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chapter ] 4

Environmental Variation and
the Coexistence of Species

Peter L. Chesson

INTRODUCTION

Variation is a striking feature of many real popu-
lations and communities. Variation in both time
and space occurs in the environment, in species
densities, and in relative densities. The wide-
spread occurrence of variation raises a number of
important questions. Of what significance is vari-
ation to the dynamics of populations and commu-
nities? What note should ecologists take of varia-
tion? Are the effects of predictable variation,
such as seasonal environmental variation, differ-
ent from the effects of unpredictable. variation,
such as yearly rainfall or temperature? How is it
possible to tell if the structure of a community
depends on environmental variation?
Historically, ecologists’ attitudes to variation
have themselves been quite varied. Some, such
as Andrewartha and Birch (1954), have focused
on variation or fluctuations in population num-
bers and have sought the causes of such varia-
tion. Community ecologists usually have rather
different questions in mind and view variation
mainly in terms of how it affects community
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structure or how it affects the study of commu-
nity structure. Four different views of variation
are set out below with a focus on stochastic varia-
tion, that is, variation that is not predictable with
high confidence from one time to the next. The
weather gives us many examples of stochastic
environmental variation, but it must be remem-
bered that stochastic variation still has its predict-
able aspects. For instance, yearly rainfall may be
highly stochastic, while the average rainfall over
a sufficient number of years is highly predictable.

Among the views of variation discussed
here, view D is the one that is most strongly
supported by models. Models of coexistence by
means of recruitment variation are presented as a
principal illustration of this view. Other models
have not necessarily supported the idea that envi-
ronmental variation promotes coexistence, but
this chapter will show how the seemingly con-
flicting results of a variety of models can be un-
derstood within the context of a single general
model. This general model suggests how certain
kinds of life history traits may be generally favor-
able to coexistence in a temporally varying envi-
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ronment. If the environment vanes in space and
time, then life history traits such as dispersal may
also be important, and models incorporating dis-
persal in a spatially varying environment have
strong similarities to models of recruitment varia-
tion in time.

It is often assumed that stochastic mechanisms
of coexistence, such as those discussed here, will
lead to population dynamics that are fundamen-
tally different from those associated with deter-
ministic mechanisms of coexistence. However, I
shall argue that these two different sorts of mech-
anisms of coexistence may yield quite similar
population dynamics in the real world.

FOUR VIEWS OF VARIATION

View A: Variation is noise, and it tends to
obscure what is really happening in a system.
This view makes no distinction between variation
and sampling error. Sampling error 1$ a common
problem in ecological research. For instance,
there are various methods one can use 1o ury (o
determine the size of a small mammal population
in a particular locality at a particular time (Seber
1982), but all entail sampling errors that can
make it difficult to get an accurate result. How-
ever, there is nevertheless a true value for the
population size for the particular place and time,
and this value is potentially knowable.

Now consider a fish population. One may
wish to know the number of juvenile fish matur-
ing to adulthood, that is, the number of new re-
_cruits, in 4 particular year, This too has a true,
potentially knowable value, but fisheries biolo-
gists often want more; they want to know the re-
lationship between the size of the adult stock and
the number of new recruits. One can measure the
number of new recruits for different values of the
adult stock, for the adult stock varies in time.
Getting the relationship will certainly involve
sampling error, but something else is going on
also. Although two different years may have the
same adult stock sizes, the actual numbers of re-
cruits for these two years may be quite different
(Cushing 1982), This has nothing to do with sam-
pling error, for the numbers of recruits for the
two different years are truly different, as would
be seen if every individual in the population were
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counted. Thus, if sampling error could be elimi-
nated, there would still not be any precise rela-
tionship between stock and recruitment. Never-
theless, there will be a mean value for
recruitment over many years with the same stock
size, and view A treats the relationship between
this mean value of recruitment and the stock size
as the “‘true”” relationship. Variation from this
relationship is regarded as noise, or error, that
need not be distinguished from errors resulling
from the difficulties of sampling.

The remaining three views do make a distinc-
tion between sampling error and variation in the
true population size and assume that variation in
population size, and in environmental factors, is
important to the workings of a population or the
organization of a community.

View B: Variation is present and important.
If the variation is stochastic, it is harmful in the
sense that it increases the probability of extinc-
tion of a population and decreases the diversity
of a community. This view pervades determin-
istic approaches to modeling. A stable equilib-
rium point, or a stable cycle, is regarded as nec-
essary for community persistence. Stochastic
variation causes displacements from equilibrium,
and if sufficiently strong, it may cause some spe-
cies to become extinct. For a community to per-
sist in the face of strong stochastic variation,
there must be strong deterministic forces oppos-
ing the displacements from equilibrium that are
caused by the stochastic variation.

Many ideas and theories have developed in
response 10 this view, including ideas on limiting
similarity, multiple stable points, resilience, and
vulnerability (May and MacArthur 1972, Holling
1973, May 1974b, Goh 1975, 1976, Leigh 1975,
Beddington et al. 1976). As emphasized, this
view mostly concems stochastic variation be-
cause of its unpredictable properties.

View C: Variation leads to interruptions or
reversals of biological interactions. It thereby
slows down competitive exclusion and may pre-
vent it from occurring on an ecologically rele-
vant time scale. Hutchinson (1961) gave the
first detailed discussion of this view. He sug-
gested that competing species may coexist as a
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result of changes in the environment that reverse
the order of competitive superiority among the
species. Hutchinson argued that if such environ-
mental changes occur with a period roughly equal
to the time for competitive exclusion of a species,
then competitive exclusion would be prevented
and a rich community might result. However, if
the period between environmental changes is
quite different from the time for competitive ex-
clusion (either longer or shorter). then competi-
tive exclusion would still occur.

Ideas on disturbance (Paine and Vadas 1969,
Connell 1978, Caswell 1978, Fox 1979, Abugov
1982) usually involve the notion that environ-
mental events or predators interrupt biological
processes and prevent monopolization of re-
sources (usually space) by a single species. Intui-
tively, interraption of hiological processes, espe-
cially competition, should delay competitive
exclusion. Theoretical support for this idea
comes from Huston’s (1979) model, in which
disturbance leads to a reduction in the population
sizes of all species and consequently a temporary
reduction in competition. On the other hand,
Caswell’s (1978) analysis of a different model of
disturbance assumes at the outset that the degree
of delay of competitive exclusion is the appropri-
ate focus of the analysis.

That environmental variation may primarily
slow the rate at which competitive exclusion oc-
curs is not an uncommon view, and although not
stated explicitly in Hutchinson’s original discus-
ston, it is implicit in his arguments. In this view
environmental variation is very different from
mechanisms like resource partitioning that lead to
stable equilibria in models and thereby eliminate
trends toward extinction of one or more species.
Variation is not seen as eliminating these trends;
it merely slows them down. Often associated
with this view is the idea that population dynam-
ics should appear very unstable with large fluctu-
ations in species relative abundances (Grossman
1982, Grossman et al. 1982).

View D: Variation not only slows processes
like competitive exclusion, but changes trends
as well. Species that cannot coexist in a constant
environment may in the presence of variation all
show positive average growth rates at low den-

sity. Each species would thus have an upward
trend whenever its density is low, Moreover, in
this view variation can lead to the creation of a
central tendency for population fluctuations,
analogous 1o the existence of a stable equilibrium
point in a determnistic model. Variation is not
greatly distinguished in its action from other
forces in a community like competition or preda-
tion. Like these forces, variation may change
average growth rates in a positive or a negative
direction depending on the circumstances.

Levins (1979) gives perhaps the best expres-
sion to date of this view. He suggests that when a
limiting resource varies in abundance, species
may partition different aspects of resource varia-
tion. For example, some species may act like
consumers of the resource variance, while others
are consumers of the resource mean. By so parti-
tioning resource variation, several species may
cocxist on a single limiting resource.

View D is also expressed implicitly in a num-
ber of models of disturbance in a patchy environ-
ment (Slatkin 1974, Crowley 1979, Hastings
1980). Disturbances are assumed to occur
asynchronously in the different patches of a large
(effectively infinite) habitat. These models all
produce the result that disturbance can lead to an
indefinite, stable coexistence, in the total habitat,
of two or more strong competitors. Moreover,
the coexisting species all have positive growth
rates at low density, Crowley (1979) and Ches-
son (1981) argue that the sort of coexistence
found in these models of infinite habitats is a re-
flection of tendencies that are present in more
realistic models of finite habitats, but are more
difficult to see there.

According to view D, it does not greatly mat-
ter whether environmental variation is regular
(e.g., seasonal) or stochastic. With both kinds of
variation the environment goes through a number
of states, and both give a predictable frequency
of different environmental states at least in the
long term. These long-run frequencies of the dif-
ferent states are seen as one of the most important
aspeets of the environmental variation. Natu-
rally, a regularly varying environment is predict-
able in the short term as well as in the long term,
but this is not of overriding importance.

A considerable amount of evidence from sto-
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chastic models has accumulated in support of
view D, and the rest of this chapter is an elabora-
tion of this view.

COEXISTENCE MEDIATED BY
TEMPORAL VARIATION

An important role of environmental variation in
population dynamics is suggested by the relative
fragility of the juveniles of many organisms. Ju-
venile mortality rates are high and sensitive to
environmental conditions. Thus. if the environ-
ment varies, juvenile survival varies widely, In
contrast, adults may have higher survival rates
that are relatively insensitive to environmental
conditions. However, reproductive rates, like
Juvenile survival, may vary substantially with
cavironmental factors. Indeed, since there is be-
lieved to be a trade-off between reproduction and
adult survival (Murdoch 1966, Goodman 1974,
Nichols et al. 1976, Schaffer 1979), some orga-
nisms may maintain high adult survival by vary-
ing their reproductive effort in response to the
environment. Deferring reproduction in response
to unfavorable environmental conditions may
also permit deferring the use of resources that are
allocated o reproduction (Harper 1977, Nichols
et al. 1976, Tyler and Dunn 1976). A likely out-
come of this deferral of resources is both a
greater mean magnitude and a higher level of var-
1ability in recruitment. Extreme reproductive var-
tation in some long-lived organisms, for exam-
ple, some percnnial plants, is believed to be not
s0 much a response to environmental conditions,
but a mechanism that thwarts predators (Silver-
town 1982).

The characteristics of high and relatively un-
varying adult survival coupled with highly varia-
ble juvenile survival or highly variable reproduc-
tive rates are not Uncommon species propertics,
but are especially well documented for fishes
(Gulland 1982, Cushing 1982) and perennial
plants (Grubb 1977 and Chapter 12, Harper
1977, Hubbell 1980). These characteristics are
also becoming increasingly apparent for sessile
marine organisms (Butler and Keough 1981,
Keough 1983, Underwood and Denley 1984,
Caffey 1985). I now present models of communi-
tics having these features, for they provide an
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especially valuable demonstration of the validity
of view D.

Models of Communities

Consider a community of »n species, each having
the characternistics discussed above. An equation
for the dynamics of the system is

Xt + 1) = (1 — 8)X,(1) + RAOXA) (14.1)

where X£t) is the population of the ith species at
tme £, §; is the adult death rate, and R/(1) is the
recruitment rate (the per capita number of new
individuals entering the adult population). Equa-
tion 14.1 expresses the new population at time
7+ 1 as the sum of adult survival and recruit-
ment.

While adult survival is assumed not to vary in
time, the recruitment rate varies as a function of
both the cnvironment and species densities. The
recruitment rate s the product of the reproductive
rate and the juvenile survival rate and reflects the
effects of interactions within and between spe-
cies. in addition to the effects of a varying cnvi-
ronment. Thus, the recruitment rate can be ex-
pressed in the form

RA0) = fFIE@, X0, -+, Xa(0] (14.2)

where f; i1s some function, £(1) is a multidimen-
sional variable representing the state of the envi-
ronment al time 7, and 2 is the number of species.
The different dimensions of the environment can
be things like emperature and moisture and can
also include disturbances of different kinds. The
involvement of a [luctuating environment in the
recruitment rate means that regulation of recruit-
ment may be density-vague (Chapter 15).

Becausce population growth is fundamentally a
multiplicative process, we can best understand
the consequences of equation 14.1 by taking
logs. Then we see that the change in log popula-
ton size is

In Xt + 1) — In X,(2)
= In[l = §; + R(0] (14.3)

This change in log population over one time in-
terval can be thought of as the instantaneous per
capita growth rate applicable for that time period.

Since an adult lives an cxpected life time of
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(8, time units (breeding seasons), it is helpful
to divide this growth rate by §; to obtain a growth
rate measured on a per generation time scale, a
“‘scaled growth rate."” This facilitates the com-
parison of species having different longevities.
Expressing the recruitment rate on this same time
scale as pi(1) = R(1)/§;, the *'scaled recruitment
rate,”’ we obtain

57 ' In X1 + 1) = In X«
=& "In[l = & + R())
=& "In{l + &fpin) — 11} (14.4)

Notice that the population increases from one
time to the next if p(r) > 1 and also that the
change in log population from any time f; 0
some other time £y (In X,(43) — In X)) can be
obtained by summing equation 14.4 over the val-
uest =ty tot =t — 1, and multiplying by &;. In
particular, the sign of the sum of the scaled
growth rate over any period indicates whether the
population has increased over that period.

The scaled growth rate is plotted as a function
of scaled recruitment in Fig. 14.1. The p axis has
a log scale, which means that the scaled growth
rate for 6; = 1 plots as a straight line. The curve
for &; = 0 is the limit of the scaled growth rate as
death rates are made small. The most important
feature of these curves is that, except when §; =
| (nonoverlappmg generations), the scaled
growth rate has a lower bound equal to

& ' In(l — &) (14.5)

which is achieved when recruitment fails com-
pletely (pi(r) = 0). For small §; (§; = 1/3), the
lower bound given by equation 14.5 is reasona-
bly approximated by —1. Thus, when genera-
tions are overlapping, the scaled growth rate can
never be less than the value of equation 14.5,
which is the value determined by adult survival
from the previous period. When §; = 1, there is
no adult survival, and it follows that when re-
cruitment fails, the scaled growth rate is —oo,
Note that in no case is there an upper bound on
the growth rate as a function of the recruitment
rate; if a large recruitment occurs, the growth rate
will be large. Notice also that the scaled growth
rate curves up more strongly (is more convex in
the mathematical sense) for smaller adult death
rates.

These properties of the scaled growth rate are

explored in Fig. 14.2, where it is assumed that
scaled recruitment fluctuates between the two
values 1/5 and 5. If the scaled recruitment rate
takes these values with equal frequency, then the
average growth rate can be found as the midpoint
of the line joining the two values of the scaled
growth rate, for example, the point C joining A
and B in Fig. 14.2. Although the figure illustrates
only the case §; = 0.1, this average value is posi-
tive for all values of §; except for §; = 1, indicat-
ing that the population will show a net increase
over all periods in which these two values for the
scaled recruitment are equally frequent. The ac-
tual change in log pop.lation size is found by
multiplying the average growth rate by the time
period involved.

Values of the average growth rate for cases
when the two values of the recruitment rate are
not equally frequent are found 1n a similar man-
ner. The points D and E are placed at 1/4 and 3/4
of the distance from p = 1/5 to p =35, corre-
sponding o cases where poor recruitment has a
relative frequency of 3/4 and 1/4. The intersec-
tions of the vertical lines through D and E with
the straight lines joining the values of the growth
rates give the average growth rates with these
recruitment frequencies.

With nonoverlapping gencrations the average
growth rate is always negative whenever the poor
recruitment is more frequent. However, with
overlapping generations it is possible to have a
positive average growth rate even though recruit-
ment is poor much of the time. The smaller the
adult dcath rate, the more likely it is that this will
be so, for then the scaled growth rate is more
strongly curved as a function of scaled recruit-
ment. When adult death ratcs are small, survival
from periods of strong recruitment can more than
compensate for periods of poor recruitment, even
when periods of poor recruitment are more fre-
quent (provided such poor recruitments are not
too frequent). This is reflected in the lower limit
(equation 14.35) to the growth ratc. Moreover, the
average growth rate is relatively insensitive to the
actual magnitude of poor recruitments (Fig.
14.3). Indeed, positive average growth is still
possible in the face of complete recruitment fail-
ure (In p = —), provided strong recruitments
occur at other times.

These ideas extend beyond the case where re-



14. Environmental Variation and the Coexistence of Species

- 4
o
R
o
[
£
o
z
ere
o
o
2
o
e
1))

245

5

5=

[]
O Scaled recruitment (p2)

Fig. 14.1 Relationship between scaled growth rate (per capita growth rate scaled by the
generation time) and scaled recruitment (per capita recrultment scaled by the generation
time), for different values of the adult death rate, 8. Scaled recruitment is represented on
a log scale. For 6 = 1 the relationship is linear, but for & < 1, the relationship is curved,
with stronger curvature for smaller 4. Note that for all cases of 8 << 1 the scaled growth
rate approaches a finite constant as scaled recruitment decreases.

cruitment takes on just two values to cases of
arbitrary variation in recruitment (Chesson
1983). In particular, the simple idea that positive
average growth is possible on the basis of periods
of strong recruitments alone, when generations
are overlapping, applies generally and has been
termed the “‘storage effect’’ (Chesson 1983).
The interest here in the effects of vanable re-
cruitment and overlapping generations is not so

much for what they have to say about a single
species, for that has becn discussed at length by
others (Murphy 1968, Schaffer and Gadgil 1975,
Hastings and Caswell 1979, Goodman 1984), but
for what they have to say about coexistence of a
set of interacting species. For example, species in
strong competition may depress cach other’s re-
cruitment rates. The results above show that a
species may still be able to have a positive aver-
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§=0.1

Fig. 14.2 Average growth rates in a fluctu-
aling environment. If the scaled recruitment,
¢ fluctuates belween 5 and 1/5, then the
scaled growth rate flucluates between the
valuesAand B (5 = 0.1)orFand G (& = 1).
The average growth rate lies on the straight
line joining the two values of the scaled
growlh rate. For example, if p takes its two
values equally frequently, then the average

- -2

age growth rate when faced with strong competi-
tion, provided it still has periods when it is able
to recruit well. Moreover, it can do this even if
much of the time it is at a disadvantage to other
species and often recruits poorly. As suggested
by Hutchinson (1961), variation in the environ-
ment may vary the relative competitive abilities
of species, leading to strong recruitments for dif-
ferent species al different times.

A positive average growth rate at low density
is important for persistence and, indeed, is a use-
ful stochastic persistence criterion (Turelli 1978,
1981; Chesson 1982). At low density intraspe-
cific competition will be minimal. Consequently,
if the environment sometimes gives a species the
edge in terms of interspecific competition, the

O Scaled recruitment (P2)

growth rate is at C (6 = 0.1) or 0 (5 = 1). If
p = 1/5 occurs three times more often than
p = 5, then the vertical line through D inter-
sects lines AB and FG at the average growth
rates. If p = 5 occurs Ihree times more often
than p = 1/5, then the line through E inter-
sects al the average growlh rates. Note that
with 4 = 0.1 the average growth rate is posi-
tive In all of these cases, while for 6 = 1
(nonoverlapping generations) the average
growth rale is positive only when the value
p = 5 Is more frequent,

per capita number of recruits, Ri(7), may be large.
If such good recruitments are sufficiently strong,
given their frequency. then the species will be
able 1o recover from low density and hence per-
sist in the system,; its average growth at low den-
sity will be positive. In this way a number of
negatively interacting species may be able to co-
exist as a result of varying recruitment rates.

The Lottery Model

The idea that varying recruitment can promote
the coexistence of competing species is simply
illustrated by the lottery model of competition
(Chesson and Warner 1981). In this model com-
petition is assumed to be for space. Although
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Scaled growth rate
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Fig. 14.3 Insensitivity of average growth rates to the magnitude of poor recruitment. The two values of
recruitment are assumed equally frequent. The points A through D give the average growth rates when
poor recruitment has the values 1/5 through 1/625, for 8 = 0.1. (A through D are the midpoints of the
line segments.) For nonovarlapping generations (6 = 1) the average growth rates are strongly negaltive

when the poor recruitment is 1/25 or less.

originally formulated to apply to territorial reef
fishes, as discussed by Sale (1977), it is a useful
model for other space-holding organisms as well.
In particular, Comins and Noble (1985) have
applied the model to forest trees, and Shmida and
Ellner (1985) have suggested modifications of
the model for other plant communities. Woodin
and Yorke (1975) discussed a similar model for
soft-bottomed benthic invertebrates, and the
mode! is also closely related to Hubbell's (1979)
model for tropical forests as discussed below.

In the lottery model potential recruits become
adults by acquiring units of space, and space be-
comes available by death of adults. Thus, for a
two-species system the amount of space becom-
ing available is

51.X1(1) + 8:X,(1) (14.6)

because this is the number of adults that have
died. The number of juveniles of species i seek-
ing to settle in this space is assumed to be
BANX(1), where Bi(r) is the product of the per
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capita birth rate and the presettlement juvenile
survival rate and is assumed 1o be a [unction of
the environment, E(f). In the forest example B(1)
might represent the average number of viable
sceds produced by a tree in year 7, and it may also
include any density-independent mortality of
seedlings. It can be thought of as representing the
number of adult trees that would result from the
average seed crop of a tree of species i, in year ¢,
il the seedlings were grown in the absence of
competition from other juveniles or adults. In the
reef fish example SB,(¢) represcnts the product of
the brood size of a fcmale for year r and juvenile
survival in the plankton for that ycar.

The lottery model assumes that space is allo-
cated at random (by ““lottery™") to the juveniles of
the two species. Thus, the fraction of the avail-
able space allocated to juveniles of species i is

B{nX (1)
BinNX (1) + B()XaA1)

Multiplying equations 14.6 and 14.7 to get the
number of new recruits and adding in adult sur-
vival, we find that the adult population at time
t+1is

X+ 1)y=(1 = §)X(0) + [6,X,(0)
ﬁ:(!)X:(.n

(14.7)

+ 8-X-(1 14.8)
2B 0X0 + B
The formula for the recrmtment rate is
R(1) = [8;X(1)
+8:X,(1)] G (14.9)

Br(DX () + Ban)Xa(0)

[t 1s important to note that in these equations the
species densities sum 1o the total amount of
space, so that when one species is at low density,
the other species is at high density.

As noted above, the important values of the
scaled recruitment rate are those occurnng at low
density. Setting X(z) = 0 in equation 14.9, these
low-density values arc found to be

. B|(f)f8]
P = s,
|
() = ——
Pas ()

These expressions compare the ratio of 8 and &
for one species with the ratio for the other spe-
cies. Although calculated for low density, a litile
algebra shows that these values for the pi(r) deter-
mine for all densities whether a species will be
mcereasing. Thus, if p(n) > 1, then p(r) < 1,
and species | increases at the expense of species
2. Since the py(r) are determined centirely by the
environment (in this system), therc is no possibil-
ity of coexistence if the environment does not
vary. (The best that can be achieved is a neutral
equilibrium when p,(r) = pa(t) = 1))

The reason for the failure of coexistence in a
constant environment can be understood from the
fact that among juveniles interspecific and intra-
specific competition is equally intense, for only
in this way can allocation of space be random. It
follows that whichever species is at an advantage
either reproductively or in adult survival will be
able to displace the other species. However,
when the environment varies, the advantage may
shift between the two species. If generations are
overlapping, this variation can lead to coexist-
ence in the sense that each species shows upward
trends [rom low density.

To see how coexistence occurs in variable
environments, consider first a case where the
species are equal on average, but the environ-
ment fluctuates so thal the high value of pin Fig.
14.2 occurs half the time and the low value oc-
curs the rest of the time. Note that when one spe-
cies has the high value of p. the other has the low
value of p. The avcrage low-density growth rates
for both species are then obtained at the intersec-
tion of the vertical axis with the line jomning the
values of the growth rates. Thus, the mcan
growth at low density is positive for both species.
This is illustrated in Fig. 14.2 for the case §; =
0.1. but positive average growth rates for both
species occur in all cases except the case of non-
overlapping gencrations (§; = 1). When 8, = 1,
the average growth rates are 0, and consequently
a random walk occurs with one species eventu-
ally approaching extinction (Chesson and Warner
1981).

If the conditions are changed so that one spe-
cies has an advantage over the other (for exam-
ple, has three times as many favorable periods as
the other), then the vertical lines D and E of Fig.
14.2 are used, instcad of the vertical axis, to get
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the average values of the growth rates. The aver
age growth rate of the advantaged species is
given by linc E, while that of the disadvantaged
species is given by line D. Note again that when
generations are overlapping, both species can
have positive average growth rates at low density
and thus will tend to increase whenever their den-
sities become low. With nonoverlapping genera-
tions, however, only one species can have a posi-
live average growth rate at low density, and the
other species therefore must become extinct.
Overlapping gencrations have introduced an
asymmetry between the cffects of good periods
and bad periods; poor recruitments can be made
arbitrarily poor to the point of complete recruit-
ment failure without a large change in the aver-
age growth rates.

Thus, when the environment varies in such a
way that each species has times when it can have
strong recruilments, the net effect is to favor pos-
itive growth rates at low density for both species.
The fact that both species tend to increase from
low density means that they will coexist in the
* system. More detail on the nature of the coexist-
ence is given later, but the important thing (o note
at this stage is that both species show upward
trends at low density. Without variation in the
environment it is only possible to have one spe-
cies with an upward trend at low density. Thus,
the stochastic environment has changed the over-
all trends in population growth. It has not merely
slowed down or delayed competitive exclusion.

GENERALIZATIONS OF THE LOTTERY
MODEL

There are two critical requirements for coexist-
ence in the lottery model, and these two require-
ments are found to lead to coexistence of compet-
ing species quite generally. First, environmental
variation should permit each species to have peri-
ods when it has strong recruitment rates at low
density. Sccond, generations must be overlap-
ping, with adult death rates not greatly affected
by competition. The second requirement places a
lower bound on the growth rate and cnsures that
strong recruitments will have a greater effect on
the average growth rate than poor recruitments.

These two requirements together favor posi-
tive average growth rates and promote coexist-
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ence, given a broad variety of forms for the re-
cruitment rate as a function of both the
environment and species densities (Chesson
1983, 1984; Warner and Chesson 1985). For
coexistence It is not necessary that recruitments
of the two species should be strictly negatively
related. The negative relationship in the lottery
maxdel is a result of the assumption that all space
i1s filled and thus is an outcome of strong compe-
lition, not a requirement for coexistence. How-
ever, variation in the ratios of recruitment rates
for different species in the system does seem to
be a general requirement.

These ideas are not restricted to coexistence of
just two species, but can apply to coexistence of
an arbitrary number of species. Moreover, the
variation in recruitment that is required for coex-
istence of two or many specics does not have to
be great if the species are similar to each other in
average recruitment rates, mortality rates, and
competitive abilities (Chesson 1984). Large var-
iation in recruitment will be necessary for coex-
istence 1f there are big differences in these aver-
age properties of the species.

Overlapping generations are an essential part
of coexistence achieved by temporal fluctuations
in recruitment. However, overlapping genera-
tions can be achieved in ways other than through
adult survival. For instance, annual plants with a
seed bank have overlapping generations. Indeed,
Ellner (1984) has discussed models that rely on
variable recruitment to a seed bank and has dem-
onstrated that coexistence results from varation
and from overlapping generations. Both means of
achieving coexistence are examples of the stor-
age effect in action (Chesson 1983, 1984,
Warner and Chesson 1985). The idea is that
recruitments from different breeding periods be-
come added together in the adult population or
the seed bank; essentially. they are stored there
subject to a rate of attrition equal to their death
rates. These stored recruits are used every breed-
ing season, but their use is most important during
favorable periods, because then strong recruit-
ments can replenish the store. That an adult pop-
ulation can be composed mostly of individuals
from a few strong recruitments is well known for
marine fishes, where good data are available
(Gulland 1982, Cushing 1982). Such strong
recruitments must be the major contributors to
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future population growth. However, the main
point here is that coexistence of competing Spe-
cies is promoted by such storage of recruitment.
A spccies that normally recruits poorly because
of competition with other specics can neverthe-
less persist if it has occasional good periods when
it recruits well and replenishes its store.

One can think of recruitment also in terms of
acquisition of resources by the individuals in a
population, especially if future reproduction is
closely related to the total amount of resource
that the population holds (Abrams 1984a, Wamer
and Chesson 1985). The storage of resource pro-
vides protection against periods when resource
acquisition 1s poor. If the times that are favorable
for acquisition of resources are differcnt for dif-
ferent species, coexistence will be promoted.

Since fishes often have such obvious storage
of recruitment in the adult population, they are
candidates for cocexistence by the storage effect,
il competition can be shown 1o affect recruit-
ment. Grubb (Chapter 12) discusses an assem-
blage of long-lived perennial herbs that have
fluctuating recruitment rates. Although Grubb
identifies a number of other possible explanations
of coexistence, it seems likely that the storage
effect at least contributes to cocxistence. Other
likely areas of application are perennial plants in
general, long-lived benthic marine organisms,
and annual plants with a secd bank (Shmida and
Ellner 1984, Warner and Chesson 1985).

The lottery model and the generalizations dis-
cussed here all assume that the population is large
enough for population size to be treated as a con-
inuous variable. Moreover, demographic
stochasticity (May 1973a) or within-individual
variability (Chesson 1978) is ignored. This can
be done only for large populations and only under
certain conditions (Chesson 1981). These mod-
els, together with the majority of deterministic
models in ecology, have been termed “‘infinite
population models'" (Chesson 1982) o corre-
spond to the terminology of population genetics,
Models that recognize within-individual variabil-
ity and have discrete changes in population size
are called **finite population models.”" As dis-
cussed by Chesson (1982), the results of most
finite population models converge on those of
their infinite population counterparts as popula-
ton size is increased. and this is known to be true

for the finite version of the lottery model (Ches-
son 1982). Thus, such infinite population models
can be validly taken Lo represent the propertics of
large, yet still finite populations.

GENERAL CONDITIONS FOR
COEXISTENCE IN A TEMPORALLY
VARYING ENVIRONMENT

We have secn how a temporally varying environ-
ment promotes the coexistence of competing spe-
cies. However, such variation need not always be
favorable to coexistence. In fact, depending on
the circumstances, a temporally varying environ-
ment may do nothing or may even promole com-
petitive exclusion (Turelli and Gillespie 1980,
Turelli 1981, Chesson and Warner 1981). These
different results can be understood in terms of
how the effects of the environment on differemt
species in the system interact.

To discuss the interaction of environmental
effeets, we first note that each species will have a
response to the environment that will be ex-
pressed in quantitics like the birth rate or death
rate, which we normally usc as parameters in a
model. We shall now assume that just a single
parameter varies with the environment, and this
parameter will be denoted by E” for species 1 and
E'" for species 2. For instance, in the lottery
model E' = B,(1), the parameter giving the per
capita rate of production of juveniles of species
1, and E'" = B,(1). We have seen previously that
the instantaneous growth rate of a specics at low
density, which we shall call g here, is critical to
persistence. This growth rate will often depend
on both £ and E'’. For example, in the lottery
model the value of g for species 1 is

. 5,
g = ln[(l —0y) + };:—] (14.10)

where 1 — 8; represents adult survival and
S,£°/E"" is per capita recruitment.

A general symmetrical model of two compet-
ing species, incorporating both £ and £’ in the
growth rate of each, is analyzed in the appendix
to this chapter. The symmetry of the model im-
plies that the specics have the same sorts of popu-
lation dynamics, affect each other symmetrically,
and experience the same frequencies of environ-
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mental states, but usually at any one time E' will
not equal E*'. Also, interspecilic and intraspe-
cific competition are equal in this model. In spite
of these simplifications the model is in other re
spects very general, and it seems to indicate what
1§ likely to occur in broad circumstances,

The symmetry properties of the model imply
that in a constant environment a specics at low
density will have a 0 growth rate, that is, a 0
value of g, and will not be able to recover from
that low density. However, when the environ-
ment varics, the average valuc of g can be differ-
ent from O, and this new value depends on the
interaction between £ and E'°. The interaction
between £’ and E'' is said 10 be negative or an-
tagonistic if a simultancous increase in both £’
and £ leads to a change in g less than that ac-
counted for by the sum of the changes due to each
variable considered separately. This is the situa-
tion for ¢ in the lottery model (equation 14.10),
and in the general symmetrical model it leads to a
positive average value of g for both species.

Thus, when E' and E'" are antagonistic, the
two species will coexisty this result will apply
regardless of the magnitude of the environmental
variation, subject only to the condition that F’
and E'" are not always equal, that is, the effects
of the environment on the (wo species must
sometimes be different.

Conversely, If £’ and E'' are synergistic, the
average values of g will be negative, and the sto-
chastic environment will promote competitive
exclusion.

Finally, if £° and E** have just additive effects
on g, the stochastic environment will yield 0 av-
erage values for g and will promote neither coex-
istence nor competitive exclusion,

Specific examples of antagonism between £
and E''. and hence coexistence in a stochastic
environment, include not only the lottery model
but also the consumer-resource models of
Abrams (1984a) and the seed bank mode]l of
Ellner (1984) with randomly varying germination
rates. These examples include asymmetrical
cases, suggesting that antagonism and a variable
environment will generally promote coexistence
in such cases as well, However, in asymmetrical
cases g will not be 0 in a constant environment.
Whether the average value of g is made positive
for both species in a stochastic environment will

251

depend on both the degree of antagonism and on
the magnitude of the environmental variability.

In the consumer resource models of Abrams
(1984a) E" and E’" are the resource consumption
rates of the two specics. From these models
Abrams notes that the storage effect is not the
only way that coexistence can result from tempo-
ral variation in the environment. Indeed, the re-
sults above show that antagonism between E* and
E"" is the key However, this does not alter the
fact that the storage effect is necessary in a num-
ber of specific models (Chesson 1983) and is
operative in most of Abrams” specific examples.
Moreover. the overlapping generations feature
provides a general mechanism by which antago-
nism can occur. By giving a Jower bound to the
growth rate, overlap in gencrations means that a
low value of £’ and a high value of £'" will not
be as harmful as suggested by the sum of their
separate effects. Thus, it will lead to antagonism.

The failure of temporal variation to have inter-
esting cifects in the stochastic version of Lotka-
Volterra competition analyzed by Turelli and Gil-
lespie (1980) can be traced directly to considera-
tions of this section. In their model the
environmental vanation is included in the per
capita growth rate in an additive manner. Most
unportant, the instantaneous growth rate of a spe-
cies involves only the environmentally varying
parameters of that species, that is, only E' is in-
cluded in the growth rate of species 1 and only
E" in the growth rate of species 2. Thus. in the
symmetrical cases studied by Turelli and Gilles-
pic (1980) the environmental variation has no ef-
fect on coexistence. Asymumnetrical cases studied
by themn give mixed results, but their essence is
that environmental variation neither broadens nor
narrows the conditions for coexistence. The dis-
crete versions of stochastic Lotka-Volterra com-
petition studied in some detail by Turelli (1981)
similarly have each species’ instantaneous
growth rate depending only on its own environ-
mentally varying parameters, and so these mod-
cls also show minimal effects of environmental
vanation.

It 1s possible to build models involving the
storage effect that do not include both £ and £’
in a species’ growth rate, and then the storage
effect does not promole coexistence. However,
when both E" and £ are included, the storage
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effect is likely to promote coexistence as ex-
plained above. If environmental vartation affccts
birth rates and juveniles compete, then both £’
and E'" are necessarily included in the growth
rates of both species. All published models of the
storage effect have this feature.

The considerations of this section also allow
us to examine cases of the lottery mode! in which
death rates, rather than juvenile production rates
(birth rates), vary. It is then easily checked that
E" and E'" arc synergistic and as a consequence
promote negative growth rates at low density for
both species, as discussed by Chesson and
Warner (1981). The lottery model with variation
in both birth rates and death rates involves a com-
bination of two opposing effects. However, if
death rates are generally small, birth rate varia-
tion is more important than death rate variation
and continues to promote coexistence, but the
quantitative details arc modificd by death rate
variation and its correlation with birth rate vana-
ton.

COEXISTENCE MEDIATED BY VARIATION
IN SPACE

That spatial variation in the environment or in
species abundances can promote coexistence is
an old idea, discussed in detail by numerous au-
thors (Levin 1974, 1979. Yodzis 1978; Goh
1980; Dale 1978; Hastings 1980). The purpose of
this section is to point out how spatial variation in
recruitment, in particular, can promote coexist-
ence in a manner that is closely related to coexist-
ence promoted by temporal recruitment fluctua-
tions. In a patchy environment recruitment can
vary in space in two ways. First, there may be a
fixed spatial pattern of heavy and light recruit-
ment, that is, some places may always be supe-
rior sites for recruitment of a particular species.
Second, the spatial pattern of heavy and light re-
cruitment may change with time; that is, sites of
heavy recruitment one year may be sites of light
recruitment the next year and vice versa. If off-
spring disperse among patches, then coexistence
of competing species is promoted by either kind
of spatial variation in recruitment (Chapter 30,
Chesson 1984, 1985; Comins and Noble 1985).
The mechanism of coexistence 1s essentially the
same as that for temporal variation, with disper-
sal taking the place of overlapping generations.

That coexistence can resull from spatial vara-
lion in recruitment is important, because such
spatial variation is found commonly in marine
systems of space-holding organisms (see reviews
in Chapter 30 and by Caffey 1984). Grubb (Fig.
12.6 and Tablc 12.5) demonstrates the same con-
clusion for a terrestrial plant community. More-
over, Hubbell and Foster (Chapter 19) point out
that a spatially varying pattem of recruitment is
to be expected in a tropical forest, because seed-
lings may remain in a suppressed stale beneath
the canopy until a canopy gap occurs above a
particular group of seedlings. This effect reduces
temporal variation in recruitment of a species for
the forest as a whole, but introduces a tcmporally
varying spatial pattern of recruitment, and this
sort of recruitment variation can also promote
coexistence.

Hubbell and Foster (Chapter 19) favor a dif-
ferent hypothesis for the diversity of tropical for-
ests, suggesting that species abundances will be
subject to drift in an area of forest through inde-
pendent random processes of birth and dcath for
individual trees (demographic stochasticity or
within-individual variability) and that local diver-
sity is maintained by immigration from neighbor-
ing areas. Hubbell's (1979) model for drift at a
locality corresponds to the finite population ver-
sion of the iottery model (Chesson 1982), but
incorporates no environmental variability and
therefore has no tendency to stabilize species
numbers.

Yodzis (1978 dnd Chapter 29) also focuses on
local community dynamics where migration is an
important process in maintaining the community
in an environmentally homogeneous setting. Un-
like Hubbell, however. Yodzis assumes that de-
terministic processes are responsible for species
extinction al a locality.

THE NATURE OF COEXISTENCE

The definition of persistence that has been used
above is essentially the idea that a species should
be regarded as persisting if it tends to increase
from low density. We have seen how, under cer-
tain circumstances, environmental variation can
change the trends in population growth so that all
species tend to increase at low density, and we
have regarded this as meaning that the species
cocxist. This definition of coexistence is usually
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called “"invasibility,”" and it is also used with de-
terministic models (e.g., MacArthur and Levins
1967, Armstrong and McGehee 1980).

It is now common to view coexistence in a
deterministic model in terms of what it ought to
mean when environmental variability is imposed.
In this setting invasibility captures the essence of
coexistence, for in the presence of environmental
variability it is unreasonable to expect a commu-
nity to remain at equilibrium, and stability of the
equilibrium is then often seen as providing restor-
ing forces back toward equilibrium and away
from extinction of any of the species (Holling
1973; Goh 1975, 1976, Beddington et al. 1976).
Thus, stability of the equilibrium creates trends
in the direction of increase from population den-
sitics that are low relative to the equilibrium den-
sity. Of course, invasibility in a stochastic model
involves a fluctuating increase about a mean
trend. However, global stability of the equilib-
rium of a deterministic model is surely not to be
viewed any differently when wranslated into its
meaning for a community in the stochastic real
world.

Although invasibility involves some key prop-
ertics of coexistence and persistence, it 1s not re-
garded as a complete criterion for coexistence in
either deterministic models or stochastic modecls.
The reason is that although it guarantces positive
trends at low density, it still does not eliminate
the possibility of long periods of time being spent
at low values (Armstrong and McGehee 1980,
Chesson 1982). To prevent this, additional crite-
ria are needed, and these can often be shown to
apply to coexistence in stochastic models (Turelli
and Gillespie 1980 Chesson 1982, 1983: Ellner
1984).

In some cases it is possible to get a detailed
idea of the population fluctuations that are pro-
duced in a stochastic model. For instance, in the
lottery model one can determine the probability
distribution of population size when adult death
rates are small. This probability distribution is
approximately normal, with variance propor-
tional to the adult death rate. This means that
when adult death rates are small, population fluc-
tuations will be small, regardless of the time
scale on which the fluctuations are observed.
Thus, if on¢e used a time scale commensurate
with the generation time, as recommended by
Connell and Sousa (1983), one would judge a
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system of long-lived species that coexist accord-
ing to the lottery model to be a very stable assem-
blage.

These resulls appear to apply quitc generally
to models of recruitment variation Chesson
(1984). They can be understood from the fact that
in a long-lived species the adult population will
be a sum over many seasons of recruitment, and
thus the fluctuations at the level of recruitment
will average out in the adult population. This
phenomenon has been observed for real popula-
tions as well as for models (Chapter 12; Cushing
1982), and in models it permits the dynamics of
the adult population to be described approxi-
mately. but not explained, by deterministic equa-
tions (Chesson 1984). However, the averaging
out of recruitment fluctuations ceriainly does not
mean that they are unimportant, for in some mod-
els (e.g., the lottery model) these fluctuations are
necessary for coexistence, even though they do
not causc large fluctuations in adult population
densities. The resolution of this paradox involves
the fact that the average of a nonlinear function is
generally different from the nonlinear function of
the average, AX) # fX). The recruitment rate is
generally a nonlinear function of more basic
quantities like the B, and even though the varia-
tion in recruitment tends to average out, the aver-
age that is achieved reflects variation in the (3.
That is. 1t depends on the vanances of the 3, not
just their means. Moreover, since the function
that converts the f3; into recruitment rates de-
pends on population densities, the effect of varia-
tion in the B, on the average recruitment is den-
sity-dependent and has much to do with
coexistence in modcels of recniitment variation.

The overall conclusion from this section is
that the kind of coexistence that results from en-
vironmental variation is not fundamentally differ-
ent from that found in deterministic models.

DETERMINISTIC VERSUS STOCHASTIC
MECHANISMS OF COEXISTENCE

What is a stochastic mechanism ol coexistence?
The lottery model has the property that only one
species can persist in the system in a constant
environment. However, if the environment var-
Ies, coexistence of (wo or more specics 1s possi-
ble. Thus, it seems appropriate to regard varia-
tion as the mechanism of coexistence. But if the
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organisms arc long-lived, little fluctuation in
population density may be present, even on a
time scale that is long compared to the generation
times of the species. Thus, stochastic mecha-
nisms of coexistence do not have to be associated
with obvious stochastic variation in population
densities.

As discussed previously, Turelli’s and Gil-
lespic’s (1980) study of a stochastic version of
the Lotka-Volterra model revealed essentially no
overall effect of temporal variability on coexist-
ence. Species may coexist in this model, but they
do so because of factors that are unrelated to sto-
chastic variation. For example, one such factor is
resource partitioning; increased overlap in re-
source use will prevent coexistence. Such mecha-
nisms that do not involve stochastic processes
may be referred to as ““deterministic.”” However,
stochastic variation may cause large population
fluctuations in this stochastic version of Lotka-
Volterra competition. even though it has little ef-
fect on coexistence.

The mechanism of coexistence is determined
by the effect that its addition or removal has on
coexistence. It cannot generally be recognized by
presence or absence of population fluctuations,
for both deterministic and stochastic mechanisms
are compatible with population fluctuations of
any magnitude. Methods for determining the
mechanism of coexistence on the basis of popula-
tion fluctuations (Grossman 1982, Grossman
et al. 1982) are therefore unreliable. The hypoth-
esis that the mechanism of coexistence is stochas-
tic is too general to be tested by crude population
dynamics alone. However, specific forms of the
hypothesis can be lested. For example, if the
hypothesis is coexistence by the storage effect,
then variation in recruitment rates should be ob-
served. Moreover, the amount of recruitment
variation can be compared with the contribution
from other factors to see if it is a sufficient expla-

nation of coexistence (Warner amd Chesson
1985).

CONCLUSION

Stochastic models have revealed an enormous
potential for stochastic mechanisms of coexist-
ence. These mechanisms often involve the inter-
action of variation with the life history character-

istics of organisms. For example, the interaction
of recruitment variation and overlapping genera-
tions leads to stochastic coexistence by the stor-
age cffect. In the case of the storage effect over-
lapping generations largely function in a manner
that moderates the effect of unfavorable periods.
An attractive hypothesis is that natural selection
will often act in a manner that leads to life history
traits with the effect of moderating unfavorable
conditions. The results discussed above for the
general symmetrical model of competition in a
stochastic environment suggest a corollary to this
hypothesis: Natural selection will often lead to
life history traits that promote coexistence in a
stochastic environment.

Coexistence under a stochastic mechanism
can be just as strong and stable as that occurring
under a deterministic mechanism. All species can
show positive average growth rates at low density
and may even give the appearance of tending
toward a stable equilibrium point. Indeed, deter-
ministic approximations can be found to some
stochastic models that depend heavily for their
properties on the presence of the stochastic com-
ponents. Environmental variation can change the
trends in population growth so that a positive
central tendency, much like a stable equilibrium
point, appears. Environmental variation need not
always change the trends in a direction that fa-
VOrs coexistence; sometimes it may instead favor
competitive cxclusion, The important point is
that the potential effects of variation are not just
to increase population [luctuations or o slow
down competitive exclusion, but to create new
trends as well. In this sense vanation is not very
different from other sorts of factors affecting
population and community dynamics.

SUMMARY

Ecologists have viewed stochastic temporal vari-
ation in a number of different ways: as noise that
obscures the important features of a system, as a
destabilizing factor that decreases diversity, and
as a factor that interrupts or reverses the process
of competitive exclusion and thus promotes di-
versity by slowing the trends to competitive ex-
clusion. Models of stochastic environments have
led to a fourth view: variation is a factor that
changes (rends by altering average population
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growth rates. In particular, a stochastic environ-
ment can convert competitive exclusion into a sit-
vation in which all species have positive average
growth rates at low density. Thus, variation re-
verses the trends toward competitive exclusion; it
does not merely slow these trends down.

Models of recruitment variation illustrate this
last view. These models are intended primarily
for organisms, such as perennial plants, fishes,
and scssile marine organisms, in which recruit-
ment to the adult population is much more varia-
ble than adult survival. However, modifications
of thesc models can apply to other communities,
such as annual plants with sced banks.

A variable environment need not always
change trends in a direction that promotes coex-
istence; trends in the direction of competitive
exclusion can sometimes be created. The differ-
ent circumstances for thesc different effects can
be deduced from a general symmetrical model of
competition in a variable environment.

Stochastic mechanisms of coexistence, such
as recruitment variation, share many properties
with traditional deterministic mechanisms of co-
existence, such as resource partitioning or fre-
quency-dependent predation. For both stochastic
and deterministic mechanisms, coexistence in-
volves positive average growth rates at low den-
sity for all species, and the actual population dy-
namics observed for the two sorts of mechanisms
can be quite similar.
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APPENDIX

A general model of two-species competition in a
stochastic environment is given by the following
equation: )

X:'(! + 1) =
XADGIEL;: E\(n), X\ (n); E2(n), X2(n]  (14.A1)
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where the function G of five variables is the finite
rate of increase of species 7, and i can be either 1
or 2. E(r) is a parameter giving the cffect of the
environment on species [, and it oceurs in two
places in equation 14.Al. Its function in the first
place, before the first semicolon, is assumed to
relate to the favorability of the environment of
species i in the absence of competition. If the
environment is favorable to species i, then it may
contribute more competition to the system, for
example, by producing more juveniles to com-
pete, as in the lottery model. The second place
that E,(r) occurs, as either E (1) or E>(1), is as-
sumed to relate to competition by species i. G is
thus independent of the value of E(r), in this sec-
ond term, when X;(7) is equal to O (when species i
cannot contribute any competition to the system).

Two symmetry assumptions are imposed on
this model. The first is that

GLED: Ey(n), X, (1), Ex(D), Xx(0)]
= GIELD; Ex(1), X2(0); Ev(0), Xi(0)]

This assumption can be interpreted as meaning
that the contribution of a species to the level of
competition in the system does not depend on the
species’ identity. The second symmetry assump-
tion is that the bivariate distribution of [E|(1),
Ex(0)] is the same as that of [E5(r), E(1)]. Thus,
the two species will have the same frequencies of
favorable periods, and the frequency of times
when it is good for species | but bad for species 2
will equal the frequency of times when it is good
for species 2 but bad lor species 1.

Two additional assumptions have nothing to
do with symmetry. First, the values of the envi-
ronment are independent from one time to the
next. (This is the standard random environment
assumption.) Second, E(1) is sometimes differ-
ent from E,(7).

The analysis of this model is a standard in-
vasibility analysis (Turelli 1978). If species 1 1s
absent from the system, then the resident species
(species 2) 1s assumed to have an equilibrium
probability distribution, and its mean instantane-
ous growth rate with respect to this distribution is
0, that is,

Egl[£:(1): 0, 05 Ex(n. Xa(n)] = 0 (14.A2)

where g =In G, and E means *‘theoretical
mean’” or “'expected’” value. The mean growth
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rate of species 1 (the invader) while at low den-
sity will be

Eg[E(0): 0. 0; Ex(0), X2(N] (14.A3)

and species 1 will be able to persist in the sense
of invasibility if expression 14.A3 is positive. To
identify the situations when this will be so, I de-
fine the environmentally dependent average
growth rate, AE’, E''). according to the formula

hE, E”) = EglE"; 0, 0; E, Xa()]  (14.A4)

where £ and E'* are (reated as nonrandom values
for the purpose of taking the average. Thus, the
expected value in equation 14.A4 averages over
the possible values of the resident density with
the environment held fixed.

In terms of A, equations 14.A2 and 14.A3
become

ER|EA(1), E2(N] =0 (14.AS)
and
EhE (1), EA(D] (14.A6)

The symmetry assumption on the environmental
values now implies that

ER[E (1), Ei(n)] = ERIEL(). E-(D) (14.A7)
and
EWE (). E5(D] — EhR[ES(1). E (0] (14.A8)

Symmetry thus implies that the question of
whether species 1 can increase from low density
in the presence of species 2 is the same as the
question of whether species 2 can increase from
low density in the presence of species 1. Using
equations 14.A7 and 14. A8, 1t is clear that both
species will be able to increase from low den-
sity if
EXE (. Ex(D] + EhlExD, Ei(1)]
> (14.A9)
E#[E (1), Ex(D] + EREAD, E(1)]

Inequality 14.A9 will be truc in general if the two
arguments £ and E'* of the function K(E', E'")
are antagonistic, and then the two species will
coexist. On the other hand if £ and £'" are syn-
ergistic, both species will have negative mean
instantancous growth rates as invaders, and so
competitive exclusion will be favored.

In the text antagonism and syncrgism are dis-
cussed for g rather than h, but since & is derived
by averaging over g, anlagonism or synergism
for g implies the same for i, The analysis using &
is, however, more general.



