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A stochastic model is developed for competition among organisms living in a 
patchy and varying environment. The model is designed to be suitable for species 
with sedentary adults and widely dispersing larvae or propagules, and applies best 
to marine systems but may also be adequate for some terrestrial systems. Three 
kinds of environmental variation are incorporated simultaneously in the model. 
These are pure spatial variation, pure temporal variation, and the space x time 
interaction. All three kinds of variation can promote coexistence, and when 
variation is restricted to immigration rates, all three kinds act very similarly. 
Moreover, for long-lived organisms their action is nearly identical, and their effects, 
when present together, combine equivalently. For short-lived organisms, however, 
pure temporal variation is a less effective promoter of coexistence. Variation in 
death rates acts quite differently from variation in birth rates for it may demote 
coexistence in some circumstances, while promoting coexistence in other cir- 
cumstances. Furthermore, pure spatial variation in death rates has quite different 
effects than other kinds of death-rate variation. In addition to conditions for 
coexistence, information is given on population fluctuations, convergence to 
stationary distributions, and asymptotic distributions for long-lived organisms. 
While the model is presented as an ecological model, a genetical interpretation is 
also possible. This leads to new suggested mechanisms for the maintenance of 
polymorphisms in populations. 0 1Y85 Academc Press. Inc. 

Environmental variation has often been suggested as an important factor 
in the dynamics of real populations and communities (Andrewartha and 
Birch, 1954; Hutchinson, 1961; Wiens, 1977; Grubb, 1977; Sale, 1977; Con- 
nell, 1978; Strong, 1985). The ways in which environmental variation might 
affect community dynamics have been examined in a variety of models (see 
reviews by Chesson, 1985; and Chesson and Case, 1985); and many of 
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these models give the conclusion that environmental variation promotes 
coexistence of competitors. However, environmental variation need not 
always have this effect (Chesson, 1985). 

The environment can vary both in space and in time, but it can also fluc- 
tuate asynchronously at different spatial locations. Thus there are basically 
three different ways in which the environment can vary, as discussed in 
more detail below. These three different kinds of environmental variation 
have all been incorporated in models, but generally in different models, or 
incorporated in rather different ways. These modeling differences have com- 
plicated the comparison of the effects of different sorts of environmental 
variation. In this paper, all three kinds of environmental variation are con- 
sidered simultaneously in a single model. Thus their effects can be com- 
pared and studied in combination. 

The model presented here is the patchy environment lottery, or PEL, 
model, and is a generalization of the lottery model of Chesson and Warner 
(1981). It is most suitable for organisms with sedentary adults and widely 
dispersing larvae or propagules, and applies best for marine systems, but 
may also be adequate for some terrestrial communities, as discussed in the 
section below on applications. 

KINDS OF ENVIRONMENTAL VARIATION 

My review (Chesson, 1978) classified the different kinds of variation of 
relevance to population dynamics. However, my terminology was not 
easily committed to memory and caused confusion. Thus I use here a new 
and better terminology. 

The environment can vary purely in space. Some places are permanently 
better for a species than others, and so there can be fixed a spatial pattern 
of environmental variation. Previously I called this “between-patch 
variation,” but here I shall use the term “spatial environmental variation,” 
or when emphasis is necessary, “pure spatial environmental variation.” 

The environment varies purely in time if all spatial locations experience 
the same environmental changes. I shall call this “temporal environmental 
variation” or “pure temporal environmental variation.” 

Finally, different spatial locations may show statistically independent 
fluctuations through time in environmental variables. When this is so, the 
spatial averages of the environmental variables show no fluctuation 
through time, and the temporal averages show no differences in space. I 
shall call this kind of environmental variation “spatiotemporal environmen- 
tal variation” or “pure spatiotemporal environmental variation.” It is a 
component of what I have called “within-patch variability” (Chesson, 1978, 
1981). 
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There is abundant evidence for the importance of all three kinds of 
variation in the real world, especially with regard to several important 
features of the model developed here, viz. reproduction, settlement, and 
juvenile mortality (Grubb, 1977; Harper, 1977; Hubbell, 1980; Butler and 
Keough, 1981; Gulland, 1982; Doherty, 1983; Keough, 1983; Underwood 
and Denley, 1984; Caffey, 1985; Swarbrick, 1984). Most real-world systems 
will experience all three kinds of variation in combination. Standard 
analysis of variance techniques can be used to partition the total variation 
into the spatial variance, the temporal variance and the space x time 
interaction. 

THE PEL MODEL 

Consider a system of many patches supporting local populations of two 
species. For a general patch model, it is known that the dynamics of an 
infinite system of patches provides a good approximation to those of a 
large yet finite system (Chesson, 1981). Similar justifications apply to the 
present case and so we shall assume that the system of patches is effectively 
infinite. 

In this system, Z,(t) represents the adult population size of species i on 
patch j at time t. Each adult occupies a unit of space or “home” (sensu 
Chesson and Warner, 1981) which may be a defended territory. Patch j can 
support Kj adults. The density of adults of species i, P,(t), in the entire 
system, is the defined as the number of adults per unit space, i.e., 

P,(t)= lim i Z.ji)/ 5 K,. n-cc. ,=I ,:I 
(1) 

Given the environmental conditions on patch j at time t, adults are 
assumed to die in the next unit of time independently and with probability 
s,(t). Since the total amount of space on a patch is assumed completely 
occupied at time t, if follows that the mean amount of space becoming 
available during the time interval (t, t + l), for these given probabilities of 
death, is 

zlj(z) slj(t) + z*j(c) s*,(t). (2) 

The adults on each patch reproduce and their offspring are assumed to 
disperse from the patch and enter a pool of juveniles (larvae, seeds, etc.) 
that are redistributed to the individual patches when they have reached the 
settling stage. The total number of juveniles of species i in the pool is 
assumed to be proportional to P,(t), the density of adults of species i in the 
system; and the number of juveniles arriving at patch j and seeking to settle 
there is /IV(t) P,(t), where the quantity fiii( t) depends on the total birth rate 
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of species i in the system and the rate of migration of juveniles from the 
pool to patch j during (t, t + 1). This quantity reflects both the environ- 
mental conditions in the total system and the specific conditions applying 
to patch j. 

The total number of juveniles arriving at a patch in one unit of time is 
assumed to exceed the available space there, and the juveniles are assumed 
to compete for this space in a preemptive fashion: the first juvenile to find a 
unit of space establishes there and can hold that space against others. Thus 
if space is discovered completely randomly by the individuals in the pop- 
ulation, the mean proportion of the space on patch j that becomes 
allocated to species i is given by 

h,(t) P;(t) 
S,,(t) P,(t) + P2jW PA0 (3) 

The lottery aspect of the model comes from this random allocation of 
space. As in Chesson and Warner ( 198 I), a modification of the /I,,(t) allows 
space allocation to be biased toward one species or the other. Other inter- 
pretations of the formula that might apply where juveniles exclude one 
another as they grow after settlement is discussed below in the section on 
applications. 

The death rate, h,(t), and immigration rate, P&t), are assumed to be 
functions of the state of the local environment on patch j at time t, which is 
designated 4(t). However, the patch size, K,, is assumed to be independent 
of the local environmental conditions. Dependence of K, on (sj(r) can be 
taken account of simply, as explained in Appendix 1, and does not affect 
any of our conclusions here. 

MODELS FOR THE ENVIRONMENT 

To analyze the PEL model, we need to consider the components of the 
environment and the relationships among these components. The local 
environment on patch j at time t, 4(t), is a logical sum of (i.e., is a com- 
bination of) three components: 

q(t)= r(t)+si+z,(t). (4) 

In this expression, the first component represents temporal variation, the 
second is spatial variation, and the third is the interaction of space and 
time, viz., spatiotemporal variation. These three components are assumed 
independent and also it is assumed that each of the sequences 
(T(t), t=O, l,... >, (Sj,j=1,2 ,... }, {Z,(t),j= 1,2 ,..., t=O, I,... > consists of 
independent and identically distributed random variables or vectors. While 
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independence in time is for mathematical convenience, the other indepen- 
dences serve to separate and define the different components of variation. 
Given the absence of distance effects in larval dispersal, very general 
environments can be accommodated by this framework. However, an 
important restriction is placed on this: for most of the discussion the 6,(t) 
are assumed not to vary with Sj, i.e., there are no fixed components of the 
environmental differences between death rates on different patches; such 
fixed components are restricted to the /3,,(t). In addition, technical con- 
ditions must occasionally be imposed on the distributions of the 6,(t) to 
rule out some odd distributions with peculiar behavior. The details are 
given in Appendix 2. 

While in general the representation of the environment (4) is a logical 
rather than an arithmetical summation, arithmetic sums may be used in 
particular models. 1 shall occasionally refer to the following “log-additive” 
model in which the combination of parameters 

(5) 

has the form 

lnp,j(t)=~+T(t)+S,+I,(f), (6) 

where p is a constant, and T(f), Si, and 1,(t) are independent normal ran- 
dom variables with mean zero. This log-additive model is a simple and 
natural way of combining the different sorts of environmental variation. 
The parameter p,/(t) compares the ratio of the juvenile immigration rate 
and the adult death rate of species 1 with the corresponding ratio for 
species 2, in patch j at time t. It thus compares the relative advantage that 
species 1 has over species 2, for that place and time, and is very important 
in the overall dynamics of the system. Because p ,j( I) is a nonnegative quan- 
tity, the lognormal distribution is a natural candidate for its probability 
distribution, i.e., its natural log may be normal as implied by (6). The 
additivity of the components of the environment on a log scale in (6) is to 
be expected if the different factors affecting immigration rates act indepen- 
dently of one another. The parameter p is important for it can be thought 
of as measuring the mean competitive advantage that species 1 has over 
species 2. A negative value of ,U means that species 1 is disadvantaged on 
average. 

The log-additive model is completed by assuming that the death rates, 
s,(t), do not vary with the environment, but are possibly different for the 
two species in the system, i.e., are possibly different for different i. 
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CONDITIONS FOR COEXISTENCE 

The description of the system implies the following equation for the con- 
ditional mean number of adults on patch j at time t, given past population 
sizes and environmental conditions: 

ECZ,(t+l)IZ,(u),~~(u),u~t,1=1,2,k=1,2 ,... ] 

= Cl - sij(t)l zij(t) + lIst,jft) zfj(t) + 6.2j(t) z2j(t)l 

x PljW P,(t) + Bz,(t) PAt) 
(7) 

The first term on the RHS of (7) represents the conditional mean num- 
ber of adults of species i surviving from time t to time t + 1 on patch j, 
while the second term is the product of the conditional mean amount of 
space becoming available and the mean proportion of this space allocated 
to new recruits of species i. 

Appendix I now shows that the general assumptions about the environ- 
ment lead to the following equations for the average densities of the 
species: 

’ Dlitt) pl(t) + P2iCt) p2(t) (8) 

The assumption that the death rates, d,(t), do not depend on Sj (pure 
spatial variation) enters at this point, for if pure spatial variation did affect 
the d,(t) then the first term in (8) would have to be replaced by 

ECZ,(t)(l - dij(t)) I T(t)lIEK, 

To see that the PEL model is a direct extension of the lottery model, 
note that when Sj z lj( t) z 0, Equation (8) reduces to the equation govern- 
ing the lottery model. If in addition T(t) = 0, we have the lottery model in a 
constant environment for which coexistence is impossible. Therefore 
coexistence in the PEL model requires at least some variation of some 
kind. 

To see if species i will persist in the system, we note that at low density 
(low P,(t)), Z,(t) =0 with high probability, and it follows (Appendix 1) 
that 

Pit + 1 )/Pi(t) N 1 + -Qdij(t)(Pij(t) - 1) I T(t)], (9) 
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where ~,~(t) is the ratio of immigration rates and death rates given by (5) 
and &t) = l/plj(t). For species i to persist in the sense of invasibihty 
(Turelli, 1978) its mean instantaneous growth rate at low density must be 
positive. From (9) this mean rate is 

A;=ElOg{l+EC~,,(t)(~ij(t)-1)lT(t)l), (10) 

and for coexistence both A, and d, must be positive. Applying Jensen’s 
inequality we see that 

ElOg{l +~,(t)Cpi~(t)-11)<A;<log{l +E[d,j(t)(pi,Cf)- I)]). (‘1) 

The lower limit in (11) is achieved when all variation is temporal, in 
which case the PEL model reduces to the lottery model. Thus coexistence 
must occur in the PEL model with at least the same set of probability dis- 
tributions for (6,j(t), Sli(r), p,,(t), &(t)) as it does in the lottery model, 
regardless of the origin of the variation as temporal, spatial, or spatiotem- 
poral. Consequently, for given death-rate distributions, coexistence will 
occur provided only that p ,i( t) ( = l/p,,(t)) varies sufficiently on either side 
of one. Details are given in Chesson and Warner ( 198 1 ), but it is important 
to note that since death-rate distributions are being held fixed, this suf- 
ficient variation in p ,j(t) comes from variation in pli( t)/&(t). 

The upper limit in (11) is achieved when there is no pure temporal 
variation. This means that for given joint distributions of the Pii(t) and 
s,(t), coexistence is most likely to occur when all variation is some com- 
bination of spatiotemporal and spatial variation: pure temporal variation 
promotes coexistence less effectively than these other two forms of 
variation. In particular, temporal variation can only lead to coexistence in 
the presence of overlapping generations, but overlapping generations are 
not required when the variation is spatiotemporal or spatial. With non- 
overlapping generations (s,(t) z 1) and the absence of pure temporal 
variation, the conditions for coexistence derived from the upper limit in 
(11) are Eplj(t) > 1 and Ep,(t) > 1. Again, these conditions will be met 
with sufficient variation of ~,~(t) on either side of one. In the log-additive 
model, this sufficient variation is specified by the inequality 
1~) < :( VSi + VZj(t)), i.e., that the mean competitive difference between the 
species, on the log scale, is less than half the sum of the two environmental 
variances. (This result is a consequence of the standard formula Ecu = ea + jb, 
for U normal with mean a and variance b.) 

Although the conditions for coexistence do distinguish temporal 
variation from the other two kinds of environmental variation, no dis- 
tinction is made between the latter, for in (10) no distinction is made 
between them. Spatial and spatiotemporal variation enter (10) only to the 
extent that they determine the conditional distribution of Gij(t)(p,(t) - 1) 
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given T(t). The result will be the same regardess of the origin of this con- 
ditional distribution as spatial variation, spatiotemporal variation, or a 
combination of both. Moreover, in the log-additive model, the sum of the 
variances (VSj+ VZj(t)) is all that matters; their separate magnitudes are 
unimportant. However, it must be remembered that (10) is derived on the 
assumption that no pure spatial variation enters into the J,(t). Indeed, 
spatial variation and spatiotemporal variation can affect coexistence dif- 
ferently through their effects on adult death rates, as discussed below. 

The difference between the effects of temporal variation and the other 
kinds of variation is highly dependent on the overlap of generations. To see 
this we write J,(t) = h&(t), where h is a nonrandom scaling factor and 
sb(t) is a positive random variable not dependent on h. Decreasing h 
decreases the adult death rates. Thus it increases the mean life time of an 
adult and consequently the overlap of generations. On a time scale com- 
mensurate with the generation time, the mean instantaneous growth rate of 
species i, at low density, is AJh. As h -+ 0 the monotone convergence 
theorem implies that 

(12) 

In this limiting expression no distincion at all is made between the three 
kinds of variation and so they can have equivalent effects on coexistence. 
Moreover, in the log-additive model, only the total variance 
(VT(t) + VSj + VZj(t)) is important, not how it is partitioned into different 
sources. In the log-additive model the condition for coexistence reduces to 

I/l/ < t( VT(t) + VSj + VZj(t)). 

Both the log-additive model and the general case lead to the conclusion 
that pure temporal variation promotes coexistence just as effectively as do 
spatial and spatiotemporal variation, when the organisms are long-lived. 

PURE SPATIAL VARIATION IN ADULT DEATH RATES 

No attempt is made here to study in detail the consequences of pure 
spatial variation in adult rates. However, a very revealing special case is 
presented in Appendix 4. There it is assumed that only in some patches do 
adults of a species survive for more than one reproductive period. 
Moreover, the patches that favor adult survival are different for the two 
species. Immigration rates, however, are assumed to be the same for all 
patches and to be constant also in time. From this special case it is con- 
cluded that if survival in the favored patches is sufficiently high, given the 
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frequency of these patches and the immigration rates of the two species, 
then the species will coexist. Thus coexistence occurs there purely from 
variation in adult death rates. 

In contrast, adult death-rate variation alone does not promote 
coexistence if the variation is temporal or spatiotemporal. Spatiotemporal 
variation in adult death rates alone has no effect on coexistence, while pure 
temporal variation in adult death rates alone is harmful to coexistence 
(Chesson and Warner, 1981). However, if immigration rates (the p&t)) 
also vary, then the effect of adult death-rate variation depends on its 
correlations with the pii(t). Indeed, when appropriately correlated with 
immigration rate variation, pure temporal variation in adult death rates 
can promote coexistence also. Details are given in Chesson and Warner 
(1981), where it should be noted that the case of long-lived organisms and 
temporal variation gives identical results to the case of spatiotemporal 
variation with organisms of any longevity. 

THE NATURE OF COEXISTENCE 

So far we have been concerned with conditions under which both species 
will tend to increase from low density, i.e., will coexist in the sense 
invasibility. However, this analysis says little about the nature of the pop- 
ulation fluctuations of the coexisting species. It is known that wild pop- 
ulation fluctuations are compatible with invasibility (Chesson, 1982), but, 
in the examples that have been investigated, only mild restrictions have 
been found necessary to ensure that unacceptable fluctuations do not 
occur, i.e., that the species persist in the sense that they are stochastically 
boundedly persistent (Chesson, 1982). Stochastically bounded persistence 
means that the population densities Pi(t) are uniformly stochastically larger 
than some positive random variable Ui, i.e., for all x and f 

P( Pi( t) > x) B P( u; > x). (13) 

Chesson (1982) has shown that invasibility implies stochastically boun- 
ded persistence in the lottery model. Moreover, P,(t) approaches a unique 
positive stationary distribution as t -+ co. Similar results can be proved for 
the PEL model under appropriate assumptions. For example, if adult death 
rates are equal (6 ,j(t) = s,(t)), Equation (8) reduces to 
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which is a simple difference equation with stochastically varying 
parameters. Appendix 2 now shows that invasibility implies that P,(t) con- 
verges to a unique stationary distribution as t + co. 

If there is no pure temporal variation in the system, Equation (14) is a 
difference equation with constant coefficients, and so the stationary dis- 
tribution reduces to a globally stable equilibrium point, p*, which is given 
for species 1 as the unique solution less than 1 to the equation 

-Ed,(t)+ E s,(t) Bljtt) 

BljW P* + Bq(t)(l -P*) 1 = O. 
(15) 

It is important to keep in mind that the existence of this equilibrium is 
dependent on the presence of environmental variation. Without it the only 
equilibria are p* = 0 and p* = 1, i.e., equilibria with one species extinct. 

In the presence of a pure temporal component of environmental 
variation, quantitative detail about population dynamics . is generally 
extremely difficult to obtain. However, for long-lived organisms the 
solution of the stochastic Equation (14) converges to the difference 
equation that applies when there is no pure temporal component to the 
environmental variation (Appendix 3). Thus for long-lived organisms, not 
only are the conditions for coexistence independent of the origin of the 
variation, but the actual population dynamics are also asymptotically 
independent of the constitution of the environmental variation. 

Because of the assumption of effectively an infinity of patches, there is no 
stochastic fluctuation in the P,(t) as a result of spatiotemporal environmen- 
tal variation. The lack of dependence of dynamics on the source of the 
variation, for long-lived organisms, implies little stochastic fluctuation as a 
result of temporal variation also. We can be more precise about this: if 
P,(t) = p*, i.e., the process starts at equilibrium, then the stochastic fluc- 
tuations in P,(t) are approximately normal, they are centered about p*, 
and have variance proportional to h (Appendix 3). Thus these fluctuations 
will be small for small h. Although environmental variation is necessary for 
coexistence in the PEL model, it need not lead to large fluctuations in pop- 
ulation density, even when environmental fluctuations are perfectly syn- 
chronized across space as they are with pure temporal variation. 

DISCUSSION 

(a) Effects of Environmental Variation 
We have seen that three different basic kinds of environmental variation 

can promote coexistence of competing species. They each do this when 
present alone, and when present in combination with the other kinds of 
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variation. A way in which pure temporal variation can promote coexistence 
has been studied in detail for the lottery model and related models, and 
depends critically on overlapping generations and iteroparity (Chesson, 
1983, 1984). The overlap of generations means that the adult population is 
composed of cohorts from a number periods of recruitment. If recruitment 
varies through time, it can be shown that the growth rate of population is 
much more sensitive to the magnitude of recruitment when recruitment is 
good than when it is poor (Chesson, 1982, 1983). Indeed, a population can 
sustain positive average growth even when recruitment often fails provided 
strong recruitments occur at other times. 

These results have been termed the storage effect because they depend on 
contributions to the adult population from different periods of recruitment. 
The adult population can be regarded as storing strong year classes, sub- 
ject to a discount equal to the adult death rate, permitting these year 
classes to contribute to reproduction in a number of different breeding 
seasons of varying favorability to the species. This leads to a greater 
probability that a strong year class is able to reproduce during a favorable 
period, so producing another strong year class. 

This storage effect promotes coexistence because it buffers a species 
against poor recruitments that occur during periods when the other species 
has a competitive advantage. Coexistence by means of spatial and 
spatiotemporal variation, and dispersal in space, can be understood in a 
similar manner to coexistence by means of the storage effect. The total pop- 
ulation for the entire system is the sum over all patches and the finite (i.e., 
discrete time) per capita growth rate for species i is therefore equal to 

( CZijCf+ l)-Cz[j(t) Cz,tt). 

i i 1; i 
(16) 

The assumption of a large number of patches, however, allows the total 
population at time t, xjZ,(t), to be approximated by its theoretical mean, 
kEZ,(t), where k is the total number of patches. Defining 
G,(t) = (Z&t + 1) - EZ,(t))/EZ,(t), the per capita growth rate can be 
rewritten as 

; j$, G,(t), (17) 

i.e., the per capita growth rate is the average over space of the G,(t). The 
quantity G,(t) is the local contribution to the growth rate coming from 
patch j. It is not strictly the local per capita growth rate but the relative 
deviation of the local population size at time t-t 1 from the mean local 
population size at time t. 
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To look at conditions for coexistence, the values of G,(t) for low-density 
situations are the most important. For species 1 at low density in the PEL 
model we find that 

G 
(18) 

with an exactly analogous expression for Gzj(t) when species 2 is at low 
density. Note that species 1 will increase from low density if the average of 
G,,,(t) over all patches is positive. Inspection of (18) shows that G,,(t) is 
bounded below: it can never be less than - 1. However, Gli(t) has no 
upper bound and will be large if species 1 has a large immigration rate 
(relative to species 2) into patchj at time t, i.e., if Pu(t)/Bzj(t) is large. This 
ratio is dependent simply on the environment and not at all on species den- 
sities. Thus G,(t) will be large if species 1 is favored by the environment at 
that time, but no matter how bad environmental conditions are in a patch, 
the growth rate contribution there, G,,(t), cannot be less than - 1. It 
follows that the average of these growth rate contributions (the growth rate 
for the whole system of patches) will be positive simply if species 1 is 
favored sufliciently by the environment in some patches, regardless of how 
poorly it is favored in other patches. 

Species 1 and 2 cannot be favored simultaneously in a patch because the 
space-filling assumption entails that an increase for one species is 
necessarily a decrease for the other. However, in a varying environment the 
two species can be favored in different patches, and because the growth 
rate’is more sensitive to the magnitude of the favorability in the patches 
where a species is favored, it is not difficult for the growth rates of both 
species to be positive at low density. Thus variation in the ratios of the 
immigration rates will favor coexistence of the species. 

These results apply whether the variation is pure spatial or spatiotem- 
poral. The lack of a distinction between these two kinds of variation 
involves two properties of the model. The first property is the assumption 
of many patches. Consequently the law of large numbers holds for both 
kinds of variation when they are averaged over space. Even though 
spatiotemporal variation involves fluctuations in time, its average over 
many patches, by virtue of the law of large numbers, does not show much 
variation in time. Thus one important distinction between pure spatial 
variation and spatiotemporal variation disappears when one looks at the 
spatial average of local populations. However, this property by itself is not 
enough to remove all of the important differences between the two types of 
variation. To see that it is not we must look more closely at the 
assumptions of the model. 

In setting up the model it was assumed that pure spatial variation does 
not enter the adult death rates, the c?,(t). If this assumption is not made, 
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the dynamical equation (8) .does not apply. Indeed, as discussed in the sec- 
tion above on pure spatial variation in adult death rates, pure spatial 
variation can have quite different effects than spatiotemporal variation 
when they are included in the J,(t). The reason for this difference is that 
pure spatial variation leads to a correlation between s,(t) and 6,( t - 1). As 
a consequence of this correlation, there is a correlation between s,(t) and 
Z,(t). No such correlation is caused by pure spatiotemporal variation, and 
it follows that the average of s,,(t)Z,(t) over space is different in the 
presence of pure spatial variation compared with pure spatiotemporal 
variation. Consequently the average number of adult deaths per patch is 
different with the two different types of variation. 

When pure spatial variation is excluded from the s,(t), the only oppor- 
tunity for correlations over time to affect local dynamics occurs in the 
relationship between the amount of space becoming available and the num- 
ber of larvae migrating to a patch. At low density of a species (species 1, 
say), which is the important case for questions of persistence, even this 
opportunity disappears. Then the local proportion of space becoming 
available has conditional mean value approximately equal to s,(t), which, 
by assumption, involves no correlations over time. Consequently the 
correlation over time that is imparted by pure spatial variation is not 
expressed when the mean growth rates, d, are evaluated. Thus pure spatial 
variation and pure spatiotemporal variation are not distinguished. Any 
combination of the two giving the same overall variation in the local 
environment will give the same answers to questions of coexistence. 

Some caution is necessary, for the conclusion above does not apply when 
extended to consideration of the dynamical behavior of the system. This is 
because the temporal correlations imparted by spatial variation become 
important away from low densities, except when special assumptions, such 
as equality of adult death rates, are made. On the other hand, for questions 
of coexistence the considerations above show that the strict independence 
over time assumed for spatiotemporal variation can be replaced by some 
autocorrelation without changing the results. 

While averaging the local growth contributions over space is sufficient in 
the absence of any component of pure temporal variation, when pure tem- 
poral variation is added multiplication over time is necessary also. To see 
this define G;(r) to be the average over space of the G,(t) and then 
P,(r + 1) = { 1 + Gj(t)}P,(t), which means that the general tendency for 
population increase of decrease is determined by the product of the 
{ 1 + Gi(t)} over time. 

When the adult death rate is small, the actual population changes taking 
place during any period of time are small, for the adult death rate not only 
determines how many individuals die, but also how much space is available 
for new recruits; indeed, Gi(t) is proportional to h, the scaling factor in the 
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adult death rates. When the Gi(t) are small, the product of the { 1 + Gi(t)) 
over time is close to 1 + the sum of the Gi(t) over time. It follows that the 
general tendency for population increase or decrease is determined by the 
time average of the Gi(t). In the absence of spatial or spatiotemporal 
variation this amounts to averaging the G,(t) over time, for then the sub- 
script i has no effect. Thus for long-lived organisms, spatial and temporal 
variation are dealt with similarly: they both amount to averaging the 
growth rate contributions, G,(t), in one case in time and in the other case 
in space. 

When variation occurs both in space and time, the average must be 
taken over both. At low density of species i, this average over space and 
time reduces to EG,(t)(pJt) - 1 ), which is approximately equal to d, the 
mean instantaneous growth rate at low density. The fact that spatial and 
temporal variation are dealt with by simple averaging explains the equality 
of their effect on coexistence of long-lived organisms. Moreover, it explains 
why partitioning of variation into its components is unimportant for long- 
lived organisms. 

When organisms are not long-lived, the effect of pure temporal variation 
cannot be deduced from the simple average of the Gi(t) over time, but is 
determined by the average of log( 1 + Gi(t)), the instantaneous growth rate. 
Although pure temporal variation can still promote coexistence in 
organisms that are not long-lived, but still have overlapping generations, it 
is not as effective as pure spatial or spatiotemporal variation. 

(b) Implications for Field Methodology 

The PEL model provides explanations for coexistence that rely on 
stochastic processes. These stochastic processes can quite reasonably be 
regarded as the “regulators” of the community, for without them just a 
single species would be present. Grossman (1982) and Grossman et al. 
(1982) have suggested field methods to determine the relative importance 
of stochastic versus deterministic modes of community regulation in the 
real world. The basic method consists of sampling populations over time 
and seeing if relative abundances of different species fluctuate. However, the 
results obtained here and elsewhere (summarized by Warner and Chesson, 
1985) cast considerable doubt on this procedure, for we have found that 
long-lived organisms will show little fluctuation over time, even if the time 
scales involved are very long compared with the life of an individual. This 
follows from our finding that the population will fluctuate about the value 
p* with variance proportional to h. 

In certain circumstances, Grossman’s methodology would also fail to 
reveal stochastic regulation of short-lived organisms. For instance, if local 
patchiness is on a spatial scale that is small relative to the sampled area, 
then stochastic regulation by means of spatiotemporal variation would not 
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be revealed because the population density estimates would tend to average 
out the asynchronous local population fluctuations that are necessary for 
coexistence. 

(c) A Comparison with Other Ecological Models 

The PEL model extends existing models of competition in a patchy 
environment in two distinct directions. First, analytical models that 
emphasize local stochastic events have tended to model simply species 
presence and absence at the local population level (e.g., Slatkin, 1974; 
Hastings, 1980; Hanski, 1983). Consequently the precise assumptions being 
made at this local population level have not been clear. Moreover, the lack 
of quantitative detail about local populations makes these models difficult 
to test empirically. In contrast, in the PEL model actual local population 
sizes are modeled, and so it has been possible to give explicit quantitative 
details of both local population interactions and the effects of environmen- 
tal variation on these local populations. Moreover, the simple but plausible 
local dynamics built into the model do appear amenable to empirical 
verification. For instance, studies of larval settlement could in principle test 
the lottery assumption of the model. The assumption that adult death rates 
do not depend on local species composition, or the ages of the adults, is 
also in principle testable. Recently, Comins and Noble (1985) have 
independently developed an extension of the lottery model to a patchy 
environment. Their model differs from the PEL model by not including 
overlapping generations but incorporates the possibility that a fraction of 
an adult’s propagules do not disperse to other patches. Using simulation, 
Comins and Noble also investigated stepping stone dispersal, where 
propagules disperse to neighboring patches. The additional finding of 
interest there is that the conditions for coexistence are relatively insensitive 
to the migration assumption imposed. 

Previous models involving actual population sizes, that are closest in 
spirit to the PEL model, are those of Yodzis (1978) and Atkinson and 
Shorrocks (1981). Yodzis given an interesting though somewhat complex 
discussion of founder effects, while Atkinson and Shorrocks present 
simulation results for the effects of independent aggregation of competitors. 
Neither model explicitly considers environmental variation as discussed 
here. 

The second direction in which the PEL model extends existing models 
involves the inclusion of several different sorts of variability simultaneously 
in the one model. It is a feature that is also likely to aid in the empirical 
testing of the model, for in real systems several different kinds of variation 
are indeed likely to be present. Thus it is important to know how these dif- 
ferent kinds of variation should combine. More generally, many ecological 
communities are likely to require a number of different factors to explain 
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their structure (Connell, 1978). Although the PEL model explains com- 
munity structure mostly through the effects of environmental variation, it 
can be modified to incorporate other factors such as presettlement com- 
petition among larvae, or postsettlement competition among adults, 
without becoming so complicated that it cannot be analyzed. How these 
modifications are made is illustrated by the several variations on the lottery 
model that have appeared (Chesson, 1983; Shmida and Ellner, 1984). The 
likelihood that multiple factors are necessary to explain a community 
means that it is especially important to have a model containing them all if 
their mutual necessity and relative contributions are to be assessed. 

(d) Applications of the PEL Model 

The assumption of random migration means that marine organisms with 
planktonic larval phases are the most obvious candidates for the 
application of the PEL model. However, the results of Comins and Noble 
discussed above suggest that the model may be at least a qualitatively good 
approximation for organisms such as terrestrial plants in which dispersal of 
larvae or propagules is far from random. 

The details involved in the second assumption, lottery competition for 
space, have been discussed elsewhere (Chesson and Warner, 1981); briefly, 
it is most easily seen to apply if the first individual that settles in a par- 
ticular site can usually prevent other individuals from establishing there. 
Sale (1977) claims this to be true for some territorial coral reef fishes. It 
may also be true of solitary sessile organisms that can grow quickly upon 
settlement. For terrestrial plants, however, many juveniles will often begin 
growing in a site and may compete actively as they grow. This situation 
still fits the lottery formula if the two species have similar juvenile mortality 
rates as functions of total density of juveniles in a site. However, the case 
where the mortality rates are different for the two species is not to simple 
and may require the more complex variations on the lottery formula dis- 
cussed in Chesson (1983). 

Data on coral reef fishes (Sale, 1980; Doherty, 1982) suggest that 
spatiotemporal environmental variation might be an important factor in 
recruitment, which would make it difficult to find any relationship between 
local stock and local recruitment. Sale (1982), in his model of a coral reef 
fish community, did not, however, include any spatiotemporal environmen- 
tal variation, but just modeled a single patch with no immigration or 
emigration. Sale’s model has been the subject of a detailed criticism by 
Abrams (1984), who points out that it implies something like intraspecific 
competition among larvae before settlement but no interspecific com- 
petition. Intraspecific competition among adults is also consistent with 
Sale’s model. Since these species have been argued to be essentially 
ecologically equivalent at all stages in their life cycle (Sale, 1977) 



COMPETITION IN VARYING ENVIRONMENTS 279 

intraspecific competition, without interspecific competition, seems very 
unlikely. 

The PEL model, which uses larval dispersal and stochastic immigration 
processes to achieve a relative independence of local stock and local 
recruitment, seems a much more appropriate expression of the ideas on reef 
fish communities that Sale addresses. However, experimental evidence dis- 
cussed by Doherty (1983) and Sale (1984) suggests that the space-filling 
assumption of the PEL model needs to be removed before a reasonably 
accurate description of the system is achieved. This has been done for the 
lottery model (Chesson, 1983), without a substantial change in the con- 
clusions, but has not been extended to the PEL model. 

(e) Relationship to Models in Population Genetics 

Without overlapping generations the PEL model is very similar to some 
models in population genetics. To interpret the PEL model in a population 
genetical context, Z,(t) is equated with abundance of allele i in local pop- 
ulation j at time t. In cases of asexual reproduction, Z,(t) may refer to the 
abundance of genotype i rather than allele i. 

The genetical model that bears the greatest similarity to the PEL model 
is that of Gillespie (1974). Indeed, essentially the same model is obtained if 
the PEL model is specialized to nonoverlapping generations (b,(t) - 1) and 
Gillespie’s model is specialized to the case of haploid or asexually 
reproducing organisms. Gillespie does not analyze his model exactly, but 
uses a diffusion approximation that quite naturally corresponds to the log- 
additive model considered here. The variances and mean differences of fit- 
nesses in Gillespie’s diffusion approximation are comparable to the varian- 
ces and mean differences of the loga,( and when this correspondence is 
recognized, the results obtained here agree with Gillespie’s. 

Gillespie’s results can be used to extend special cases of the PEL model 
to the case of a finite number of patches. On the other hand, the results 
here for the PEL model can be used to extend Gillespie’s model. First, I 
have discussed exact results for general distributions of the p&t), not just 
for the log-additive case. Secondly, these results apply also to the case of 
overlapping generations (h,(t) < 1). This second extension is important for 
it gives something quite new. Gillespie’s model in the haploid or asexual 
form does not allow a polymorphism as a result of pure temporal environ- 
mental variation. Indeed, this fact is a reexpression of the result of 
Dempster that a polymorphism cannot be maintained in haploid organisms 
by random temporal fluctuations in relative litnesses. However, the PEL 
model shows that pure temporal variation can be responsible for a 
polymorphism in a haploid or asexual population provided generations are 
overlapping. This is also true for the original lottery model of Chesson and 
Warner (198 1). 

653:2X/3-4 
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Maintenance of a polymorphism by temporal variation and overlapping 
generations involves fluctuating selection intensities at the juvenile stage, so 
that the /Iii(t) must vary through time. Selection at the adult stage can be 
measured by the relative values of the adult death rate, s,(t), but for a 
polymorphism to be maintained these s,(t) must not fluctuate propor- 
tionately to the /?Jt); i.e., /?,(t)/G,(t) must not be a constant, it must vary 
in time. Precise results for the types of covariation in the BV(t) and J,(t) 
that are favorable to a polymorphism are given in Chesson and Warner 
(1981) for the case of small adult death rates. We note here simply that 
fluctuating selection intensities at the juvenile stage are of primary impor- 
tance for a polymorphism to occur. 

Although overlapping generations are necessary for a haploid 
polymorphism to result from pure temporal variation, in n-ploid pop- 
ulations with II > 1 pure temporal variation does lead to polymorphisms 
without overlapping generations. Indeed an elaborate theory of main- 
tenance of genetic variability by means of temporal variation has been 
developed for diploid organisms (see Gillespie, 1978; and Turelli, 1981 b, 
where futher references can be found). A simple extension of our model to 
cover the n-ploid cases in Gillespie (1974) shows that a polymorphism is 
easier to obtain if generations are overlapping. Indeed, genetical reinter- 
pretation of the results of Chesson (1983, 1984) suggests that overlapping 
generations, combined with fluctuating selection intensities at the juvenile 
stage, are quite generally favourable to the maintenance of polymorphisms 
in populations. 

APPENDIX 1 

Equation (3) for the conditional mean population size, given past den- 
sities and environmental conditions, holds regardless of independence of Kj 
(patch size) and &J(t) (local environmental conditions). Allowing for depen- 
dence between Kj and 4(t) and defining ci(t) = E[Z& t) ( T(t)], we see that 

Ply(t) P,(t) x Blj(f) PI(l) + Py(t) P*(t) 1 f’,(t), T(f)], (AlI 
where in the first term on the RHS I have used the assumption that s,(t) 
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does not depend on Sj (pure spatial variation) or K,. Applying the law of 
large numbers to the system we see that 

and 

Since P,(t) is the ratio of these two limits, the following equation applies 

Pj(t+ l)=Pi(t)E[l-6,(t)( r(t)] 

(A21 

which is Equation (8) in the text. 
To obtain low-density approximations to this equation, we need to 

evaluate the limit as P,(t) -+ 0 of P,(t + l)/Pi( t). Using the well-known 
inequality P(Z,(t) > E) < EZlj(t)/c = P,(t) EKj/e, we see that Zki( t) +’ 0 as 
PI(t) + 0. It follows that 

This means that as PI(t) + 0, 

Pl(t + 1)/P,(t) z EC1 - d,(t) + a2j(t) Kj Blj(t)/B2j(f) EKJI T(t)1 
=l+ECG,(t)(p,j(t)K,lEKi-l)lT(t)l 
= 1 +E C(K,IEKj)G,j(t)(p,(t)- 1)l r(t)], (A3) 

where this last step uses the fact that s,(t) is assumed to be independent of 
Sj or Kj. (Actually the application here removes the effect of the previous 
application of this assumption above.) If K, varies independently of the 
local environment, &Jr), then Kj/EKj cancels out of (A3) to yield (9) in the 
text. Otherwise the distribution of &j(t) (and hence the distributions of 6,(t) 
and b&t)) must be weighted by Kj to give the correct result, as shown in 
(A3). Indeed, if all the expected values in the text are assumed weighted in 
this way, then the results in the text are extended to the case where patch 
size and patch quality are statistically dependent. 



282 PETER L. CHJBON 

APPENDIX 2 

To show that the dj become positive as variation in the pii is 
increased, it is necessary to impose the condition 

Elog(1 -s&t))> -co, (A4) 

i.e., that adult death rates do not approach 1 too often. To prove con- 
vergence to a stationary distribution, the following stronger condition, with 
the same intuitive interpretation, must be imposed: 

E(l 7$(t))-“< co. (A5). 

To prove now that the process given by (14) converges to a unique 
stationary distribution, when A,, A, > 0, we modify theorems 5.1 and 5.2 of 
Chesson (1982). 

Define 

Y, =E[l -s,(t)( T(t)] 

B,,(f) 
Plju)P+a,,c~)u -PI T(t) . ! 1 (A61 

Now 

ElogY,>ElogE[l-6&)/T(t)] 

> Elog(1 -s,(t)) (by Jensen’s inequality) 

>&&{l -E(l -s,(t))-&) 

Thus log 

> -cc (by assumption A5). 

Yc is bounded below by a random variable with finite expected 
value. The monotone convergence theorem now applies and we see that 
E log Y, + A, as c -+ 0 and therefore that E log Y,. > 0, for sufficiently small 
c. The proofs of theorems 5.1 and 5.2 of Chesson (1982) continue without 
further modification to show that P, converges to a unique stationary dis- 
tribution on (0, 1) as I--) co. 

APPENDIX 3 

With the substitution s,(t) = hdij(t), the stochastic difference equation 
(14) takes the form 

Pj(t+ l)=Pj(t){l +hf(Pi(t)y T(t))}. (A7) 
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Similar to Chesson (1984), various theorems of Norman (1975) apply. 
Defining 

and 

At+ l)=p(f)jl +hv(P(r)))? (A9) 

with p(0) = P,(O), it follows that Pi( t/h) - p( r/h) converges in probability to 
0 as h -+ 0. Note that the process p(t) describes population dynamics in the 
situation where none of the environmental variation is pure temporal. Also. 
h ’ is proportional to the mean life of an adult, and so consideration of t/h 
involves a time scale commensurate with the generation time. 

If P,(O) = p*, the results of Norman (1975) also imply that 
Cl-:( Pi(t/h) -p*) converges to a normal distribution with mean 0 and 
variance equal to 

(1 - eKzr) cr$cc, (AlO) 

where 

fcf = -p*(p’(p*) 

=p*EG:,(t) BljCtj CBIj(r)-P*j(f)l 
CPlj(W + B&)(1 -P*)12 

(All) 

(AW 

It is not difficult to show that #(p*) is negative, and hence that for small h 
and large t, P,(t/h) is approximately normal with mean p* and variance 
ha@. 

APPENDIX 4 

To see the potential interesting consequences of pure spatial variation in 
adult death rates, let 0, and Br be positive constants less than 1, and 
assume P(6,(r) = ei) = 1 - P(6,j(t) = 1) =p, with 6,j(t) or szj(t) = 1, a.s. If 
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the variation in the s,(t) is due to pure spatial variation alone, then these 
assumptions mean that a given patch has lOO( 1 - ei) % survival of species 
i, for i= 1 or 2, and 0% survival of the other species. Assume also that 
/Iii(t) s pi, i.e., that the pii(t) do not vary in time or space. Define P,“‘(t) to 
be the average proportion of species i over patches for which species j has 
adult death rate equal to Bi, then 

~~“(1+1)=(l-e,)P~“(t)+[l-(l-e,)P~”(t)]~ p ;l;‘;;)P (t) 
I 1 2 2 

~(i-e,)~~~‘(t)+~i-(i-e,)~~~‘(t)] p*B,Pl’Yt) 
PtPW(d+D2 

It follows that Pi’) (t + 1) > Pi” (t) whenever 

6 <cl -(I -e,)PI”(t)ip,B,i(p18,p’l”(t)+P,), (Af3) 

and substituting 0 for Pi” (I) in (A13) gives the following sufficient con- 
dition for P\‘J (t) to increase from small positive values: 

When this is true species 1 will remain in the system. It will be present in 
every patch, but individuals will not survive more than time period in the 
proportion 1 -p, of the patches. It follows that a sufficient condition for 
coexistence of the two species is 

6 < PiDilPj, i= 1, 2, j# i, 

which can easily be satisfied by having the 0; small. Thus pure spatial 
variation in death rates alone is capable of leading to coexistence, while 
spatiotemporal variation can never do this, for if the only variation is 
spatiotemporal variation in adult rates then the condition for coexistence 
(di > 0, i = 1,2) reduces to P,/82>EG,i(t)/E62,(f) and IL/PI > 
E 6,( t )/E 6 li( t), which is never satisfied. 
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