thus in the analysis below 
we recognize that there may be relationships among the different parameters 
without attempting to justify any particular relationships. 
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Consider just the disk model. To model variation in the parameters let 
P = h(a,) 70, aiqi= #!(al) yi, i = 1,2. Here #o, #r, and & are fixed 
functions; yo, yr , yz are random variables independent of the a,, and they are 
assumed to have mean 1. This model permits the conditional means of p and 
vi to depend in a completely general way on (xi but imposes a multiplicative 
model for variation about the conditional mean. 

To determine average switching behaviour note that 

~(a~~~)=E~Pl~~+P~~a,~,~+a,rl*(~--)l~Ia~l. (19) 

Substituting for p and vi, keeping a, fixed at a and defining A, = 1, A, = 0, 
we get 

r(a, Ai) = E$o(a) YO/{ 1 + Y$O(U> $,(a> Yo rile 

To see how this varies with preference, a, we calculate 

(20) 

;=(a,Ai)=E 4hta> 70 - Y4X”> Qi’C”) YiYi 

L1 + Y#O(“> QiC”) YOYil* * 

For large 140(u) 4i(u), or small (log $o(u))‘/(log $i(u))‘, the second part of 
the numerator is dominant and we have 

$z,Ai)=-E Y4X”) $It”) YiYt 

1l +Y~O(“)~i(u)~OYi12’ 
(22) 

Our discussion is based on this approximation, which is applicable near 
saturation of the function responses, or in situations where p is much less 
dependent on preference than are the products of preference and handling 
time. 

Now aF(Ai) - Ea, has the same sign as the correlation between T(a,, Ai) 
and a,, which, from (22) has the same sign as --#;(a,). This means that 
a:(O) > a:(l) (i.e., negative switching occurs) whenever E[aiqi 1 ai] is an 
increasing function of ai, i = 1, 2. Positive switching occurs when E[aiqi 1 ai] 
is a decreasing function of ai, i = 1,2. Thus in contrast to the situation 
where only the preferences vary among individuals, here it is possible to get 
positive switching. However, positive switching does not seem a very likely 
possibility for it requires handling time to decrease very rapidly with 
increasing preference. Negative switching is the most likely possibility in this 
model for it occurs when handling time is independent of preference, 
increases with preference, or when the conditional mean handling time 
declines with increasing preference at a slower rate than l/ai. 

The effect of variability in the hunting rate parameter p is difficult to 
assess when y is not large and p is strongly dependent on preference. The 
analysis above shows that variation in p independent of a1 does not affect 
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our previous conclusions in any way. Moreover if p does not depend strongly 
on preference, any effect it might have is not important for large absolute 
densities, i.e., near saturation, where the strongest negative switching effects 
are often found. 

In summary, although variation in handling time and hunting rate 
produces some modification of our previous results, no striking differences 
are apparent. 

7. THE MAGNITUDE OF POPULATION SWITCHING BEHAVIOR 

A theoretical analysis that demontrates the existence of some tendency in 
a system is not complete until the strength of that tendency has been 
evaluated. Thus we must explore the strength of the population switching 
behavior demonstrated above and to do this we must evaluate a: as a 
function of x. 

In general, a: cannot be evaluated analytically and numerical methods are 
necessary. Numerical methods require an explicit model for variation in (xi. 
The beta distributions (Johnson and Kotz, 1970) provide a suitable model 
because by varying the parameters they can be made to take on a variety of 
plausible forms. The beta density is 

Aa> = cd+‘( 1 - a)!-+ l/B@, , &), 

a E (0, 1). S@, ,&) is the beta function and 8, and & are positive 
parameters. By varying these parameters we can obtain distributions with a 
single mode in (0, l), U-shaped distributions and J-shaped distributions. 

The figures give a: as a function of relative density (x). Figures 1 and 2 
are for the saturated disk model with equal handling times (vi = ql). In 
Fig. 1, /I, =& and the distribution of ai is symmetrical about 2. Figure 2 is 
for asymmetrical distributions of preference. 

In Fig. 1, curves a-e show how the negative switching effect increases with 
the variance of a,. Curve a is for a distribution with a mode at f while 
curves b-e are for progressively more extreme U-shaped distributions. 
Distribution e is the limiting case where preference can only be 0 or 1. The 
figure shows that the negative switching effect is only significant when ai has 
a high variance. 

Figures 3 and 4 for disk model. Both are for U-shaped distributions of 
preference where the switching behavior is most significant. However, in 
Fig. 4 the variance of preference is higher and the switching effects are more 
pronounced. Curves a-c were calculated assuming that handling times are 
equal and nonrandom so that 

Ea,{l +wrl[a,x + aA1 -x)11-’ 
a’= E{l +pYq[aix+a,(l --x)1}-’ ’ (24) 
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X 

FIG. 1. Population switching behavior in the saturated disk model. (a)P, =& = 2, 
(b)B,=p,= 1, (c)/3,=&=0.5, (d)j3,=/3,=0.25, (e)P,=&=O. 

In this formula pyq can be treated as a single parameter determining the 
degree of saturation of the functional response. Comparisons a-c show the 
change with increasing saturation. Curve d differs from the others by having 
handling time a function of preference. The model here is q, = ka;*, where k 
is a constant, and shows the theoretically predicted positive switching effect 
when handling time decreases rapidly with increasing preference. 

1.0 

a; 0.5 

0 0.5 1.0 
X 

FIG. 2. Population switching behavior in the saturated disk model with asymmetrical 
distributions of preference. For all curves /I, = 1. (a)B, = 2, (b)p, = 1, (c) 8, = 0.5, 
(d)/?, = 0.25. As /3, is decreased the distributions become more J-shaped. 

653/26/l-2 
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FIG. 3. Population switching behavior in the disk model. (a)pya = 1, (b)pyq = 3, 
(c)pyq = co, (d) ‘I, = kq2, pyk = 3. 

Taken together the curves show that in the disk model the biologically 
significant switching behavior is to be found near saturation. The curves are 
for highly variable preferences because only then do the numerical 
calculations show significant effects. It preferences are only moderately 
variable the switching behavior will be minor. However, our study is justified 
by the highly variable distributions of preference found in nature (Murdoch 
and Oaten, 1975), and the presence of population negative switching in some 
data from Murdoch (1969) which we now discuss. 

FIG. 4. Population switching behavior in the disk model. (a)pyr] = 1, (b)pyq = 3, 
(c)pyg = co, (d) qi = ka;‘, pyk = 3. 
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8. EXPERIMENTAL EVIDENCE FOR 
POPULATION NEGATIVE SWITCHING 

The first investigation of predator switching, viz., Murdoch (1969), 
contains evidence of population negative switching. Murdoch set out to test 
the idea that high variability in preference is indicative of lability of 
preference, and that this lability should lead to positive individual switching 
as prey densities are varied. Using the whelk Acanthina preying on barnacles 
and mussels, Murdoch found high variability in preference but only under 
special circumstances did he observe positive switching. These special 
circumstances involved training the predators on a pure diet of the more 
abundant prey species before exposing them to a mixture of the two prey 
species to assess their preferences. However, a reanalysis of the data for 
untrained predators reveals population negative switching (Fig. 5). 

Each point in Fig. 5 is an estimated a: value, denoted by ~2: and 
calculated according to the formula 

a,* = X,(1 -x> 
X,(1 -x)+X,x’ 

where Xi is the total consumption of prey species i by the 10 individuals 
exposed to relative density x of species 1 (barnacles). The fit to a linear 

Relative denrity of barnacles tx) 

FIG. 5. Population negative switching for Acanthina preying on barnacles and mussels. 
See text for explanation. 
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regression is good (r2 = 0.92, p < 0.01) and this is in accordance with the 
theoretical curves (Figs. l-4) which are approximately linear except at high 
and low relative densities. 

In order to confirm that the negative switching shown in Fig. 5 is not a 
consequence of individual negative switching we need to examine the 
behavior of individuals. This cannot be done directly with Murdoch’s data 
because his experiments involved pairs of individuals and so the best we can 
do is examine the preferences of groups of two individuals. However, from 
this we can extrapolate to the individual level. 

Figure 6 plots the &i+ values calculated for each pair of individuals. The 
regression of di: against relative density has a slope of -0.270 which is 
about one-half of the slope -0.536 found for groups of 10 individuals; 
however, the slope in Fig. 6 is not statistically significantly different from 0 
(p > 0.25). 

Note that in Murdoch’s experiments a different group of predator 
individuals was used for each relative density. Thus to interpret Fig. 6 we 
need to develop some theory applicable to small groups of predators where 
observation is made on a different small group at each prey relative density. 

To develop the required theory let Xi, be the consumption of prey species 
i by a group of n predator individuals. As a simple consequence of Eqs. (2) 
and (8) we see that 

EX,, = nE&(H, 3 Hz) = nK(x> Y> a,*(X, Y) Hi, 

1.01 . I 

I . . 
: : . 

e; o5 i-i;l 

. . 

8 

. 
. 

(26) 

Relative density of barnacles tx) 
FIG. 6. Group preferences calculated for pairs of Acanthina preying on barnacles and 

mussels (0). 0, the means. 
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where a?(~, y) is the population preference for the effectively infinite 
population from which the group of n individuals is drawn and K(x, y) is 
some function of x and y that does not depend on the prey species i. For 
large n the moment estimator 

($* - X,,(l -x> 
In - X1,(1 -x) + X*“X (27) 

will be close to 6: by the law of large numbers, but a”l*, will rarely be an 
unbiased estimator of a:, i.e., EC?,*, # a?. 

For small IZ this bias may be appreciable and in particular for n = 1, (27) 
is the standard estimate of preference of an individual (J. Chesson, 1978). 
Thus for n = 1, (27) is estimating individual preference rather than 
population preference. With sufficient observations on an individual, as 
discussed below, Ed;“., will be close to Ea,, the unweighted average of 
individual preferences for the entire population. Individual switching 
behavior will thus be determined by the regression of 6t.i on relative density, 
provided of course that all individuals show the same kind of behavioral 
response to relative density changes. 

To estimate the regression of C;F,, on relative density we note that, to a 
rough approximation, the bias in (27) is of the form A/n (Cox and Hinkley, 
1974), with A a function of x and y. It follows that the bias in the slope of 
the regression of C;l*, on x is approximately of the form a/n and so the 
difference in expected slopes for the regression of C;;“,,,, and &T,,2 is 0.4~. Thus 
from Figs. 5 and 6 we get 0.665 as an estimate of a. Using this estimate of a 
and the slope -0.536 for the regression of (;;“,iO we obtain 0.063, as an 
estimate of the slope of the regression of ci , T ;. This estimated slope is near 
enough to 0. Thus the data provide no evidence’of individual switching 
behavior, which suggests that the negative switching seen for groups of size 
10 is mostly due to variation between individuals. The data are not sufficient 
to rule out individual switching behavior, but the figures show that 
variability is quite high, and,‘since Figs. 5 and 6 were calculated from the 
same data, this variability is the only explanation for the observed difference 
between the regressions. Thus we can be confident that the phenomena 
discussed in this paper are operating. 

9. IMPLICATIONS FOR METHODOLOGY 
AND DATA ANALYSIS 

Ecological investigations are mainly concerned with outcomes at the 
population level. Studies of the behavior of individuals are often used to infer 
such outcomes. However, when individuals vary in quantitative aspects of 
individual behavior, we have seen that the qualitative outcome at the 
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population level may be quite different from that suggested by the qualitative 
aspects of individual behavior. In this study the population shows switching 
behavior because at different prey relative densities, different individuals with 
different preferences become prominent in determining the population 
preference. Thus changes at the population level may reflect changes in the 
relative importance of different individuals to the population outcome rather 
than any changes at the individual level. Thus when trying to infer 
population behavior from individual behavior it is important to take into 
account the effects of variation between individuals. Conversely when trying 
to explain population behavior in terms of individual behavior the possible 
effects of variation between individuals must be considered. 

To determine population behavior the most reliable method is to study a 
group of individuals and the group should be large enough that the biases 
discussed in the previous section are not important. The approximation A/n 
for the bias for a group of size n suggests that a (100,4/n)% bias will be 
found for the deviation between population and individual behavior and this 
will be unimportant for moderately large 12. 

If the group is studied for fixed periods of time, with negligible prey 
depletion, then formula (27) can be used to estimate the population 
preference. To explain the outcome it is necessary to record the meals of 
individuals and to calculate individual preferences. In this way the effect of 
individual behavior can be distinguished from the effect of between- 
individual variation. 

To study individual switching behavior, it would be best to study each 
individual at a range of prey relative densities. Switching behavior can then 
be determined for each individual using the methods reviewed by J. 
Chesson (1983). Some difficulties with studying individuals in this way may 
arise because individuals are sensitive to previous history so that the order in 
which the experiments are done, and the times between them, may affect the 
outcome. Moreover it may not be possible to collect sufficient information 
on an individual to get a good estimate of its preference at each prey relative 
density. 

When each individual is observed at only one prey relative density, it is 
only possible to infer individual switching behavior if most individuals have 
the same qualitative behavior, i.e., most switch positively, most switch 
negatively, or most have no switching behavior. Then Ea, will reflect 
individual switching behavior; and this quantity can be estimated by the 
simple arithmetic mean 6, of each individual’s estimated preference at given 
prey densities. 

It is important to note that other methods of arriving at an average 
preference value for the individuals in the population may actually estimate 
some quantity that is neither population preference nor the mean individual 
preference. For example, data for individuals are often converted to 



VARIABLE PREDATORS 21 

percentages that a prey makes up of the diet. If least-squares regression 
techniques are used to analyze these percentages or the percentages are 
averaged to calculate an overall preference value, then a bias in the direction 
of negative switching is likely to be introduced regardless of whether negative 
switching occurs at the population level. This occurs because a preference 
value calculated from the average of the percentages behaves like a 
population preference for a population in which the individuals have 
saturated functional responses and equal handling times. Thus our work 
above suggests that a component of negative switching will be added to 
preferences calculated in this way. The same phenomenon can occur, and for 
the same reasons, if observation on each individual involves a fixed total 
number of prey captures and the absolute number of captures for each 
individual are summed for each prey species, and these totals are then used 
in a least squares regression or are converted to preference values. A possible 
result in both of these cases is that positive individual switching will be 
masked by the bias in the direction of negative switching introduced in the 
analysis. 

Other biases can be introduced if there is very little data on each 
individual for then &!, may be a biased estimate of Ea, . Manly (1974) gives 
approximate bias formulas for two different experimental situations. To see 
how such biases can give the appearance of switching behavior, consider the 
situation where preferences are measured at constant prey densities and there 
is no individual switching behavior. Then simple arguments (J. Chesson, 
1978) lead to a binomial distribution for the number of species 1 consumed, 
given the total consumption. It follows that the mean proportion of the diet 
coming from species 1 is 

EP, = a+ 
(x,x + a,(1 -x)’ 

and the maximum likelihood estimate of a, is 

P,(l -x> 
“‘=~Jp’)=p,(&x)+(l-p,)x* 

P-9 

(29) 

Now t$,(EP,) = a, and 4, is convex for x > j, and concave for x < f . 
Jensen’s inequality implies that Eoi, > a, for x > i and E&r < ai for x < f. 
Thus 8, is biased in such a way that the data may appear to show positive 
switching. The precise formula for the bias is very complicated but it is 
shown in Appendix III that 
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where m is the total number of prey consumed of both species. Expression 
(30) gives the expected slope at x = 4 for the regression of 8, on x. Thus for 
prey relative densities near 50%, expression (30) measures the magnitude of 
the apparent switching effect introduced by bias in the estimator. 

Note that (30) has a maximum value of l/m for or = a2 = 4 and so with a 
moderate number of observations on an individual the bias will be quite 
small. However, if very few observations are made on each individual and 
this lack of data on individuals is compensated for by observing many 
individuals, then positive switching may appear to be occurring when in fact 
there is none either at the individual or population levels. 

The data from Murdoch (1969), reanalyzed above, involved 10-38 obser- 
vations per pair of individuals, with a mean of 22. While the binomial model 
above is. not directly applicable it still suggests that bias due to a small 
number of observations per individual is not likely to be a significant 
problem with Murdoch’s data. 

10. IMPLICATION FOR POPULATION DYNAMICS 

Positive switching is thought to be a factor involved in stabilizing prey 
populations because it may act to increase per capita mortality due to 
predation as prey density increases (Murdoch, 1969; Murdoch and Oaten, 
1975; Oaten and Murdoch, 1975; Murdoch, 1977; Tansky, 1978). Negative 
switching may act in the opposite manner by increasing the per capita 
predation rate as prey density decreases. Thus it is likely to destabilize prey 
populations: essentially it will tend to reinforce fluctuations in the density of 
one prey relative to the other and increase the chance of local extinction of 
one prey species. Since negative switching acts to the detriment of the rarer 
species, whichever that may be, it is likely to reinforce tendencies toward 
random exclusion of one of the two prey species as occurs in cases of 
Lotka-Volterra competition and in cases of the lottery model of Chesson 
and Warner (198 1). 

Although individual negative switching may occur (e.g., Reed, 1971) the 
results in this paper give a simple mechanism for population negative 
switching. Moreover population negative switching may commonly occur 
when preference is highly variable, food is sufficiently abundant that 
functional responses are near saturation, and individuals have no switching 
behavior. These last two conditions may well tend to occur together in 
nature. For example, in the linear model or the disk model, individual 
switching often has the effect of reducing the decline in food consumption as 
a preferred prey becomes relatively less abundant. However, this effect is 
much less near saturation and may even be reversed. Thus the benefit that an 
individual derives from switching may be reduced at high absolute densities 
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of prey. In addition, mechanisms for individual positive switching that 
involve spending little time in patches with low absolute prey densities 
(Murdoch et al., 1975; Murdoch, 1977) may not operate when absolute 
densities are always high. If different individuals also tend to forage in 
different patch types or different subhabitat types with distinct prey, then the 
requirement of high variation in preference will be found. The experiments of 
Murdoch ef al. (1975) appear to have all of these ingredients. Positive 
individual switching was found at very low absolute densities of prey, but the 
crucial experiments for our thesis, at high absolute density, were not done. 

We have been concerned mostly with outcomes at the population level. 
Thus we are dealing with the level relevant to population dynamics. 
Individual switching behavior is only important to population dynamics to 
the extent to which it contributes to switching behavior at the population 
level. Although we have been mostly concerned with the case where 
individuals have no switching behavior it is clear that the effects discussed 
here overlay individual switching behavior and modify its outcome at the 
population level. 

APPENDIX I 

Let ai have positive variance. We wish to prove that the weighted 
covariance (12) is positive if r(u’, x)/r@, x) is increasing in x for a’ > a. 
Assuming differentiability, Z(u’, x)/T@, x) is increasing in x, for a’ > a, if 
and only if 

& log T(u’, x) - $ log z+z, x) > 0 

for a’ > a. This implies that 

[ 
~log~(a,,x)-~logT(E~a,,x) [cz,-Etol] 1 

is nonnegative, and is positive whenever ai # Eta,. (EtY =deC EYT(a,, x)/ 
ET(a, , x), the weighted expected value of Y.) The weighted expected value of 
(A2) is the weighted covariance (12). Thus this weighted covariance is 
positive if Qu’, x)/r@, x) increases in x, for a’ > a. Similarly if 
T(u’, x)/T(u, x) decreases in x, for a’ > a, then (12) is negative. 

APPENDIX II 

To distinguish the disk model and the saturated disk models we shall add 
the subscripts d and s, respectively. 
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For the disk model we have 

YT,(U, 3 x> = 
PY 

1 +PY(a,rl,x+a*~*(l-x)~’ 
(A3) 

Since this is a bounded continuous function of x and a, for fixed y, it follows 
that a&(x) is continuous on [0, 11. The derivative (a/ax) yI’,(a,, x) is also a 
bounded continuous function and so a&(x) is differentiable, its derivative is 
given by (12), and (14) is satisfied. These properties of afd(x) are important 
to ensure that analyses involving average switching behavior make sense. 

If q, and vz are both positive, yr, converges of yT, as y + co. Note that 

Y~,@,,x)= b,vIx+a2v2(l -x)/F’. (A4) 

Applying the monotome convergence theorem we see that a: + at. Thus for 
positive handling times, the limiting behavior of the disk model is given by 
the saturated disk model. 

To see that the average switching effect is stronger near saturation we note 
that 

and that 

lim aI*d(l)=a~s(I)= (Ea;‘)P’ 
Y-X 

(A61 

which is the harmonic mean of a,. To see that (A6) is less than (A5) we 
note that a, ( 1 f pyql a, } - ’ is a strictly increasing function of a, and 
therefore has a negative correlation with a; ‘. It follows that 

E{l +pyrl,a,}-’ <Ea;‘Ea,{l +pyrl,a,J-I, 

assuming of course that a, is nondegenerate. A simple rearrangement shows 
that (A6) is less than (A5). By symmetry it follows that lim,,, a,*,(O) > 
a&(O) and so we have 

afd(l) - a$(O) > di; aI*d(l) - afd(0). + (‘47) 

Thus the negative switching effect is greatest near saturation. 
When q1 = 0 the above analysis does not apply, for then a,,(l) = Ea, for 

all y. However, if rz # 0 it is still true that lim,+, a&(O) > a&(O) and we 
see that (A7) still applies. However, average switching behavior is to some 
extent misleading here. To see this note when ‘1, = 0 we have 

aX(x) = ‘i&T!’ = 1 - (Ear;‘)-’ 
2 
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and a$(~) + al*,(x) for x < 1. Moreover it can be shown that &&/ax + 0 as 
y + co for x < 1. However, direct calculation shows that 

where Y means variance. Thus (iYa;h,/8x)j,= I -+ --a~ as y + co. In summary, 
for the disk model with one zero handling time, the negative switching effect 
disappears as saturation is approached except when the prey species with 0 
handling time is much more abundant than the other species. In these latter 
circumstances a strong negative switching effect will be seen and this effect is 
so great that the average switching behavior in (0, 1) is still found to be 
greatest near saturation. 

The behavior of the disk model when one handling time is zero indicates 
the sort of behavior to be expected when both handling times are positive but 
markedly different. To see this we can use the convergence of the disk model 
to the saturated disk model. If vi is relatively very small then inspection of 
the expression for al*,(x) shows that it will vary very little with x provided x 
is not near 1, but as x approaches 1 the dependence of a;“, on x becomes 
quite pronounced. Near saturation a& will behave similarly and so we see 
that the negative switching effect will be mostly confined to values of x 
near 1. 

APPENDIX III: 
THE BIAS IN ESTIMATES OF INDIVIDUAL SWITCHING 

The random variable mP, is binomial with 

and 

P(mP, = j) = p(j, x) = p’(x>( 1 - P(x))“-’ 

p(x)= alx 
a,x + a*(1 -x)’ 

Now Ed, = E#,(P,) and so 

At x = f, d.JP,) = P, and (a/ax) tiX(P,) = -4P,(l -PI). Thus (A9) reduces 
to 

%a2 -4EP,(l -PJ+;EP, =-. 
x=1/2 m 
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