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1. INTRODUCTION

One of the major theoretical and empirical challenges in ecology today is elucidating
the role of various kinds of heterogeneity, such as environmental fluctuations, in the dynamics
of populations and the organization of communities. There is substantial evidence that
stochastic environmental fluctuations have a strong role in population and community
processes (Andrewartha and Birch 1954, 1984, Hutchinson 1961, Sale 1977, Connell and Sousa
1983, Sale and Douglas 1984, Grubb 1977, Wiens 1977, 1986, Murdoch 1979, Underwood and
Denley 1984, Simberloff 1984, Murdoch et al 1985, Strong 1986, Victor 1986), and as a
consequence, a variety of verbal theories of community structure in a stochastic environment
have been developed (Hutchinson 1951, 1961, Paine and Vadas 1969, Sale 1977, Grubb 1977,
Wiens 1977, Connell 1978). However, the mathematical theories of stochastic environments
have not provided an adequate alternative to the classical theory based on deterministic
models. There seem to be two reasons for this. First, the existing stochastic models have
generally not provided the sort of simple quantitative results that often follow from
deterministic models. Second, there is a widespread perception that models incorporating
temporal variability may give unfathomable or inconsistent results (Hastings and Caswell
1979, Levin et al 1984). Indeed, an examination of models of communities of competitors
reveals that a stochastic environment can have essentially any effect depending on the specific
model involved and the assumptions that are made about it. Some models say that
environmental variability promotes coexistence (Chesson and Warner 1981, Abrams 1984,
Ellner 1984, Shmida and Ellner 1985), others say that environmental variability has little
effect on coexistence (T'urelli 1981, Chesson and Warner 1981), while others say that
environmental variability promotes competitive exclusion (Chesson and Warner 1981).

Using a general model, Chesson {1986) shows that much of the confusion surrounding
stochastic models is related to different implicit assumptions about the life—history traits of
the species. It is our purpose here to consider a more interpretable formulation of the model
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of Chesson (1986), and to extend its results. With this new formulation of the general model,
it is possible to show how the effects of environmental fluctuations follow from qualitative
features of biology. In particular, the life—history traits of model organisms will often dictate
an interaction between environmental and competitive effects that determines how
environmental variability influences competitive interactions and their outcomes. Moreover,
within this framework simple interpretable results are available.

2. The Model
Consider a community of n competing species. To describe their dynamics in discrete
time we use the equation
Xi(t+]) = Gi(Ei, Ci)Xi(t), (1)
where Xi(t) is the population size of species i at time t, “:i is an
environmentally—dependent parameter of the population of species i, Ci measures the
amount of competition that the population is exposed to, and the function Gi converts the

environmental and competitive conditions, as measured by the quantities Ei and Ci’ into

the finite rate of increase for the time interval (t,t+1). The environmentally—dependent
parameter will often be something like a density—independent birth rate, survival rate, or seed
germination rate. We will assume that the environment fluctuates over time, which means
that & fluctuates over time also and can be written as £(t) to emphasize this.

The competitive factor will measure shortage of a critical resource. Sometimes, for
instance, it will be density of individuals competing for this resource. In general, C; will be

a function of the species densities in the system and also of their environmentally—dependent
parameters, i.e, it will be written in the form

C = ci(El,Xl,E ,X2,...,£n,Xn), (2)
where g is some function. Since the £i's and the Xi's will be functions of time, so will Ci‘
Moreover, Ci and Ei will be correlated. If a species is at zero density, it will be assumed
that its environmentally—dependent parameter does not contribute to any of the Ci's.

Generally £i will be defined so that a larger value reflects more favorable

environmental conditions for a species. For example, when the environment causes
fluctuating mortality rates, Ei will be defined as the survival rate. The competitive factor

will often increase as the environmentally—dependent parameters increase. For example, if an
environmental change increases seed germination then there will be more seedlings around
later to compete for moisture, light and nutrients. In some cases an increase in the
environmentally—dependent parameter may be a consequence of a greater availability of
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E limiting resources, in which case this assumption is inapplicable and the reverse assumption is
! more appropriate. However, in all that follows we shall assume that the competitive
" parameters increase as the environmentally—dependent parameters increase.
Models of population dynamics in a temporally variable environment are best viewed
on a log scale for which changes in population size can be written
In X;(t4+1) — In X,(t) = g(&,,C;), 3)

where g =1In Gi' Note that changes in log population size are found by summing g, over
time, i.e., they are additive in g;- The function g; can be thought of as an instantaneous

per—capita growth rate applicable for the period (t,t+1). We shall refer to it simply as the
growth rate.
While change in log population size is additive over the growth rate, g;» the growth

rate itself can be additive or nonadditive in its arguments. In the additive case

gi(gi’ci) = Ai(é'i) + Bi(Ci), (4)
for some functions Ai and B.. This additive form applies whenever the quantity
def g,
T = WA (%)

i

is equal to zero. When this quantity is negative, the growth rate is called subadditive, and
when positive it is superadditive. These different possibilities for the growth rate are
illustrated in figure 1 In the subadditive case, the slope of g; as a function of C; islessina

poorer environment, i.e., when the environment is bad the additional effect of competition is
slight. Essentially, the growth rate is buffered against simultaneous poor conditions such as a
poor environment and high competition. As we shall see later, simple features of biology can
produce these buffered growth rates and they are likely to be widespread in nature. The
superadditive case is the opposite of a buffer. There the additional effect of competition is
worse in the poor environment. The poor environment amplifies the effect of competition.

To analyze the model, we need to introduce some assumptions. We first consider a
case where the species have similar biology (we shall call it the symmetric case). The
advantage of this case is that results can be obtained for general g;, and general Ei , and it

appears to indicate the sort of results to expect in asymmetric settings. We then go on to
approximations that allow direct conclusions about asymmetric situations.

1.1 SYMMETRIC CASE
The first of the symmetry assumptions is that the species have the same competitive
factors (C1 =Cy=..=C =C, say), and the same functions G, and g; converting

environmental and competitive effects into growth rates. The competitive factor C will

% SEE PAGE T1
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depend symmetrically on the different species in the system, and we assume that the
environmental parameters undergo fluctuations of a similar sort: we assume that the
probability distribution of (6‘1 ,52,...,£n) is exchangeable, i.e., invariant under arbitrary

permutation of subscripts. We will, however, assume that the environmentally—dependent
parameters do not exhibit perfectly synchronous fluctuations: P(€; = 5j) < 1. Justification

for such assumptions comes from the fact that some ecologically similar species nevertheless
exhibit marked relative fluctuations in their environmentally—dependent parameters. For
example, this is the case with tropical trees (Leigh 1982, Connell, unpublished data), and
desert annuals (Shmida and Ellner 1984). The final assumption we make is that the vector of
environmentally—dependent parameters satisfies the standard random environment

assumption: the sequence [£,(0), £5(0),...,€_(0)], [£,(1),E5(1),...,€,(1)];.. is an independent

and identically distributed sequence of random vectors.

Before analyzing the stochastic case of this model, it is instructive to examine its
behavior in a constant environment. The symmetry assumptions imply that in a constant
environment thfre is a neutral equilibrium. To see this, we define the equilibrium amount of
competition, C , by the equation .

g(£,C ) =0, (6)
where & is*t.he common constant value of the environmentally—dependent parameter. In
terms of C , the set of neutrally stable equilibrium densities is the set N of all points
(X5---X ) such that

*
(EX X ) =C . ()

This set N will often be a global attractor of the system, but in cases where g(£,C) can be
too large in absolute magnitude, the system will not approach N but will oscillate about it as
a consequence of the timelags inherent in this discrete—time formulation.

Except for unlikely functions c, the set N will include points on all faces and edges of
the positive cone, [0,0) x [0,0) x...x [0,0), excluding the origin. Thus N contains points for
which 1,2,...,n—1 of the species are extinct in all possible species combinations. Moreover, N
will in most cases be a connected set and the equilibria will form a continuum between these
states of extinction. Classically, when faced with a deterministic model of this sort ecologists
have concluded that only one species can persist when the likely effects of a stochastic
environment are taken into account. The reason for this conclusion is the argument that
environmental perturbations will cause a random walk to take place in which eventually all
but one species becomes extinct. Our analysis below supports this conclusion in only a narrow
range of circumstances.

To analyze the model in a stochastic environment we use the invasibility criterion
Turelli (1978). The idea is to examine the mean low—density growth rate of each species in
the system to see whether species tend to increase or decrease at low density. The mean
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low—density growth rate of species i is defined as
A = Egi(gi,Ci), (8)

where the expectation is evaluated under the assumption that Xi(t) = 0, and that the

remaining species in the system have converged to a unique stationary distribution. The
method breaks down if the other species do not converge to a unique stationary distribution.
Such convergence is to be expected in regular cases (Revuz 1975), but there are few practical
results that can identify when this is true in population models (Ellner 1984). Positive values
of the quantity Ai mean that species i tends to increase from low density. Indeed, the

strong law of large numbers can generally be invoked to show that Xi(t) will increase, in a

fluctuating manner, at least until the approximation (8) to the mean growth rate breaks down
(see Chesson 1982, Ellner 1984, Chesson and Ellner 1988). In broad two—species settings it
has been shown that positive Ai's imply coexistence in the sense that both species are

stochastically boundedly persistent (Chesson and Ellner 1988).
Cases where the A; are negative mean that a species at low density will have a

tendency to converge to extinction. In the general two-species model of Chesson and Ellner
(1988) and in the lottery model (Chesson 1982), clear conclusions are available: If A, and

A2 < 0, there is probability 1 that exactly one of the species converges to extinction. If Ai >
0, but Aj < 0, species j will converge to extinction, and species i will persist in the

system.
To apply the invasibility criterion to the general model in this article we focus on a
pair of species i and j and define
h(fl,gj) = E[g(givc) | glv----;gn]a 9)

where species i is at zero density and the other species are at their joint stationary
distribution. Expression {9) depends on the environmentally--dependent parameters of all
species in the community, but for simplicity of notation only the dependence on the critical
pair Ei and & i is represented on the LHS. Note that expression (9) is an average of the

growth rate over the species densities in the community for fixed values of the
environmentally—dependent parameters. This average is performed using the conditional
distribution of (X, (t),...,.X (t)) given (€,(t),.-,€,(t)). However, independence of the
environment over time implies that (X, (t),...,X (t)) and (£;(t),....£(t)) are independent,
and therefore the conditional distribution is the same as the unconditional (marginal)
distribution.

The function h itself can be classified as additive, subadditive or superadditive on the
basis of the sign of
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def 52,
™EE) = T, T (10)

{Note that ~+ depends on 51,...,5 Ly even though only the two focal parameters are

represented explicitly as arguments.) Moreover, additivity, subadditivity and
superadditivity are properties of h that are inherited directly from g. Under the
assumption C is increasing in all of its arguments, the sign of 62g/8£i85j is the same as the

sign of 7 (= 02g/85i6(3). Since v+ is simply an average of 02g/6£i8£j over the species
densities, y+ inherits the sign of 62g/8€i &‘,‘j provided the sign of the latter is constant.
Otherwise <+ inherits the average sign of 82g/ 686£j. Thus, when we speak of additivity,

subadditivity, or superadditivity, it does not matter greatly whether it is defined in terms of
g or h.
In terms of h, the mean low—density growth rate of species i can be evaluated by
the formula
A = Eh(é‘i,é'j). (11)

In addition, note that h(Sj,Ej) = E[g(Sj,Cj) | 81,...,£n], for the community at its stationary
distribution in the absence of species i. In this situation, E In Xj(t+1) =EIn Xj(t), and so
Eh(€;£)) = 0. (12)

These results can now be used to decide coexistence using the relationship

h(€,£) + h(€€) — h(€,.E) —h(€E)

" *
= v (e,,e,) de,de, . 13)
fo [ e s
J )
Taking expected values in (13), and usin% (115), (12) and the symmetry assumptions, we get
] -
A =-35 EJ IJ ! 1*(€),69) de;de, . (14)
8)- Ej

If «* is constant in sign it follows that Ai has the opposite sign. Thus, in the subadditive

case, the A's of all species in the system will be positive, and the species will coexist by the
invasibility criterion. Clearly the value of A; will tend to be greater for distributions in which

£i and 8j have greater probability of being far apart. Thus large values of Ai should be

associated with distributions having large variances and negative correlations between & and
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gj. However, Ai will still be positive in all situations where the correlation between Si and Sj

is any value less than +1. Thus coexistence by this mechanism can still occur even when the
environmentally—dependent parameters of the species have strong positive correlations.

In the superadditive case, the opposite sorts of result occur: the A's will be negative
and a species at low density will have an average tendency to decrease to extinction.
Although there is as yet no general proof, this sort of situation tends to imply that all but one
species will ultimately converge to extinction, and the identiy of the surviving species will be
a matter of chance. Chesson and Ellner (1988) show that this is so for a class of two—species
models.

In the remaining case (additive growth rates) all the mean low—denisty growth rates
are zero. The invasibility criterion implies that they have neither an average tendency to
increase or decrease at low density. In this case, the growth rates must take the form

gi(gi,Ci) = A(Ei) + B(C), (15)

which means that the change in (ln X, —In Xj) from time t to time t + 1 is equal to
A(&) - A(f)j), i.e. it is simply a random variable with mean 0. Thus In X, —In Xj undergoes

a mean—zero random walk, with no density or frequency dependent effects. Thus, over time,
the relative abundances of different species approach extreme values. And in particular,
recovery from a state of very low relative abundance is an event with infinite expected waiting
time, according to the theory of random walks (Feller 1971). It is reasonable to assume that
competition prevents any species from spending correspondingly large periods of time at
absolute abundances that are extremely high, and this means that the predicted long periods
of time at arbitrarily low relative abundances imply long periods of time at low absolute
abundances. As explained for the lottery model (Chesson and Warner 1981), this must be
interpreted in the real-world as meaning that the system simplifies to a single species.

In this additive case it is easy to see the consequence of removing some of the
symmetry assumptions. We need not assume any symmetry for the distribution of the
environmentally—dependent parameters, and we can modify the growth rate (15) so that it
takes the form

gi(é'i,Ci) = A(E) + b,B(C). (16)

In this form, competition affects different species to different degrees, but the effects of
competition are proportional, reflecting a single underlying competitive factor C. It follows
that changes in (In X;)/b; — (In Xj)/bj from t to t + 1 are given by the random variable

Ay(&)/b; - Aj(é'j) /bj' If this random variable always has mean 0, then a mean—zero random

walk occurs once more, and the system must be interpreted as simplifying to a single—species.
On the other hand, if one species has a larger value of EA((&) /b; than other species, the
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strong law of large numbers implies that (In X;)/b, — (In Xj)/bJ. must converge to oo for all j #

i. This means of course that species i drives all the other species asymptotically to extinction,
with probability 1.

In summary, the analyses in this section show that environmental variability should
promote coexistence when growth rates are subadditive, should promote competitive exclusion
when growth rates are superadditive, and in the additive case environmental variability
should not alter the conclusion of equilibrium models that different species cannot stably
coexist when limited by a common competitive factor.

1.2 ASYMMETRIC CASES

In nonadditive cases, deviations from the strict symmetry assumptions present
complex problems for analysis. It is clear, however, that the conclusions will not collapse with
small deviations from strict symmetry because given enough smoothness in the growth rates
g, stationary distributions of residents, and mean low—density growth rates, Ai’ will vary

continuously with the joint distribution of the environmentally—dependent parameters. It
follows that small asymmetries in the distributions of the environmentally—dependent
parameters (favoring some species over others) will not alter the sign of the mean growth
rates, except in the additive case for which the effects of asymmetry are well understood, as
discussed above.

In general, however, it can be expected that sufficiently large departures from
symmetry, in directions that give average advantages to some species over others, will destroy
the conclusions of the symmetric case. In particular, in the subadditive case, it can be
expected that there will be a relationship between the amount of environmental variability
needed for coexistence and the extent to which the environment confers average advantages
on some species.

For the subadditive case, expression (14) suggests that the mean low—density growth
rates should be increasing functions of the variation in the environmentally—dependent
parameters. Hence we would expect that the degree of asymmetry possible before the signs of
the Ai disagree with the predictions of the symmetric case, should increase with the amount of

variation in the environmentally—dependent parameters. Can we verify these speculations
and obtain a quantitive assessment of the joint action of variability and asymmetry? We can
do this in the*case where the amount of variation is small.

Let £ be any particular value of the environmentally—dependent parameter. We
consider the effects of environmental variation in the vicinity of this arbitrary fixed value.
Singe §(£,C) is a decreasing function of C, there will be a unique value C>k of C such that
g(€ ,C ) = 0. To obtain general results on the effects of environmental variability we
introduce a standard parameterization of the model, which involves transforming the scales of
measurement of the environmentally—dependent and competitive parameters. The standard
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parameters replacing the original parameters £ and C are .

&= g(,C ) and G, = —g(€ ,0). (17)
The formula for the growth rate in terms of the new parameters is defined implicitly by the
equation

,(6,Cy) = 8(£.0). (18)
Note that this parameterization of the model is characterized by the property that
gs(f,'s,Cs) =£-Co+ I‘(€S,CS) (19)
where the function T' satisfies the equations I'(0,0) = 61‘(55,0)/688 = 6I‘(0,CS)/<9CS = 0.

The standard parameterization thus enables the model to be expressed simply in terms of its
additive and interactive components. It is important to note that the type of interaction
(additive, subadditive or superadditive) is unaffected by this reparameterization because the
sign of the cross—partial derivative, %, is not altered. From now on we will asssume that the
transformation of the model to stf,ndard Eorm has been done, and so we will drop the subscript
s. Note that in standard form £ and C are both 0.

Equation (19) implies that a model in standard form can be approximated about the
value £ =C =0 by the second—order Taylor expansion

glC)=€-C+ 1€Cs (20)

where 7, = ¥(0,0) = 62g/6€30 ,at £=C=0.

Now consider the usual resident—invader situation with two species. The species will
be assumed to have the same growth rate function g and the same competitive factor, but the
distributions of the environmentally—dependent parameters will be assumed different. In
particular, it will be assumed that they have different means. However, in order to use the
approximation (20) we must assume that these distributions are both concentrated near the
value 0.

Applying (20) to a resident at its stationary distribution gives

EE; - EC) + 70E€jCJ =0 (21)
where Cj is random variable representing the competition variable C for the resident at its
stationary distribution. It follows from this that )

BE; ~BC! + 7(EE) (BC) = 1, (22)
where y is the covariance between Ej and CJ. This can be rearranged to give the following

formula for ECj:

EC) = 1—_%@— (23)
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The mean growth rate of an invader is
A; = RE; — EC) 4+ 1oEE; al. (24)

To go beyond this formula we need to relate £, and £j, and it turns out that all we need is

the regression of £ on Sj, i.e. the function E[£| Ej}. Provided this regression function is

differentiable, we can use the first order Taylor approximation ;
E[E;| £] = BE; + b(&; - EE), (25) *‘*
where b is a constant. This first order approximation is all tha,t is needed to retain the second

order character of our approximation for A,. This implies that EE; cl= E{E[¢;] ¢, ]CJ} = 1
(Eé‘i)(ECJ) + by. Substituting this and (23) in (24) we obtain

1 -1 E£
A, = EE, ~ (EE + 70X)——EZ'_+ Tobx (26)

Eliminating terms of order higher than 2 (the limit of accuracy of these approximations) this
reduces to

A, = (AE€) (1+ 'yOEé'j) = 15(1-b)x, (27
where AEE = Eé'i —E€ o

This mean growth—rate formula is most easily interpreted when converted into a
condition for A, to be positive, allowing invasion to occur. The condition is
EE, > BE; + 7o (1D (28)
TH7gEE;
Note that the regression coefficient b can be written as the product of the correlation
coefficient between £; and Ej and the ratio of their standard deviations. In most cases the

value of b will be less than 1. It follows that in subadditive situations (negative 70) the

invader can increase from low density even though it is at a disadvantage to the resident (has
a smaller mean environmental parameter). The disadvantage that species i has to species j
can be measured by EE j—EEi, and the supremum of values of this quantity permitting

invasion is, by (28), |70|(1—b)x/(1+70E£j). Thus, species i can invade at a greater
disadvantage for larger values of | 70] (the degree of subadditivity), larger values of x (the

covariance between the environment and competition), and smaller values of the coefficient of
regression of the environmental parameter of the invader on that of the resident.

The invader can always successfully invade in this subadditive case if it has an
advantage over the resident (EE; > Eé'j), and so these conditions for invasion of a weaker

species are also conditions for coexistence. A multispecies extension of these results is possible
but is deferred to a subsequent article.
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If T i8 0 (the additive case), invasion can only occur if the invader is superior on
average to the resident, as the earlier exact results demonstrate. With positive g

(superadditivity), negative mean low—density growth rates are favored by environmental
variability for both species of a two—species system. This means that whichever species first
fluctuates to low—density is likely to become extinct. However, with enough asymmetry in
the system, it is possible for one species to have a positive mean low—density growth rate,
while that for other species is negative. Thus, there is a specific winner and loser in
competition. To have a positive mean low—density growth rate, species i must be superior to
species j by at least a little more than 70(1—b) x/ (1+70E£ j). Thus conditions unfavorable to

invasion by species i are defined by a large interaction, T @ large covariance, y, or a small

regression coefficient, b.

The covariance, x, in these results, will vary with the details of the specific situation.
It is possible, however, to get some feeling for it by considering the case of strong competition
for a resource such as space. If this strong competition tends to lead to all space being filled,
then in a single-species system the growth rate, g(£,C), will approach 0. Thus in
two—species space—filling models a resident will satify the equation 0 = g(Ej, 0. 1t follows

that (c‘lj)2 = I(Cj)2 + terms of order higher than 2. Hence
Vé'j = VCj = X, to second order, where V means variance. Thus, in such space filling

situations, x can be approximated by the variance of the environmentally—dependent
parameter. In other situations this will not be true. In particular the variance of ) will
have components of variation due to fluctuations in spgcies densities as well as variation in
the environmentally—dependent parameter. Thus VCJ may often be larger than V& i

Nevertheless, the covariance, x, is still likely to be closely related to Vé'j.

The results that we have obtained here extend those of the symmetric model to
asymmetric distributions of the environmental parameters. Moreover, here we have obtained
explicit quantitative results defining conditions for coexistence and competitive exclusion
showing how they are affected by different factors in the system. Assumptions that are
retained in this analysis are equality of the competition variables Ci and equality of the

function g; converting the environmental and competitive effects into the growth rate.

However, these remaining assumptions also can be removed (Chesson, in prep.)

III.  HOW ADDITIVITY AND NONADDITIVITY ARISE

Mathematical models using difference equations have focused on organisms with
strictly nonoverlapping generations. The best examples of such organisms are univoltine
insects and annual plants without a seed bank. In such organisms there will usually be a
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period of reproduction followed by a period of juvenile growth, mortality, and final
maturation to adulthood before the next breeding season. The per—capita number of adults at
the next breeding season can be represented as the product of the per—capita birth rate B, for
adults alive at the beginning of the breeding season, and the juvenile survival rate ©, giving
the fraction of births that ultimately yield an adult at the beginning of the next breeding
season. Both stages may be affected by environment and competition, but consider for the
moment an environmental factor that affects only the birth rate B. The quantity B is then an
environmentally—dependent parameter, i.e., Ei = B. If juveniles compete, then © is

dependent on Ci’ the competitive factor for the species, and so we have

G,(£,C,) = £8(C)). (29)

Since this is a product, gi(f)i,Ci) is necessarily additive. Note that it is quite reasonable in
this case for Ci to be an increasing function of the environmentally _dependent parameters

of the species in the community because a higher birth rate will lead to a larger number of
juveniles and therefore more competition among those juveniles. If the factor causing the high
birth rate persists during the period of juvenile competition and in some way is able to more
than make up for the increased number of juveniles, then the reverse assumption that Ci is a

decreasing function of £, must be made. Nevertheless, both gi(fi,Ci) and h(Ei,Ej) remain

additive.

Other variations on the arrangement above retain the same additive property. Instead
of the birth rate being variable, or in addition to this, early juvenile mortality could be
environmentally—dependent, but later juvenile mortality could depend on competition. Or
the birth rates might be affected by competition among adults while the juvenile survival
rates are environmentally—dependent. In all cases g remains additive.

Another important case is where the environmental factor and the competitive factor
operate simultaneously. For example, suppose they operate during a mortality phase. The
environmentally—dependent parameter could then be an instantaneous contribution to
survival due to the environment while the competitive factor would be the instantaneous
contribution to mortality due to competition. The latter could be called Ci, because it

would not be equivalent to the total competitive factor for the relevant period. The change in
population size during the juvenile period could then be represented as

p 94X

fi,at—=—Ci +£1- . (30)
Note that é'i is a negative number. Letting h be the length of the relevant juvenile period,

it follows that the fraction of the population surviving over the juvenile period is
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e , (31)
where
h
C = J Cl(w)du . (32)
0

Note that Cj(u) will be dependent on the environment and the species densities in the

system at the time u and even possibly at previous points in time. However, species
densities at time u are functions of what they were at time 0. It follows that the
representation (2) for C; is still applicable.

These results show that organisms with very simple life histories will often have
additive growth rates if the environmentally—dependent parameter is something like a birth
rate or survival rate. More complex features of biology are necessary before we find
nonadditive growth rates and interesting conclusions. It turns out that seemingly minor
perturbations of the model can have large effects on these conclusions: additivity is not a
structurally stable feature of a model.

Organisms with nonoverlapping generations
Suppose now that we are dealing with organisms that are iteroparous, i.e., the adults

may remain reproductive for several seasons. In many such organisms, reproduction, juvenile
survival, and maturation are processes that are much more environmentally and competitively
sensitive than adult survival (Chesson 1986). Thus we shall represent adult survival as a
constant s. The net per—capita number of new adults produced in a year can be represented
H 1 !
as a function Gi(Ei,Ci), where In Gi(Si,Ci)
(= g{(£,C,)) is additive. It follows that
gi(Ei,Ci) =In{s + Gi(&i,Ci)}. (33)
Elementary calculus shows that
7= 506G}/ G, (34)
where « = 6g;/ 0t and f= 6g;/ dC;. Since f is negative, while all other factors in (34) are
positive, we see that 7y is negative and therefore 8; is subadditive. It follows that
overlapping generations and iteroparity promote coexistence in a variable environment. It
must be kept in mind, however, that we assume positive covariance between
environmentally—dependent parameters and competition, and that adult survival is insensitive
to environmental and competitive factors.
The discussion above assumes that generations overlap in the adult phase of the life

cycle. However, the results apply also to annual plants with seed banks by interpreting s as
the fraction of seeds that remain viable but do not germinate. This representation is
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satisfactory provided germination itself is not the environmentally—dependent parameter.
When germination is the environmentally—dependent parameter we obtain the equation
gi(Ei,Ci) = In{s(1 —é'i) + G;(é‘i,Ci)}. (35)

For this model, we obtain
y=s((1-&)e+ 14GL/GE . (36)

Again 7 is negative, showing that growth rates are subadditive and that coexistence will be
promoted in a variable environment, as first demonstrated in a specific seed—bank model by
Ellner (1984).

The superadditive situation is also easily seen in these models. To obtain that case,
one can make the survival rate in (33) and (35) the environmentally—dependent parameter.
These growth rates become respectively

gi(é'i,Ci) = ln{£i+ Gi(é‘i,Ci)} (37)
and
gi(é‘i,Ci) = ln{é‘i(l -0) + G}(é‘i,Ci)}, (38)
where the germination rate is now 6. In both cases, simple calculus shows that 4 has the
same sign as
1— ok, . (39)

1

The quantity o measures the dependence of reproduction and juvenile survival on adult or
seed survival, at a fixed level of competition. The existence of tradeoffs between adult
survival and reproduction in some organisms (Nur 1984) suggests that a may be negative.
In any case, large positive values of o seem unlikely. Thus it appears that (39) will often be
positive indicating superadditivity, and competitive exclusion will be promoted by
environmental fluctuations.

A model with poor alternative resources.

In foraging theory it is recognized that species may change their selection of resources
as the abundances of the resources change. However, classical theories of resource
consumption, which receive their most detailed expression in MacArthur's (1970)
comsumer—resource model, do not allow for this possibility. Consider a situation in which
there are good resources that the organisms need to sustain a positive growth rate and poor
resources that are able to prevent precipitous decline of the population but are not able
provide positive growth. For example, Scott (1980), and Scott and Murdoch (1983) have
found that Notonecta populations show markedly different growth responses to different prey
species. Moreover, the relative availabilities of these species vary over time. In classical
resource competition theories, limiting resources allow population increase when these
resources are sufficiently abundant. Population increase causes decline in availability of
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limiting resources by increased consumption, which eventually halts population growth. This
scenario does not apply to poor resources that merely moderate the rate of decline of a species,
because population increase cannot occur in response to such resources. Thus, we will regard
availability of the poor alternative resources as insensitive to consumer species density.

Let s (< 1) be the finite rate of increase when a species is concentrating on poor
resources. These resources set a minimum growth rate for a population and therefore the
finite rate of increase of the population might be represented as

G,(&;,C;) = max{s,G{(€;,C;)}, (40)

where Gi(&l,Ci) is the finite rate of increase applicable in the absence of the these poor

alternative resources. This equation assumes that the growth rate on the good resources is
environmentally sensitive, reflecting possibly environmental dependence in ability to use the
good resources. It assumes also a complete switch from good to poor resources at the point
where poor resources actually become more profitable. Such a complete switch is unlikely
unless the species change habitat or foraging mode to use the poor resources. However, as we
shall see it represents the worst case situation for nonadditive growth rates, and so our
analysis of this model is conservative.

If gi(é’i,Ci) is additive, it follows that 4 is zero everywhere except on the set M of

Ei and Ci values for which Gi(&'i,Ci) =38. On M, 7 does not exist. It follows that =
cannot characterize the joint dependence of g;(€,,C;) on & and C; when (£,C;) can cross

from one side to the other of the set M. However, this problem can be got around using the
following finite difference definition of subadditivity:
8(£',C") —g(£,C) < [8(¢',C) —8(£,C)]
+ [8(6,C") —g(£,0)] (41)
for £ > & and C' > C. The growth rate g,(,,C;) satisfies (41), and the inequality is strict

whenever (£',C') and (£,C) are on opposite sides of the curve M in (Ei,Ci)—space. Thus,

our model of poor alternative resources is subadditive in this finite—difference sense. It is easy
to see using the finite—difference methods of Chesson (1986) that coexistence will be promoted
in a fluctuating environment provided the (E.l,Ci) values of the invader fluctuate on either

side of M.

Other versions of this model in which there is a smooth change over from one resource
to another, will have 7 existing everywhere. Generally, 7 will be negative in the region
where both resources are being utilized, and therefore the model will show subadditivity in
this range. Coexistence will thus be promoted by environmental fluctuations.

Fluctuating resource uptake rates.
Abrams (1984) put forward a model in which the resource uptake rates of a species are
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the environmentally—dependent parameters. He showed that under a variety of conditions
these fluctuating uptake rates promoted coexistence. In all cases where coexistence occurred,
however, he assumed either overlapping generations or nonlinear conversion of resource into
consumer biomass. Here we seek the effects of the fluctuating uptake rates alone without
these other complications. Thus we consider the following formula for the finite rate of
increase of the population:

Gi(é'i,C) = f(SiR(C)) —m . (42)

Here R(C) is the amount of resource present in the environment as a function of the level of
competition C for the resource. The environmentally—dependent parameter Ei is a measure

of relative availablility of the resource to consumer species i: it alters the effective abundance
of the resource to consumer species i. The functional response f gives the actual per—capita

resource consumption as a function of resource availability, SiR(C). Finally, m; represents

a minimum amount of resource that must be consumed before any individuals are produced in
the next time period. This minimum amount of resource would be 0 if all resource
consumption resulted directly in the production of new individuals. For example, this occurs
in parasitoids in which the resource is a host population that provides food for developing
larvae alone. Note that the model assumes nonoverlapping generations.

In the case where m, = 0, routine calculations show that

7= R'(C)#'(ER(C)) + ER(OIR/(C)¢"(ER(D)), (43)

where ¢ = Inf and the primes indicate derivatives. Since R'(C) is necessarily negative, it
follows that the sign of < is opposite to the sign of ¢' + x¢" , where x = EiR. By solving

the differential equation ¢’ + x¢" = 0, one obtains the following formula for a functional
response that will yield additive growth rates:

f(x) = 1(1)x] (DL, (4)
1t is not difficult to see that in the subadditive case, f(x) will be greater than the RHS of
(44) for all x except x = 1; and in the superadditive case, f(x) will be less than the RHS of
{44) everywhere except x = L. Functional responses generally approach a constant value as x
increases, which means that they generally do not satisfy the power law relationship implied
by {44). Indeed, at least for large x, they will be less than (44). Functional responses may
satisfy a power law at low x but since they saturate they may often follow a law that can be
approximated by the formula

&Xb

¢ + ax
It is a simple calculus exercise to show that this functional response always gives
superaddivitive growth rates. Moreover, the fact that functional responses generally saturate
will invariably add an element of superadditivity to the model even if the formula (45) is not
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a good approximation.
When the value of m, is positive, simple calculus shows that the sign of 7 is opposite
the sign of
9 m

¢+ x¢" —x(¢") ;_—‘ml - (46)

Hence the maintenance requirement itself is a factor that promotes superadditivity. Indeed, it
will lead to superadditivity in instances where the functional response by itself would not, for
instance, in cases where the functional response is linear with no upper limit on the
consumption rate. In general, this model implies that fluctuating resource consumption rates
should favor competitive exclusion, unless there are other factors in the model that oppose
this tendency.

Abrams' (1984) model differs from this one in that in all cases he assumed a linear
functional response. The presence of a maintenance requirement would imply superadditivity
from the results above; however, Abrams is able to get subadditivity by adding overlapping
generations or accelerating conversion of resource into consumer biomass. Thus be finds that
fluctuating resource—uptake rates promote coexistence. Finally, it should be kept in mind
that here consumption rates are assumed to vary as a consequence of fluctuations in the
availability of fixed abundances of resource to consumer species. This means that
environmental factors not tied to resource abundance interfere with the ability of the species
to consume the resource. Different biological assumptions about the nature of variability
could lead to different results.

CONCLUSION

An interaction between the environment and competition is necessary before
environmental fluctuations have any overall effect on community structure. In many ways
this is hardly surprising: if the environment does not interact with competitive processes then
their long—term effect should be moot because the fluctuations should just average out to the
equivalence of a constant value. The additive case (no interaction) confirms this intuitive
expectation. With negative or subadditive interactions, competitive exclusion is opposed,
while with positive or superadditive interactions competitive exclusion is promoted. Within
this framework the results are clear and unambiguous. Ambiguity often arises in stochastic
models because the space of probability distributions is infinite dimensional, yet discussions of
the effects of random variables often focus on just two dimensions, the mean and variance
alone. The effects of the neglected parameters are responsible for the ambiguous results. In
the investigations here, the results are clear because in the symmetric case the symmetry itself
prevented the infinite dimensionality from being expressed. Symmetry in essence led to
cancellation of the effects of parameters other than a measure of variation. In the asymmetric
analysis, the standard parameterization concentrated all the important effects in the means
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and covariances. Thus ambiguities due to the action of other parameters did not arise.

While these results are simple and interpretable mathematically, it is important that
they are also interpretable biologically in terms of buffers, amplifiers and neutral traits. The
subadditive case can be interpreted as the presence of biological properties that buffer
unfavorable combinations of events. When the environment is poor for a species, the
additional effect of competition is slight. Thus the form of the growth rate provides a buffer
against simultaneously having a poor environment and strong competition. Biologically, such
buffers can result from overlapping generations or the availability of alternative resources.

The superadditive case involves amplification of unfavorable combinations of events:
when environmental conditions are poor the additional effect of competition is strong.
Amplification can occur when a feature that would buffer when it is itself insensitive to the
environment, is made the environmentally—dependent parameter. For example, competition
among juveniles or seedlings will have more effect on the growth rate at times of poor adult or
seed survival, and so environmental sensitivity of adult and seed survival is a feature that
leads to amplification of the combined effects of a poor environment and strong competition.
We found also that the shape of the functional response can lead to superadditivity when
resource uptake rates fluctuate.

Additive growth rates result from neutral traits. But we found that neutral traits can
easily be overcome by other traits that act as buffers or amplifiers. Thus, strictly additive
growth rates must be regarded as idealizations that may be approximated in nature but are
probably never actually achieved. Neutrality seems to arise generally as a result of sequential
action of environmental and competitive effects in organisms that have strictly
nonoverlapping generations. Simple modeling approaches often treat events as taking place
sequentially, not interacting simultaneously, and these approaches often lead to additive
growth rates. While such approaches have been adequate for consideration of equilibrium
situations, our results show that the addition of just a little more reality can markedly change
the conclusions in nonequilibrium settings.
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Figure 1: The growth rate
g;(&;, C;) as a function of
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for two diftferent values of the
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