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The tendency for parasitoids to aggregate in patches where host density is high
(*‘aggregation to host density''} has been suggested as a powerful stabilizing force
in host-parasitoid systems (Hassell and May 1973, 1974; Beddington et al. 197§;
May and Hassell 1981; Heads and Lawton 1983, Waage 1983; Hogarth and
Diamond 1984). Moreover, unlike some other potentially stabilizing mechanisms,
aggregation to host density can be consistent with a low host equilibrium (Bed-
dington et al. 1978), and thus a plausible explanation of successful biological
control. Murdoch et al. (1984, 1983), however, cast doubt on whether this mecha-
nism actually explains real cases of successful biological control.

Early models of host-parasitoid dynamics involving aggregation to host density
(Hassell and May 1973, 1974) were complex and difficult to analyze. Such aggre-
gation, however, results in a clumped distribution of parasitoid eggs among hosts.
Thus, the distribution of eggs among hosts may be similar to a negative binomial
distribution. Recognizing this, May (1978) proposed the following simple model to
summarize the effects of aggregation:

H,.1 = FH{l + aPf)™*, (la)
P;+1=Hr_F_1H{+I- (lb)

In these equations H, and P, are the host and parasitoid densities in generation ¢, F
is the net rate of increase of the host in the absence of the parasitoids, « is the
attack rate per parasitoid (‘*area of discovery’’), and & is a parameter indicating
the amount of aggregation of the parasitoids, that is, the clumping parameter of
the negative binomial probability distribution. Equation (1a) is the unique feature
of this model {eq. 1b holds for a variety of models); therefare, equation (1a) will be
referred to as “*‘May’s equation.”’

Here we present a general class of models that includes May’s phenomenolog-
ical model, more-complex models incarporating explicit agaregation to host den-
sity, and models in which parasitoids aggregate in a manner not related to the
dispersion of hosts in space. We examine the relationships among these different
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sorts of models in order to reveal implicit biological assumptions and to highlight
the effects of these assumptions. In particular, we find implicit assumptions in
May's model, which suggest that it is most naturally a model of parasitoid
aggregation independent of host densities. However, we do find a narrow range of
circumstances under which it represents aggregation to host density.

Our analysis highlights the dependence of aggregation on the average density of
hosts in the system, and demonstrates that aggregation independent of host
density is a potentially mare general stabilizing force than aggregation toe host
density.

THE MODELING FRAMEWORK:

We base our framework on a general model for populations in a patchy and
locally stochastic environment developed previously (Chesson 1981). The model
assumes a system of many patches, supporting local populations, with migration
between patches. Important variables are the local population densities (e.g., P,
for the number of parasitoids on patch j) and the spatial averages of these densities
(e.g., P for the spatial average of parasitoid density). In general, P will be a
random variable, but with many patches and a degree of independence between
the stochastic processes occurring on each patch, we can use the approximation P
= EP (Chesson 1981), where E refers to the theoretical mean or expected value
and is calculated here according ta the probability distribution of P;. Approximat-
ing P by the theoretical mean implies that P has a small variance, but it is
important to keep in mind that stochastic processes may still be having strong
effects on its behavior, as has been shown for the general class of models of this
sort (Chesson 1981).

Murdoch and Qaten (1975) pointed out that models of host-parasitoid aggrega-
tion implicitly assume a complete redistribution of local population numbers every
generation. Thus, every individual in the population must migrate. This conve-
nient assumption will be made here also; moreover, as is usual in discrete-time
models, we assume that migration and population growth processes are separated
in time. Migration periods are of length & < 1; Pz + A) refers to the population of
parasitoids on patch j immediately after a migration period; and P;(¢) refers to the
population before a migration period. Some latitude in the interpretation of P;(r +
k) is permissible. If parasitoids migrate several times during one time unit, then
Pi(r + h)is obtained by adding up the fractions of time that different mature {egg-
laying) parasitoids spend in patch j during the time interval {t,  + 1). Thus, a
parasitoid that spends half her life in patch j and one-third in patch j’ contributes 4
to Pyt + h) and Ya to Pt + h).

In arder to compare our model with previous ones, we assume, as did earlier
authors, that population dynamics within a patch follow the Nicholson-Bailey
equations. Hence,

Hit + 1)
Pt + 1)

1

FH(t + h) expl—aPyt + h)] (2a)
Hit + by — F'Hi(t + 1). (2b)
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When population sizes are to be treated as integer variables, expressions (2) can
be regarded as conditional means. Averaging over patches in expressions (2), we
obtain

H(t + 1) = FE{H,(t + h) expl—aP;(t + W]} (3a)
Pt + 1) = Hp) — F7'H(t + 1), (3b)

where the theoretical mean value in equation (3a) is calculated using the joint
prabability distribution of H;(t + h) and P,(t + h). Note that equation (3b)
depends on no further details and hence is the same for all of the more particular
maodels below. Thus, in all that follows, we are cancerned with equation (3a).
To model aggregation behavior in a natural way, we consider the regression of
local parasitoid density on local host density. In general, this regression is a
nonlinear function f{H,(t + k)], and by definition it is given by the equation

fIH;¢ + W] = E[P;e + h) | Hy(e + h)] 4

that is, flTH;(r + h)] is the conditional mean number of parasitoids on a patch with
H;(t + h) hosts. As a regression function, in principle it can be measured in the
field by standard methods. It should be kept in mind, however, that fTH(¢f + h)]
will depend not only on H;(r + h}, but also on the spatial average densities P(1)
and H(z).

There will be “*error’’ or variation about the regression, and this variation can
be just as important, as we shall see, as the regression itself. Because we expect
the variance to increase with the mean and nonnegative variables are being
madeled, we use a multiplicative model for the variation about the regression.
Thus,

Pi(t + h) = fiH,(t + WU + h), (3)

where U;(¢ + k) is a random variable with mean 1 giving the multiplicative
deviation from the regression equation for patch j and time ¢ + A. This sort of
multiplicative model is most appropriate when different individual parasitoids do
not interact with one another. In addition, it requires lacal parasitoid densities to
be continuous quantities, as they will be if P;(z + h) represents the fractional
amounts that each parasitoid spends in patch j. If, however, the P;(r + h) are
integer quantities, a suitable model is obtained by assuming that P;(z + k) is
conditionally Paisson-distributed with mean f{H;(¢ + AUt + h), given H,;(r +
h) and Ut + h).
From the continuous model (5), it follows that

i+ 1) = FE(H,;-(r + h{afTH(t + h)l}), ©)
where W is the Laplace transform of U;(z + h):
U(u) = Eexpl—ul;(t + )], M

and the expected value in expression (6) involves only the probability distribution
of H;(t + h). The corresponding equation for integer parasitoid densities is very
similar. For it, a is replaced by
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a=1-e7"° (8)
to give

A + ) = FE(HG + iiofTH 0+ h). ©

The integer model (9) gives lower rates of parasitism compared with the discrete
model because a < a. Although this difference will be of no significance for small
a, it can be quite important if « is large.

We shall be interested mainly in two extreme types of models within this
framewark. The pure-error, or PE, models assume that f{H;(¢ + h)] is constant as
a function of H;(r + h) and hence that patch-to-patch variation in parasitoid
densities is explairied entirely by the variation or “‘error’’ about the regression
function. In such PE models, the parasitoids still aggregate, but not in response to
host density. The parasitoids will have a very patchy distribution if the error
variables, the Uit + h), have high variances, but patches of high parasitoid
density will not necessarily be patches of high host density.

Note that for the case in which P;(t + ) is assumed to be a continuous variable,
the distribution of P;(z + h)/P() (relative parasitoid density) is independent of
average parasitoid density, P(f). This condition has the natural interpretation that
parasitoids aggregate not in response to each other, but in response to spatially
varying environmental factors. The discrete form of the PE model, involving the
conditional Poisson assumption, has this interpretation also, even though it is
clear that the distribution of relative parasitoid density must then depend on P(t).
Later we discuss models, in which the distribution of relative host density does
not vary with the average density of the host, and corresponding interpretations
for the mechanisms of host aggregation.

At the end of the spectrum opposite the PE models, pure-regression, or PR,
models assume that Pt + h) = f[H;(t + h)], so that parasitoid densities are
explained without error by the regression equation. If fis an increasing function,
patches of high host density will also be patches of high parasitoid density, and
vice versa. Thus, the parasitoid distribution is explained completely by aggrega-
tion to host density.

Another kind of model that we encounter assumes that parasitoids respond in a
deterministic manner to the hosts (i.e., P;(z + h) = f[H;{z + h)]) but that the
attack rate, a, applicable to a given patch, is a random variable 4;(t + A) that
varies from patch to patch, and possibly also in time. Thus, hosts may be mare
vulnerable in some patches than in others, as discussed by Bailey et al. (1962). If
we let a be the average value of a;{r + A) and define U;(r + h) = a,(t + h)/a, we
get exactly the same equations as before for average host and parasitoid densities,
but with the variation in degree of vulnerability taking the place of the “error’’ in
parasitoid aggregation.

Ta give a unified analysis of these different sorts of models, we define a
particular quantity called the “‘relative risk of parasitism' for a host individual.
Consider a model containing possibly all of the features discussed above: vulnera-
bility varies from patch to patch, parasitoids aggregate to host density, and
parasitoids make ‘“‘errors’’ when aggregating. The general expression for the
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probability of parasitism for an individual host in patchjis | — exp[ —ay{r + A)P{z
+ h)] such that g;(r + h)P;(t + h) determines the absolute risk of parasitism for a
host in patch j. We define p, the relative risk of parasitism, as a;(t + A)P;(t + h)/
aP(t), which compares the risk of parasitism of the host in this model with that
applying in the Nicholson-Bailey modei. Note that whenever it is possible to
identify hosts with the same risk, p can be estimated as —In(fraction nat
parasitized)/aP(f). When constructing distributions of p from such estimated
values, it should be remembered that sampling error will contaminate the distribu-
tion of natural vanation in p.
We now use this general framework to explore existing models.

DERIVATION OF EXISTING MODELS
To derive May's equation we assume a PE model, which will usually mean
fIH(t + )] = P() (10)

unless some parasitoids are missing, for example, in transit between patches. Asa
PE model, equation (10) implies that the parasitoids are not responding to local
host density at all; thus any aggregation they exhibit is independent of the host
distribution. Substituting equation {10) in (6) we obtain the dynamical equation

Hir + 1) = FH(OWaP()] . (n

If the U;(z + k) have a gamma or Pearson Type III distribution (Johnson and Kotz
1970) with coefficient of variation V' 1/k, then Y(s) = (1 + s/k) “and

H(r + 1) = FH(O[1 + aP()tk]™*, (12)

which is May's equation.

Like our derivation, May’s (1978) also assumes a gamma distribution of
parasitoids among patches, with coefficient of variation V1/&. Unlike our deriva-
tion, May's makes no explicit statement about the relationships between host and
parasitond densities. However, in Appendix A we show that this gamma distribu-
tion of parasitoids among patches and the end result (May’s equation) imply that
local host and parasitoid densities are in fact uncorrelated. Thus, our derivation is
essentially a formalization of May’s, in which the assumptions are made explicit.

Note that the derivation above also serves to show that May's equation results
when parasitoid densities do not vary from patch to patch but that the attack rate
varies from patch to patch according to a gamma distribution, for example, as a
result of variation from patch to patch in the degree of host vulnerability. The
latter derivation was first given by Bailey et al. (1962) and has recently been
discussed by Murdoch et al. (1984).

An important feature of these derivations is that p, which equals the error
variable, U{¢ + k), here, has a gamma distribution with mean 1 and variance l/k.
We find this property to be key to all derivations of May’s equation.

We have seen how May's equation arises naturally as a PE model. It was
originally proposed, however, as a summary of the sort of aggregation behavior
modeled by Hassell and May (1973, 1974), We now show that the Hassell and May
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models fall naturally within our framework as PR models, at the end of the
spectrum apposite PE models.

Because PR models assume no aggregation error, Ut + &) = 1, which means
that (i{e) = e~ “. Substituting in expression (6) we obtain

Hit + 1) = FE(H}(: + hexp{—af(HAr + h)]}), (13)

which 1s a form slightly more general than equation {(12) of Hassell and May
(1974). To make this a little clearer we can employ their notation and define p(m)
= P[H,(t + h) = m], the probability that a patch has m prey, so that equation (13)
becomes

Hi + 1) = F > mp(mlexpl—afm). (14)
m=0

Hassell and May {1974) chose the following particular formula for the regression
function, f:

)

fom) = aPOTET, + n ) p(OTO)]. (15)

£=0

In this formula T is the total transit time between patches, T(m) is the amount of
time spent in a patch with m prey, and »n is the number of patches. Since this
model involves the amount of time T(m) that a parasitoid spends in a patch of
density m, we shall refer to it as the patch-time model, or PT model.

Since the PT model is a PR model, there is no error about the regression of
parasitoids on hosts; parasitoid effort in any patch is determined completely by
three things: the number of hosts in the patch, the host distribution among
patches, and the mean parasitoid density.

In the PT model the host distribution greatly affects model behavior. For
instance, if hosts do not vary from patch to patch, then the model reduces to the
unstable Nicholson-Bailey equations, regardless of the form of T(m). If, however,
host density has a negative binomial distribution with small &, then a stable
equilibrium is possible for a variety of forms of T(m) (Hassell and May 1974}. In
contrast, for PE models, the distribution of the hosts has no effect on the dynam-
ics of P and H. Thus, the features of nature that these two models emphasize are
very different.

DERIVING MAY'S EQUATION FROM MODELS OF AGGREGATION TO HOST DENSITY

As discussed above, the literature assumes that May's equation comes from
aggregation of parasitoids to host density. We have shown, however, that the
derivation of the equation (May 1978), which is generally regarded as supporting
this ¢claum, in fact implicitly assumes that host and parasitoid spatial distributions
are uncorrelated. In this section we find a derivation of the equation that does
indeed depend on aggregation to host density. We start with a PR model and ask
how it can be made to conform to May’'s equation. In this way we are able to
identify constraints on the nature of the aggregation to host density that will lead
to May’s equatian.
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The constraints are related to the fact that the relative risk of parasitism, p, must
have a distribution among hosts that is independent of average host density H. If it
is postulated that parasitoids respond to relative host density, H;/H, and are not
affected by the average host density, H, which is an absolute density measure,
then it is not difficult to identify aggregation functions and host distributions that
satisfy the constraints. This does not necessarily mean the constraints are likely to
be satisfied in nature, but only that an interesting class of models can be identified
where the constraints are satisfied. For example, one of the constraints implies
that the shape of the aggregation function is related to the shape of the host
distribution in a particular way. In the section ““Generalizations of May's Equa-
tion,’’ we consider whether violation of this particular constraint is likely to lead
to an equation differing in important respects from May’s equation.

Praceeding with the derivation, we assume that parasitoids do not affect the
movements and egg-laying activities of individual conspecifics. Then we can write

AH) = P(Hg(H}), (16)

where g(H;) measures the relative density of parasitoids in patches with host
density H; (which we now use as a shorthand for H;(t + h)), and depends on H but
not on P. This particular form of the regression functlon applies to the PT model,
among others. We assume here that g(#;) is an increasing function of H; (asitisin
the PT version of the PR model), but the results below hold with minor
modification for decreasing functijons also.

Substituting equation (16) in equation (13) for the PR model, we obtain

H( + WWFHQ) = E{ g«;) exp[—aﬁ(:]g(ﬂj)]}, a7

and from May's equation we have
H( + 1)FH() = [1 + aP(eyik] ™%, (18)

Since aP(¢) is a continuous variable, _expression (17) can be regarded as the
Laplace transform (with argument aP(s)) of the random variable g(H;). This
Laplace transform is not taken with respect to the usual probability distribution of
g(H;), but with respect to the distribution obtained by weighting the usual distri-
bution by H;/H. This weighted distribution is appropriate if one samples g(H;) by
host rather than by patch. Note that here p = g(H); note also that the weighted
distribution of g(H;) can be interpreted as the distribution of p for a randomly
chosen host.
Now expression {18) is the Laplace transform of a gamma random variable with
mean 1 and coefficient of variation 1/k. This gamma random variable has probabil-
ity density

(T e ™M, ¥y >0 . (19)

From the uniqueness of Laplace transforms, it follows that expressions (17} and
(18) are equal if and only if the weighted distribution of g{H;) (or, equivalently, the
distribution of p) has the density (19). This can oniy be so if H; hasa continuous
distribution (not the discrete distribution in Hassell and May 1974) Defining h(g)
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as the inverse function of g{k), we find that the unweighted probability density of
g{H;) must be

[KT(k)) [(Hik(g)] (8"~ 'e™*%), g >0, (20}
and the probability density of H; must therefore be
(Hihy HTGR) [g())~ expl — kg()g' (h) . 21

Conversely, starting with expression (21) and substituting in equation (17), May's
equation 18 derived.

Although we appear to have solved the problem of obtaining May’s equation
from the PR model, one crucial element is lacking. We have no assurance that
expression (21} actually is a probability density; that is, there is no reason to
believe that it will integrate to 1. If expression (20} is a probability density, it
follows that expression (21) is also; thus the problem of obtaining May's equation
from the PR model becomes that of finding functions g(h) such that expression
(20) is a probability density.

It turns out that a variety of farms of g(&) will work. For example, a useful class
of functions g(k} is obtained by seeking A(g) in the form

h(g) = cholg), (22)

where c is a function of H, but 44(g) is a function of g alone. This implies that g(/)
= goth/c) where gqis the inverse of &g, and equation {22) specifies the dependence
of g(H;) on H, up to a scale factor ¢ depending on H. We now solve for ¢ by
substituting in expression (20}, integrating from 0 to «, and equating to 1. Defining

< = UG | (g4t~ ¥Thole)dz, @3)

the solution is ¢ = Hx; thus,
gH;) = 80(HHEK)- (24)

The sole requirement for the existence of this solution is that k should be finite. It
follows then that the function (24) and the density (21) serve to derive May's
equation from the PR model.

Example.—In analogy with Hassell and May (1973), let go(h) = A%, then x =
KTk — 1/6)/T{k) and

gH;) = [(H/H K] (TtyTtk — 1/6))7. (25)

As in all models based on equation (22), the deusity of H,/H is independent of H,
and in this example the density of ¥; = H;/H is

[T Ry ~2exp [ ~y%%A®],  y >0 . (26)

The condition k < oo is the condition & > 1/6. Thus if & > /8, the aggregation
function (23) and the host distribution {26) lead to May's equation.

For all of the solutions in this section, including the particular example just
presented, the relative parasitoid density, g(H;), is a function of relative host
density, H;/H, alone, and the distribution of H,/H among patches is independent



704 THE AMERICAN NATURALIST

of H. A great variety of shapes for gq, relating relative parasitoid density to rela-
tive host density, is possible since the only requirement is that expression (23) be
finite. However, gq and the host distribution cannot be chosen independently;
indeed, if gq and & are given, then the hast distribution is precisely determined. If &
is not predetermined, then there is some flexibility in the relationship between gq
and the host distribution: each go determines a one-parameter family of host
distributions. The single parameter is &, and for different values of & the host
distribution will have different shapes. The manner in which the shape changes
with k is determined in a precise way by gq. Therefore, it follows that if g4 and the
probability density of H,/H are chosen in some random manner from the collec-
tion of all possible host distributions and aggregation functions, it is very unlikely
that May's equation will be derived. The significance of this finding is explored
below (*“‘Generalizations of May's Equation™).

AGGREGATION INVOLVING ABSOLUTE HOST DENSITY

We have seen how May's equation can be derived if parasitoids respond only tao
the local relative density, H;/H, of hosts. Most detailed models of aggregation,
however, require consideration of the average host density, H (e.g., Hassell and
May 1974; Murdoch and Oaten 1975; Comins and Hassell 1979). Thus, it 1s
important to see if aggregation involving A can lead to May's equation. We do not
try to do this in complete generality but instead restrict attention to a single broad
class of models, the PT models of Hassell and May {1974). A desirable feature of
these models is that the aggregation function can be interpreted in terms of a
plausible model for the behavior of the parasitoids.

The PT medels invalve the important quantities T(#;), the time spent in a patch
with H; hosts, and 1 = Ty/n, the mean transit time between patches. We find that
May's equation is unavailable from PT models with T > 0. It is available for one
form of the PT model in which T = 0, which is the only form of the model in which
g(H;) can be expressed as a function of H;/H alone, and does not appear to be
available from any forms of the PT model that differ appreciably from this
particular form.

To overcome this problem we suggest maodifications to May’s equation that let
aggregation depend on absolute host densities. These modifications make the
attack rate a, or the clumping parameter k, functions of H.

To see what happens in the PT model, we start with expression (15) and divide
by P to get

g(HJ) C'T(HJ') L] (27)

where
c' [t + ETXCH;) ™ L (28)

with ET(H,) = 27_q p(€)T(€) being the mean time in a patch. The parameter 7 is
assumed to be a constant, independent of host density, and ET(H,) is a function
of H. :
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With this form for g(H,) we seek a solution ¢’, as a function of H, to the
equation

Lw[k"il“(k]] [HIT Ye/cHg" ‘e " 8dg = 1, (29)

which again is merely the condition that expression (20) is a probability density.

Under the assumptions that T is strictly increasing, 7(0) = 0, and T(ee) = oo, we
show in Appendix B that there is a unique solution ¢', as a function of H, provided
that the left-hand side of (29} is finite for some positive value of ¢'. Although its
aoccurrence is unlikely in nature, the requirement that 7{0) = 0 cannot be relaxed;
otherwise, it is impossible for the weighted distribution of g(H,) to be gamma. The
second condition, T{e«) = oo, is also necessary for this gamma distribution.

Having obtained a solution for ¢’, we ask, Can it be put in the form of
expression (28)? If we insist that 7, the mean transit time, is truly a constant (as
assumed in Hassell and May 1974), the answer is no, because ¢' is a decreasing
function of H and tends to infinity as A tends to zero (Appendix B). This means
that v + ET(H;} must tend to zero as H tends to zero, and this can only be so if 7
tends to zero as H tends to zero. Although parasitoids would be well advised to
hurry between patches when hosts are scarce, it seems unlikely that v could be
made arbitrarily small. If one argues that 1 is not really a mean transit time, but
time out from aviposition activities to do other things, and the true transit time
between patches is essentially 0, then T might conceivably tend to zero as H tends
to zero, as oviposition becomes a more urgent activity. This modifies the intent of
the PT model, and we must conclude that in its original form the PT model does
not give rise to May’s equation. An example is instructive.

Far the special case T(H,) = HY, the problem of finding ¢’ is equivalent to the
problem of finding ¢ discussed in the preceding section. This case can be solved
explicitly from the example there, in which go(h) = A®. Although Hassell and May
(1974) suggested more-complicated functions for T(H;), this form of T is capable
of approximating some of their forms, provided hast densities are generally low.

From expression (25} in the earlier example we see that

o' = [I/k] [TCHTk ~ 1/8)1°. (30)
A simple integration using (20) shows that
Eg(H;) = 1 — 1/k8. (31)
Combining results (30) and (31), we see that
T = 8 [HTk — 1/8YTHRN°, (32)

demaonstrating a high dependence of T on host density.

A transit time so heavily dependent on host density contradicts the spirit of the
PT maodel, as discussed above. What are the alternatives? One alternative is that &
depends on host density, which means from (32) that & varies according to the
equation

I'(kyT(k ~ 1/8) = H x constant. (33)
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Since the gamma function is log convex, the left-hand side of (33) increases in &,
approaches zero as & — /8, and approaches infinity as & — 2. Thus if T is held
fixed, & will be an increasing function of hast density.

Another alternative is that the parameter g in May’s equation is a function of
host density. This parameter can be interpreted as an attack rate; even though we
assume that its value in any patch is independent of local and average host
densities, it is quite natural to expect that the “*effective’” value of « for the entire
system will vary with the average host density. For instance, at low, as compared
with high, host densities, parasitoids should spend less time in patches and mare
time in transit between patches, leading to lower numbers of attacks per hast. A
model with these properties originates from a slight modification of the present
example. We choose the same host distribution, which is given by expression (26),
and the same function T(H,) = H}, but we insist that 7 be positive and constant.

With the host distribution (26), we have

ET(H;) = (BD® (k = 1/8) [Tk — 1/8YT(R)]°, (34)

and g(H;) is then given by the standard form g(H;) = T(H, Y[+ + ET(H,)}]. for the
PT model. From formula (17} for the PT model we abtain

H(t + 1) = FHY1 + aPUH[rd(k,0) + (K — VO}H* %, (35)

where d(k,6) = [['(4)/T(k — 1/8)]°. Thus we obtain from a PT model a result that
amounts to substituting the following function of host density for 4 in May's
equation:

ka(ED1d(k,0) + (k — 1/0)(H)?]. (36)

Interestingly, this result is only slightly more complicated than May's equation.
Even so, it is distinguished from May's equation by the important property that
the fraction of hosts surviving strongly depends on host density. Moreover, the
fraction of hosts surviving decreases as host density increases, reflecting the
smaller time loss incurred in transit between patches at higher host density. This is
similar to the generation of Type 111 functional responses for models of predation
in a patchy environment (Murdoch and QOaten 1975). As we have emphasized, it is
likely that the fraction of hosts surviving will often depend on H. This fact is
frequently overlooked in analyses of host-parasitoid aggregation models based on
the concept of ““pseudointerference’’ as defined in Free et al. (1977).

The above arguments have all assumed that 7 = 0. If 7 is set equal to 0, which
requires arguing that transit time is truly negligible at all host densities, then
May’s equation can be obtained in the case where T(H;) is proportional to Hf, for
then T(H;}ET(H;) can be a function of H,/H alone. Putting 1 = 0 in the last
example above achieves this but note that ¢ in May's equation is replaced by a/
(1 — 1/k8). It is not difficult to see that this is the only case in which T(H;¥ET(H;)
depends solely on H;/H. From the above results (in “‘Deriving May’s Equation
from Models of Aggregation to Host Density’"), it follows that other cases require
distributions of relative density (H,/H) that vary with # if there is to be any hope
of deriving May's equation. Moreover, Appendix C shows that the class of
situations in which May’s equation is derivable from PT models with + = 0 is
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small indeed. All models in this class have a property that makes them very close
to the model with T(H;) = HY.

GENERALIZATIONS OF MAY'S EQUATION

Although it 1s not likely that May's equation will arise as a result of aggregation
to host density, is it possible that an equation with similar properties could arise?
May’s equation is a special case of equation (11), H{ + 1) = FH(OWlaP(1)],
which was given earlier for the general PE model. Because an equation of this
same form was originally derived by Bailey et al. (1962) under the assumption that
the attack rate varies among host individuals, we call it the BNW equation. We
ask whether May’s equation reflects some general useful properties of its generali-
zation, the BNW equation, and examine the various ways in which the BNW
equation can be derived.

Inequation (11), ¢ is the Laplace transform of a positive random variable {/. As
noted earlier in the PE model, the error variable, I/, can be equated with p, the
relative risk of parasitism. In the new models below that yield (11), ¢ can still be
interpreted as the Laplace transform of p from a randomly chosen host.

Previously, I/ was assumed to have mean 1; because this assumption is not
critical to the properties of the equation, we shall relax this assumption and simply
allow !/ to have any constant mean value. Thus, it is no longer just an error variable,

It is shown in Appendix D that the BNW equation, like May’s equation, gives
unique, positive, locally stable host and parasitoid equilibrium densities if the
distribution of I/ is sufficiently skewed. Skewness is measured here by the spread
of the distribution of log &/.

To obtain the BNW equation from a PR model {aggregation to host density), we
follow the same method used for May's equation. We see that the density of H;
must be of the form

(HiR)plg(h)g'(h) (37

where p is the probability density of {/. Since p is arbitrary here, this formulation
remaves the linkage between the shape of the distribution of H; and the shape of
the aggregation function g, at least for a fixed value of A. That (37) must integrate
to 1 means that constraints are still present. These constraints manifest them-
selves through restrictions on the manner in which g can depend on H and through
restrictions on how the shape of the density of H, changes with H.

The restriction on the manner in which g depends on H is best illustrated by the
PT model where g(H;) = ¢'T(H;} with ¢’ = [t + ET(H)]™ . As we found for
May's equation, it is essentially impossible to obtain a solution for ¢’ unless we
assume that T — 0 as # — 0 (Appendix B).

If we reintroduce the special assumption that parasitoids respond solely to the
relative density of the hosts, then it is indeed possible to derive the BNW equation
without significant further restrictions on the manner in which parasitoids react to
the hosts. However, it must be assumed also that relative host density (H[,-fﬁ') is
distributed among patches in a manner that does not change with average host
density (FD.
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_ To derive the BNW equation with these special assumptions, let g(H,) = §(H;/
H), where g(H,/H) depends just on the single variable H;/H, and let ¢ be the
prabability density of H;/H. Tt follows that

He + 1YWEH(D E(Hﬂmexp[—aﬁg(ﬂj)]
E(H;/Hexp| ~ aPg(H,;/H)]

n

I

= |y expl~aPeonomay

= J:ﬁ'(a}ﬁ(a)da[ﬁ(tt)]exp (—aPu)du, (38)

where 4 is the inverse of the function g. Thus, letting p(«) be the density function,
pu) = R'(hu)dlA(w)] (39}

with & its Laplace transform, we obtain equation (11). This shows that equation
(11) results from any PR model, in which relative parasitoid density, g(H;), is
merely an increasing function of relative host density, H,/H, with the probability
density & of this latter quantity not depending on H. To arrive at equation (11), it
is not necessary that g be increasing; for example, £ could be decreasing. Indeed,
£ need not even be monotonic, but then formula (39) must be replaced by
something more complicated.

Formula (39) shows how p and hence { are determined by ¢ and 4. Mareover,
equation (39) would still apply if ¢ and/or ¢ depended on H. Therefore, it is
1mp0551ble to have p (and hence ) mdependent of Hif g, but not ¢, depends an
H, or if &, but not #, depends on H. It is possible to have p independent of H if
both g and & depend on A, but we know of no biologically interesting examples.

Becanse greater aggregation is believed to lead to more stability in May’s
equation, it is important to find out if greater aggregation leads to more stability in
the BNW equation as derived here. We shall not pursue this in general but just
give a simple example.

Let g(H,/H) = c(H,/H)®, where ¢ is a constant. Large values of § mean a higher
concentration of effort in patches with high host density. In the presence of mild
regularity conditions, Appendix D shows that stability always results from a
sufficiently large 6. Thus, greater aggregation, in the sense of large 4, does indeed
lead to more stability. The stabilizing effect of such aggregation does not follow,
however, from the tendency of parasitoids to aggregate to patches with more
hosts, per se, but from the tendency to aggregate in some subset of the patches. In
fact, stability would also result if parasitoids aggregated instead to patches with
few prey. This is perhaps not plausible behavior, and we illustrate the point by
considering instead how egg depletion, prey-handling time, or same other factor
might cause relative risk to be greater in patches with few hosts. Such stabilizing
effects of inverse density dependence have also been found by Hassell {1984).

Until now we have interpreted the function g(H,) as the relative density of
parasitoids in patch j, as in equation {I16). In this situation, the vulnerability of a
host, a, is the same for all hosts, but the number of parasitoids varies. An
alternative approach is to assume that vulnerability varies among hosts; but that
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all patches receive the same number of parasitoids, P as in Bailey et al. (1962).
Now, g(H)) can be interpreted as a weighting function modifying the vulnerability
of hosts in patch j, according to the local host density.

When all patches have the same number of parasitoids, individual hosts in
patches containing many hosts are probably at less risk than those containing few
hosts because parasitoids in dense patches will spend more time handling hosts or
will deplete their egg supply more frequently. Thus, g(H;) will be decreasing. In
the example discussed, we would then have g(HJ-fE'} = c(H}H?)G, with 8 negative.
Appendix D shows that stability always results from a sufficiently large value for
|6]. As risk becomes more inversely density-dependent in space, stability becomes
likely.

DISCUSSION

May's negative binomial model (eq. 1a) has been used in a variety of situations
in which parasitoids are assumed to aggregate in areas of high host density
{(Beddington et al. 1978; Hassell 1980, 1982; May and Hassell 1981; Hogarth and
Diamond 1984). The model is very simple, provides an explanation for stable
coexistence of hosts and parasitoids, and has seemed to apply to a variety of
situations. 1t has thus been very appealing. Our analysis shows, however, that the
range of situations to which it should be applied is quite narrow. Although most
recent references to the model assume that it arises from the aggregation of
parasitoids in patches of high host density, we have shown here that it arises most
naturally when the aggregation of parasitoids is not related to local host densities;
indeed, we showed that the latter is an implicit assumption of May's derivation.

The key to the derivation of May's model is the distribution of a quantity, p,
which is the relative risk of parasitism. This quantity can vary from host individual
to host individual for two reasons. First, different host individuals are exposed to
different densities (or qualities) of parasitoids. Second, some host individuals may
be maore difficult to find or parasitize than others because of their microhabitat or
because of phenotypic differences; thus, different hosts may be exposed to differ-
ent values of the parasitoid attack rate {the area of discovery, a).

To arrive at May's equation, the distribution of p among hosts must follow the
gamma probability distribution. In the more general model of Bailey et al. (1962),
p may have any distribution. Especially significant is that both models require that
the parameters of the distribution of p must nof change with the average densities
of the host and parasitoid populations. Also, in both models, stability requires the
distribution of relative risk ta be highly skewed, with a small fraction of the hosts
accounting for most of the risk of parasitism.

Field studies typically have not inquired into the distribution of p, but rather
have examined the spatial distribution of risk as a function of local host density. A
wide range of patterns has been found. In some studies risk increased with local
host density, in others it decreased, and, perhaps most commonly, in others there
was no relationship (e.g., Heads and Lawton [983; Waage [983; Murdoch et al.
1984; Reeve and Murdoch 1985; for reviews, see Morrison and Strong 1980;
Hassell 1982).

The distribution of p, ar of a variable closely related to it, has been studied by
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Hassell (1980), Murdoch et al. (1984), and Reeve and Murdoch (1985). Hassell
showed that while risk in the winter moth was highly skewed in some vears, the
skewness decreased with average moth density. The other two studies showed, by
contrast, that the distribution of the risk of parasitism in two species of scale
insects under bhiological control is not strongly skewed, but has a surprisingly
moderate variance.

Although the distributions of risk in the scale-insect studies seem to have been
random with respect to local density, the winter-moth data show that risk in-
creases with local host density, suggesting that the parasitoids aggregate to host
density. Evidence for such aggregation has been found for predators in the field
(Kareiva 1984) and for parasitoids in the laboratory (e.g., Cook and Hubbard
1977). When considering the models under discussion, hawever, it 1s critical to
know whether the allocation of search time among patches with different host
densities changes as a function of the average host density. Surprisingly, this
problem seems not to have been studied experimentally.

[t seems unlikely that parasitoids would always respond in exactly the same
way to a given relative density, or set of relative densities, regardless of the
absolute host densities. Maodels of optimal foraging or oviposition generally reveal
the importance of absolute host densities, as can be seen by inspecting the
equations in such studies (e.g., Charnov 1976; Cook and Hubbard 1977; Oaten
1977, Comins and Hassell 1979; Green 1980). If a parasitoid is not exhibiting
“‘optimal’” behavior, but is merely “*trying to do well enough,’’ then absolute host
densities are possibly even more important, for then a parasitoid would be ex-
pected to remain a long time in a dense patch of hosts regardless of its sparseness
relative ta other patches (e.g., these properties occur in models 1 and 2 of Hassell
and May 1974).

May (1978) suggested his equation as a simple summary of the results of
aggregation to host density. Because of the likely involvement of absolute host
density, we have argued that May’s equation is not an adequate summary of the
effects of such aggregation. We found, however, that we could modify May’'s
equation to incorporate the effects of absolute host density. We looked at two
cases. In one case, the value of the aggregation parameter £ was allowed to vary
with average host density, and in the second case, the attack-rate parameter a was
made a function of average host density. (This second case does not imply that
attack rates within a patch vary with absolute host density; they do not. Because
varying amounts of time are wasted in transit between patches, the effective
attack rate for the entire system, as represented by a, does vary with absolute host
density.)

A general discussion of the dynamical properties of these and other alternatives
to May’s equation that represent aggregation involving absolute host densities is
deferred to a subsequent article. However, some conclusions are clear from the
present study. (1) Our analysis of the equation of Bailey et al. {1962) shows that
aggregation by parasitoids, independent of hast density, is a general stabilizing
force in Nicholson-Bailey-type models. (2) When parasitoid aggregation to local
host density leads to stability, it does so because aggregation in any subset of
patches leads to variation in the relative rate of parasitism among hosts, not
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because patches with many parasitoids contain many hosts. (3) Aggregation to
patches containing relatively few hosts has the same effect on stability as aggrega-
tion to patches with many hosts. That is, the intuitive argument that stability
follows from spatial density dependence per se is incorrect; stability follows
equally from inverse density dependence in space. Egg depletion and handling
time are likely mechanisms yielding such inverse density dependence. Both forms
of spatial density dependence can lead to **pseudointerference’ (Free et al. 1977),
and stability can be understood in these terms.

SUMMARY

We explore the relationships among host-parasitoid models involving aggrega-
tion, with particular emphasis on May's negative binomial model. Models in
which parasitoid density in a patch is strictly a function of host density in the
patch, with no ““error’” about this function, are pure-regression models. Those in
which there is random variation in the number of parasitoids per patch, with no
relationship between local parasitoid density and local host density, are pure-error
models. The key factor in these models is not the distribution of parasitoids per se,
but the distribution of the relative risk of parasitism, p, which in the present
formulation can result from variation in the number of parasitoids in a patch, P;, or
from variation in host vulnerability, a.

We show that May's model, and the Bailey et al. (1962) model of which it is a
special case, arises naturally from pure-error models. By contrast, it is very
difficult to obtain May’s model from biologically plausible pure-regression mod-
els. There are severe constraints to obtaining May’s model under pure regression:
(1) the parasitoids must aggregate in response to relative host density only, and
must be unresponsive to the absolute number of hosts in a patch; (2) they must be
unresponsive to parasitoid density; (3) the distribution of hosts must be indepen-
dent of average host density; (4) once the parasitoid aggregation function is
established, only one corresponding host distribution yields May’s model; (5) p
must be gamma-distributed with constant parameters. [t is not possible to obtain
May’s model if parasitoid aggregation to local host density involves a transit time
between patches. Only the first three of these constraints apply ta obtaining the
model of Bailey et al.

When parasitoids aggregate to local host density and the above constraints are
not met, modifications of May's model may arise in which the constants a and &
are replaced by functions of average host density. There is then no necessary
refationship between aggregation and stability. By contrast, random aggregation
in space, independent of local host density, leads to May’s model {or, more
generally, to that of Bailey et al.) and serves as a powerful stabilizing force in the
Nicholson-Bailey context. However, stability is obtained at the cost of lowered
parasitoid efficiency.

Where parasitoid aggregation in relation to local host density accurs under the
constraints listed above, we find that aggregation to patches with few prey is as
effective as aggregation to patches with many prey in yielding both May’s model
and local stability. Under the identified constraints, any process (e.g., egg deple-
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tion or handling time) that strongly concentrates relative risk in sparser patches,
thus producing inverse spatial density dependence, will promote stability as
effectively as does spatial density dependence.
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APPENDIX A
Equation (3a) and May's equation imply that
E(H;iHe % = (1 + aPik)™*. (Al)
Defining &(P,) = E[H,/H|P,], equation (A1) implies that
Ed(Pye™F = (I + aPil)™". (A2)

Assuming that this relation halds for an interval of a values for a fixed joint distribution of
H;and Py, the left-hand side of equation (A2) is the Laplace transform of the distribution of
P; weighted by ¢(F;). An explicit assumption in May's (1978) derivation is that F; has a
gamma distribution with mean P and coefficient of variation 1/k. The ordinary Laplace
transform of this gamma distribution is the right-hand side of equation {A2). Thus, the
uniqueness of Laplace transforms implies that ¢(P;) = L, which means that E[H,|P,] = H,
that is, the regression of host density on parasitoid density has zero slope. This is stronger
than the statement that H; and P; are uncorrelated but not as strong as statistical indepen-
dence, since P; could influence the variance of H;.

APPENDIX B

To see that there are solutions to equation {29}, let G be a gamma random variable with
mean 1 and variance 1/k. Then equation {29) can be written

E[T " YGleN™ ' = H™ . (BL)

Assuming that T(0) = 0, T(x=) = =, and Tis strictly increasing, then [T~ Y4G/c")] ™ is strictly
increasing in ¢, converging 10 = as ¢’ — = and to zero as ¢ — 0. Assuming that E[T~ G/
]! < = for all ¢, the dominated and monotonic-convergence theorems imply that
E[T™YG/cY) ™" is continuous and is strictly increasing in ¢', converging to zero and e,
respectively, as ¢’ — @ or «. Thus, under these conditions there must be a unique solution
¢' 10 equation (B1) for every H. Note alsa that ¢’ is necessarily a decreasing function of H,
converging to o as H — 0.

Ta see that E[T~YG7e' ™" is finite for all ¢’ if it is finite for any ¢, substitute y = g/c’ in
the left-hand side of equation (29) to abtain

E[T"YGleN™! = c"‘L [y e <" I T~ () dy . (B2)

Since T7'(y) is increasing, the integral will be finite for all positive ¢’ if and only if y*~'/
T~ '(y) is integrable near 0. Thus if equation (B2) is finite for any pasitive ¢, it is finite for all
positive ¢'.

The case in which we seek the BNW equation from PT models is dealt with almast
identically. The variable & is then assumed to have Laplace transform ¢, and density
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function p, but it is no longer true that the left-hand side of equation (B1} is finite for all ¢’ if
it is finite for any ¢'. However, imposing the mild condition log p(y¥log y — vasy — 0,
where v is some finite number, preserves the relevant properties of the gamma distribution
and the critical result that ¢' — e as  — 0. This particular result means that ¢' cannot take
the form {r + ET(H;)]™ ', as discussed in the text. The case v = « might occasmonally arise
in practice, but then quite unrealistic T are necessary before E[T YGic)]™' = oo, such that
the results here can be considered quite general.

APPENDIX C
The PT models with T = 0 have g(H;) = T(H;VET(H,), which implies that Eg(H) = [
We seek to identify the breadth of situations in which the BN'W equation {which includes
May's equation as a special case) is available from such PT models. Writing A{g), the
inverse of g(h), as 1/w(g), we obtain Hp(g)w(g) for the density of g(¥)) such that

Eg(H;) = H L gp(g)wig)ds . (o))
Since the density of g(H;) must integrate to [, equation (C1) can be written
Eg(H;) = L gp(g)w(g)dgr’L plg)wig)dg . (C2)

In general, g(H;) and w(g) will depend on H; however, by hypothesis, Eg{H;) does not.
Using D to represent the derivative with respect to H, we abtain

0 = DEg(H))
= L gp(g)Dw(g]dgfL plgwig)de
- [L p(zg')i?’lvv(g]dg][J0 gp(g)w(R)dg L plg)wig)dg’ (C3)
= E[GD log w((G)] — (EGVE[D log w{G)] (C4)
= C[G,D log w{{)], (CH
where C means covariance. Now D log w(G) = — D log A(G), so that equation {C3) means

that on the average D log h(() must neither increase nor decrease with G, to produce this
zero covariance. For g(H;) = Hpc(H), where c(H) is some function of H, we get K(G) =
[Ge(FNN' and log (G) = 6~ ‘log G + 87 'ag c(H). Because log 4(() separates into a sum
of a function of G and a function of H, D log /(G) is independent of G, and equatian (C35) is
therefore satisfied. However, if g(F,) = T(H;)c(f), for T(H)) # H, then log k(G) does not
separate into a sum of a function of & and a function of H; it follows that D log A(G)
depends on &, making it very unlikely that the covariance (C5) will be zero for all values of
H. Far example, if T(H) = log (I + bH;), for pasitive &, the covariance has the same sign
as — De(H).

These results indicate that the class of PT models with v = @ that leads to the BNW
equation is small indeed.

APPENDIX D
The equation for general pure-error models is
Ht+1) = FH(W[aP(, (1)

where \J is the Laplace transform of the error variable I/. We assume here that U is a
positive random variable with any mean. For the case in which U/ is 2 gamma random
variable with mean 1 and variance 1/k, equation (D1) gives May's equation. May’s equation
becomes stable for & < 1, which corresponds to a skewed distribution of I/ with a mode at
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zero and a leng tail. We show here that in a certain sense sufficient skewness of the
distribution of U in general PE models also leads to a locally stable equilibrium.

Equation (D1) implies that the equilibrium parasitoid density is the solution P* to the
equation

WaPt) = F~!. (D2)
Since F~! < I, the properties of Laplace transforms ensure that equation (D2) has a unique
solution. From equation (3b) the equilibrium host density is H* = P*{(1—-F™").

From a general analysis of host-parasitoid models (Hassell 1978, Appendix 111}, it follows
that the equilibrium will be locally stable if

—al* ' (aP*) < F7 L. (D3)
Defining & = aP*, and noting that 4/'(§) = — EUe ", inequality (D3) becomes
EdUe ™ < F-l1-F~ Y. (D4)

One interpretation of increasing skewness of the distribution of [/ is that the distribution
of log I/ becomes more spread out. This can be defined precisely for all positive L as
sup Pla=<logU=<a+L) | 0; (D35
R
that is, the probability that lag U/ is found in an interval of fixed length decreases uniformly
to zero. This property is satisfied when U/ has the gamma distribution (which leads to May's
equation) and £ | 0.

No matter how § changes with the distribution of L7, 81/ must satisfy {D3} in place of {/,
whenever I/ satisfies (D3). It follows that 8Ue Y converges in distribution to zero; being
bounded, its expected value must also converge to zero. Thus, inequality {D4) is eventually
satisfied when skewness is increased in this way, and equation (D]) becomes locally stable.

If a definition of increasing skewness other than (D5) is used, simple counterexamples
show that (D4) need not be satisfied. For example, replacing log U/ by U in (D3) does not
provide a definition of increasing skewness that necessarily leads to the local stability of
(D1}.

Now we show that the aggregation model with g(H;) = C(ijf_l]ﬂ satisfies the skewness
condition for large enough 8. Far this case, i(x) = bu'", far some constant 6. It fallows that

pluy = 87 '0% bu') (D$)
and the density of log {/ is therefore equal to
B8 e (b ) | (D7)
Introducing the mild condition on the density ¢ that
sup Vo) < =, (D8)

which is satisfied by almost all probability densities with any practical utility, we see that
{D7} — 0 uniformly in x as 0 — oo, Cansequently, (D3) is satisfied, for 0 sufficiently large,
resulting in a locally stable equilibrium for the model of aggregation in response to relative
host density with g(H;) = c(H/H)®. (That is, in the model, the parasitoids are attracted to a
patch because of its density of hosts relative to the average density of bhosts in all patches.)

The above demaonstration assumes that 4 is positive. If 9 is negative, causing greater risk
for hosts in patches of low host density, then 8~ must be replaced by [#7!| above, and it is
clear that the skewness condition for stability is achieved as |6 — =
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