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The lottery model is a stochastic population model in which juveniles compete 
for space. Examples include sedentary organisms such as trees in a forest and 
members of marine benthic communities. The behavior of this model appears to be 
characteristic of that found in other sorts of stochastic competition models. In a 
community with two species, it was previously demonstrated that coexistence of the 
species is possible if adult death rates are small and environmental variation is 
large. Environmental variation is incorporated by assuming that the birth rates and 
death rates are random variables. Complicated conditions for coexistence and 
competitive exclusion have been derived elsewhere. In this paper, simple and easily 
interpreted conditions are found by using the technique of diffusion approximation. 
Formulae are given for the stationary distribution and means and variances of 
population fluctuations. The shape of the stationary distribution allows the stability 
of the coexistence to be evaluated. 81:) 1989 Academic Press. Inc 

INTRODUCTION 

Several models have been developed to investigate the question of 
coexistence of competing species in a variable environment. Turelli (1978, 
198 1) and Turelli and Gillespie (1980) studied a stochastic version of the 
Lotka-Volterra equations and found environmental fluctuations to have 
little effect. In contrast, coexistence of species in the lottery model (Chesson 
and Warner, 1981; Chesson, 1982) was found to be enhanced by environ- 
mental variability, provided environmental variability effected birth rates 
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and generations were overlapping. Since then a variety of other stochastic 
models have predicted coexistence as a result of environmental fluctuations 
(Abrams, 1984; Chesson, 1983, 1984; Shmida and Ellner, 1984). 

Chesson (1986, 1988) showed how these different models and their 
qualitative predictions can be understood in a common framework. The 
lottery model is the best known of these models. It has the advantage of 
approximating some of the key features of communities of sessile 
organisms, which have featured prominently in ecological debate, as 
reviewed by Fagerstrom (1988) and discussed below. Moreover, the model 
is simple and its formulation is easily understood, yet by variation of the 
parameter values this model is capable of exhibiting the full range of 
qualitative behavior exhibited by the broad class of models to which it 
belongs, and many of its properties have proved generalizable (Chesson, 
1986, 1988). 

The lottery model was formulated specifically for organisms that 
compete for space and makes the assumption that this competition is 
concentrated during a relatively short period of time as the organisms 
mature. Competition among adults is assumed to be unimportant, or, if 
present at all, is of the special sort discussed below that affects only 
reproduction, not adult survival. The chief findings of the lottery model are 
that temporal fluctuations in birth rates (or similar parameters affecting 
recruitment to the adult population) promote coexistence provided genera- 
tions are overlapping and death rates do not fluctuate too greatly with 
time. If adult death rates can be large, fluctuations in adult death rates tend 
to promote competitive exclusion. This latter conclusion is clearest when 
results of the general model in Chesson (1986, 1988) are taken into 
account. 

The idea that fluctuations in birth rates may promote coexistence in 
organisms with overlapping generations was generalized to the hypothesis 
that coexistence is promoted by fluctuations in recruitment to a robust 
stage in the life-cycle, i.e., a stage with a low mortality rate relatively insen- 
sitive to fluctuations in environment and competition. Particular examples 
include the adults of many species and seeds in the seed bank of many 
annual plant species (Chesson, 1984; Shmida and Ellner, 1984). Promotion 
of coexistence in these circumstances is referred to as the storage effect 
(Warner and Chesson, 1985). The storage effect has attracted attention as 
a possible mechanism of coexistence in a variety of systems including 
coral reef fishes (Chesson and Warner, 1981) rainforests (Leigh, 1982; 
Warner and Chesson, 1985) Eucalyptus forests (Comins and Noble, 1985), 
and may have broad applications to communities of sessile organisms 
(Silverton and Law, 1987; Fagerstrom, 1988). 

One difficulty with the theory is that conclusions from models have 
mostly been qualitative, for example implying that coexistence will occur 
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with sufficient variability in some parameter without quantifying the 
sufficient amount. Therefore, it has not been possible to assess the strengths 
of the predicted effects, which are especially important for assessing their 
significance in nature. 

A second difficulty is that very little information is available on the 
population fluctuations exhibited by coexisting species in these models. 
While predictions about population fluctuations are an important goal 
alone, they also have implications for the strength of coexistence and how 
long it can be expected to last (Chesson, 1982). Moreover, such predictions 
are needed if there is to be any resolution of the debate about the extent 
to which population fluctuations of coexisting organisms can be used 
to distinguish between equilibrium and nonequilibrium mechanisms of 
coexistence (Herbold, 1984; Rahel et al., 1984; Yant et al., 1984). When the 
probability distributions of population size in a stochastic population 
model converge to a unique distribution, called the stationary distribution, 
that distribution describes the long-run frequencies with which different 
population sizes are observed. In particular, it defines the mean and 
variance of population size over time. However, information on stationary 
distributions for these models is very limited (Chesson, 1984). 

Apart from Lotka-Volterra models in which environmental variability 
has equivocal effects on coexistence (Turelli and Gillespie, 1980) the best 
quantitative information is available for the lottery model (Chesson and 
Warner, 1981; Chesson, 1982, 1984, 1985). Moreover, it is the only 
stochastic competition model for which there is any understanding of the 
stationary distribution. However, there remain many gaps in our under- 
standing of these aspects of the lottery model. By using a diffusion 
approximation, this article provides simple and explicit formulae defining 
the stationary distribution. In doing so, we are providing needed informa- 
tion about an important model that seems reasonably representative of a 
broader class of models. 

THE MODEL 

In the lottery model, we define P,(t) as the total proportion of space 
occupied by species i at time t, /Ii(t) as the per capita reproduction, and 
hi(t) as the adult death rate of species i during the interval (t, t + 11. Then 
the equation for the proportion of adults at time t + 1 in the two-species 
lottery model is 

pz(r + l)= Cl -si(r)l pi(f) + Csltt) Pl(t) + s2(f) P*(r)l 

x PI(t) P,(t) + BAt) Pz(t) 



254 HATFIELD AND CHESSON 

for i= 1, 2. In Eq. (l), [l-hi(t)] P,(t) is the proportion of adults of 
species i surviving from time t to time t + 1. The proportion of new sites 
available for settling by juveniles is [s,(t) P,(t) + s,(t) PZ(t)], which is the 
proportion of space given up by adult death. This space is divided among 
the juveniles of different species in proportion to their abundance. The 
lottery aspect of the model comes from the fact that pi(t) P,(t)/ 
[/Ii(r) P,(t) + /I*(t) P*(f)] is the proportion of available space that is 
secured by juveniles of species i. 

While fi is described as a birth rate above, there is considerable lattitude 
in its interpretation. It could easily include juvenile mortality before the 
stage at which competition occurs among juveniles, and as pointed out by 
Chesson and Warner (1981) it could also include the relative abilities of 
juveniles of different species at competition for space. In the latter case, the 
lottery is biased. Moreover, in a very similar way /I could reflect relative 
competitive abilities of adults; for example, if there is in effect biased lottery 
competition for finite resources necessary for reproduction. 

In the model an important quantity is 

(2) 

which compares the ratios of birth rates and death rates for the two species. 
For coexistence, p must fluctuate on either side of 1 by a sufficient amount 
(Chesson and Warner, 1981; Chesson, 1982), as a consequence of fluctua- 
tions in birth rates, and possibly combined with death-rate fluctuations. 

By using a diffusion approximation we obtain formulae giving necessary 
and sufficient conditions for the existence of a stationary distribution for 
Pi(t) on the interval (0, 1). This stationary distribution for Pi(t) means 
that Pz(t) also has a stationary distribution on the interval (0, 1) and that 
the two species coexists in the sense of stochastic boundedness (Chesson, 
1982). Although existence of the stationary distribution and stochastic 
boundedness are not always equivalent, they are for the diffusion models 
discussed here. Thus, we use existence of the stationary distribution as our 
definition of coexistence. 

A diffusion process is a continuous-time process and is characterized by 
its infinitesimal mean and variance, defined as 

and 

02(X)_!i~~~[{~I(r+~)-PI(r)}21P,(r)=X], (4) 
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respectively (Karlin and Taylor, 1981). Diffusion approximation of the 
lottery model involves converting it to continuous time. To do this, the 
time scale is accelerated by increasing the number of breeding seasons per 
unit time while decreasing the amount of change taking place in a season. 
In the lottery model, this is done by letting X(t) = In p(t) and assuming 
E[X(t)] = EP and Var[X( t)] = .w*, E > 0. This slows down both determin- 
istic and stochastic change. In addition, we define 6 ;(t) = d,e ‘I(‘) and assume 
E[Y,(t)]=O (di is the geometric mean of hi(t)), Cov[Y,(t),X(t)]=~e,, 
and Cov [ Y,(t), -X(t)] = ~0~. Higher order central moments are assumed 
to be O(E). These definitions decrease the amount of change taking place 
from one season to the next as E is reduced. To change the number of 
seasons per unit time, P,(t + E) is substituted for P,(t + 1) in the left hand 
side of Eq. (1). 

In the Appendix, regularity conditions are imposed on the distribution of 
U’(f), Y,(t), Y,(t)) and (3) and (4) are evaluated for the discrete-time 
lottery model, where E adjusts the time scale and other effects as described 
above. It follows from Stroock and Varadhan (1979, Theorem 11.2.3) that 
the lottery model converges weakly to a diffusion process with infinitesimal 
mean and variance given by 

p(x)= [d,x+d*(l -.X)-j’ 
d1d2x(1-x) {d,x[/L-e2-cr2/2]+d2(1-X)[/L+e,+[T*/2]} 

(5) 

and 

[d,d,crx(l -x)-J2 
a2(X)= [d,x+d,(l -x)12’ 

An interesting feature of p(x) is that whenever p + 8, + 0*/2 >O and 
p - t9* - a*/2 < 0, p(x) will be positive for low values of x and negative for 
high values of x. Thus this diffusion process can have a mean drift away 
from both boundaries toward the center, but this is only possible when 
CJ* > 0, i.e., it can only occur when p(t) fluctuates over time. A mean 
tendency to drift away from the boundaries does not guarantee a stable 
coexistence, however, because at low density the population growth is 
multiplicative, not additive. This means that mean tendencies on a log scale 
provide a more appropriate indication of actual population growth. By 
calculating the infinitesimal mean, u(x), and variance, 4*(x), of In PI(t) - 
In P*(r), we can gain an accurate indication of population growth over the 
full range of x values from 0 to 1. For simplicity, we do this just for the 
case where the adult death rates, hi, are nonrandom and equal to the value 

h53.3h.3.2 
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d. The transformation formulae in Karlin and Taylor (1981) yield the 
remarkable result 

and 

u(x) = d{p + a*( 1 - d)( 1-2x)/2} (7) 

d’(x) = d*o*, (8) 

where x has not been transformed and still represents a point in the space 
of PI(t). This result shows that the process has constant infinitesimal 
variance on this log ratio scale. Because x refers to the original rather than 
transformed scale, these are not the infinitesimal mean and variance of an 
Ornstein-Uhlenbeck process; instead, the infinitesimal mean reveals a 
central tendency linear in x and reminiscent of logistic growth. In spite of 
this phenomenological resemblance to logistic growth, the central 
tendency, which is created by the term a*( 1 - d)( 1 -2x)/2, exists as a 
consequence of environmental variability, because it is zero unless (T* > 0. 
Thus, we see a central tendency created by stochastic, not deterministic 
forces. Overlapping generations, as measured by (1 - d), are also necessary 
for this central tendency. 

The central tendency in u(x) is opposed by the term p representing the 
mean tendency of the environment to favor species 1 over species 2. The 
term o*( 1 - d)( 1 -2x)/2 by itself creates a tendency to drift toward the 
value Pi(t) = l/2, but when p is not zero there will be a bias away from this 
value. As we shall see below in Eq. (11) the comparison between p and the 
quantity a*( 1 - d)/2, giving the magnitude of the central tendency, deter- 
mines coexistence in this model. 

THE STATIONARY DISTRIBUTION 

The diffusion process determined by (5) and (6) has state space (0, 1). In 
order to show the existence of a stationary distribution, it is necessary to 
investigate the boundary behavior of the process. In the Appendix it is 
shown that the boundaries 0 and 1 are natural boundaries, in Feller’s 
terminology (Karlin and Taylor, 1981), which means that the process can 
reach neither boundary in finite mean time, nor can it be started from 
either boundary. The conditions for a process with natural boundaries to 
have a stationary distribution are given by Mandl (1968, Chap. IV, 
Theorem 7). These conditions are evaluated for the lottery model in the 
Appendix. To state the results we introduce the quantities 

2(P + 0,) 
YI= o* and Y*= 

2(-P++2) 

rs2 ’ 
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Then the conditions for a stationary distribution can be stated as 

d,<y,+l and d2 < y2 + 1. (10) 

The quantities yi and y2 can be considered as measuring for each species 
its mean relative competitive ability divided by the environmental variance. 
To see this note that p = E[ln p] = E[ln /Ii/S, -In p2/S2], and so it reflects 
mean demographic differences between the species. In the yi, these mean 
tendencies are adjusted by the covariance of In p with the adult death rate. 
Condition (10) thus shows that if the di are less than 1, coexistence 
necessarily occurs as a2 is increased, making the yi small. In addition, if one 
of the di’s is 1, e.g., if d, = 1, then coexistence can still occur if p >O, 
provided ly21 is sufficiently small. The latter situation can occur with large 
enough g*. The conditions for the existence of a stationary distribution, 
Eq. (lo), can be stated in the alternative form 

a2>2max 
-b++,) -(-I*+Q,) 
(l-d,) , 1 (l-4 ’ 

(11) 

which also shows how increases in g2 must inevitably lead to coexistence 
provided that the d,‘s are less than 1. When the stationary distribution 
exists, the methods of Karlin and Taylor (1981) yield the formula 
density 

$(x)=c[d,x+d2(1 -x)]~x”‘-‘(1 -x)Oz-l, 

where 

(Yl+l) 1 
vl=d,- ’ 

(Y*+l) l 
v2=d,- ’ 

for the 

(12) 

(13) 

and c is a constant such that j $(x) dx = 1. Note that this density is the 
product of a quadratic and a beta density. 

The first and second moments of the stationary distribution are 

v~Cd:(v,+2)(v,+l)+2d,d,(u,+l)(v2)+d;(v2+1)(v2)] 

E@‘-)= (01 + 02 + 2)Cd:(u, + l)(o,) + 2d,d2(v1)(v2) + d;(o, + 1)(u2)] 

and 

v,Cd:(v, +3)(v, +2)(u, + l)+=,d,(v, +2X0, + l)(v,) 

E(X*) = + d;(v, + 1 )(vz + 1 )(u2)1 > 
(v~+v2+3)(~,+v2+2)Cd~(vl+l)(v,) ’ 

+ 2dl d,(u, )(vd + d;(vz + 1 )(v2)1 > 

(14) 

(15) 
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The shape of the density is important because it yields information about 
the type of population fluctuations which the two species will experience. 
For example, if d, = d, = d, then the density is a beta distribution, for 
which the shape can easily be determined based on the parameters v, and 
u2 (Devore, 1982). When ui > 1 and u2 > 1, the distribution is zero at 0 and 
1 and rises to a unique mode between 0 and 1. For this case, the propor- 
tion of space occupied by either species is unlikely to be very small or large 
and thus stable coexistence of the two species occurs. When ui > 1 and 
v2 < 1 or v, < 1 and v2 > 1, then the distribution either increases from zero 
to IX or decreases from cc to zero, respectively, as the proportion of space 
occupied by one species varies from 0 to 1. This is the case of the infinite 
mode and is not a very stable type of coexistence because it is likely that 
the proportion of space occupied by a given species will be either small or 
large relative to the other species at any given time. The beta distribution 
can also have a U-shape between 0 and 1 and this occurs if u, < 1 and 
v2 < 1. Because of reasons similar to those given above, this results in the 
most unstable form of coexistence. When d, # d,, the essential character of 
these findings remains unchanged except that an additional interior mode 
can be introduced if the death rates are markedly different. 

It is important to note that, when the stationary distribution exists, its 
shape is strongly controlled by the geometric mean adult death rates, the 
d,. If the di are small, the v, will necessarily be large and the distribution 
will be concentrated about the mean, leading to highly stable coexistence. 
Furthermore, if cr* is large, the y, will be small and u, x di’ - 1. Thus for 
large a*, the only features of the biology of the organisms that matter are 
the adult death rates. Therefore the adult death rates are the most critical 
parameters determining the nature of population fluctuations of species 
coexisting in the lottery model. 

COMPARISON WITH OTHER MODELS 

Our results can be compared with those of Chesson and Warner (1981) 
for the discrete-time lottery model. Their Fig. 1, whose results are repre- 
sented in Fig. 1 of this paper, presents conditions for coexistence derived 
numerically under the assumption of equal, nonrandom adult death rates 
with p having a lognormal distribution. Corresponding to that situation, 
our results give the condition for coexistence: G* > 2 Ill/( 1 - d). This condi- 
tion is represented by dashed lines in Fig. 1. The close correspondence 
attests to the accuracy of the diffusion approximation. 

Chesson and Warner also derived the conditions for coexistence for the 
case of small adult death rates, but arbitrary distributions for birth rates 
and death rates. The conditions are E[G,(t)jp(t)-l}]>O and E[G,(t) 
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FIG. 1. Comparison of the coexistence conditions of Eq. (11) (dashed lines) with the 
numerical calculations of Chesson and Warner (1981) (solid lines) for different values of the 
geometric mean death rate, d. Note that for d=O both conditions are identical. The 
coexistence region for a given d is the area above the line specified by that particular d. 

{ p - ‘(t ) - 1) ] > 0. If X( t ) and Yi (t ) are normal random variables, then these 
conditions become G* > 2 max [ - (CL + 0,), - ( -p + ~9,)] (see Appendix), 
which agree precisely with the results of the diffusion approximation for 
small di’s. 

Finally, Chesson (1982) derived shape criteria for the model for large 
(effectively infinite) a*. We noted above that in that case uix d,-’ - 1, 
which then determines the shape of the distribution. The conditions on the 
shape derived from this are in exact accordance with the conditions derived 
by Chesson for the discrete-time model. Chesson also derived the shape in 
situations where both p and G* are possibly large, but comparison with 
that case is complicated. In all cases where comparisons are available, 
agreement with the diffusion approximation is good. 

To obtain a diffusion process from the lottery model (which is a discrete- 
time Markov process) we speed up the time scale by increasing the number 
of breeding seasons per unit time, but decrease the amount of change that 
can take place for each season. There are several ways of decreasing the 
amount of change that can take place over a season, of which just one 
method is used here. The primary technique here is to let the quantity p 
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approach 1. This means that the birth-rate/death-rate ratios (/?,/S,) of the 
species approach equality so that the competitive advantage that either 
species has over the other at any time is small. The geometric mean adult 
death rates are kept constant in time, which means that the mean lifetime 
of an adult remains constant when measured in units of seasons, but in fact 
decreases in units of time. 

An alternative method used by Chesson (1982, 1984, 1985) does not alter 
the value of p but decreases the adult death rate to 0, thus making the 
organisms more long-lived in terms of breeding seasons but not in terms of 
units of time. However, the biologically important quantity is the number 
of breeding seasons that an organism lives. Adjustment of the timescale is 
merely a mathematical device to get a diffusion approximation. Therefore 
this alternative method is generally regarded as an approximation 
applicable to long-lived organisms. In this approximation it is also 
necessary to magnify the population variables P,(t) about their mean 
values because as the death rates approach 0 the stationary distribution 
converges on its mean. In essence, the variance of the stationary distribu- 
tion is proportional to the adult death rates, which are approaching 0. The 
stationary distributions derived from this method are always normal but 
take account of the actual distributions of the birth rates and death rates, 
not just the first two moments. In contrast, the approximation in this paper 
depends only on the first and second order moments of the random 
variables. As noted above, it tends to agree with results for long-lived 
organisms when the adult death rates are small. In particular, the beta 
distribution converges on the normal distribution as the di approach 0, in 
agreement with Chesson’s approximation for long-lived organisms. 

The most important feature of the new approximation is that it is not 
restricted in application to long-lived organisms and does not require 
altering the scale of P,(t) about its mean to obtain a stationary distri- 
bution. Thus a distribution on the interval (0, 1) is obtained. Moreover, 
while the derivation assumes that certain means and variances become 
small, comparison of the conditions for coexistence derived from the dis- 
crete-time model (above) indicates that these assumptions do not restrict 
the applicability of the results. The approximation is best when the various 
population parameters involved have lognormal distributions. Comparison 
of the results on the stationary distribution for large variability also 
suggests that features of the stationary distribution, in addition to condi- 
tions for coexistence, can be trusted far outside the assumptions of their 
derivations. 

When di = d2, our diffusion approximation is the same form as that 
found by Gillespie (1977, 1980) for a model of natural selection of genetic 
alleles in a random environment. Although the diffusion processes are quite 
similar, the underlying assumptions that we make are somewhat different 
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from those made in the genetics literature. In the lottery model important 
nonlinearities, essential for the form of the diffusion model and for 
coexistence, are created by overlapping generations. The corresponding 
models in the genetics literature assume nonoverlapping generations, but 
important nonlinearities are introduced by a diploid or polyploid genetic 
structure and possibly nonlinear fitness functions. The lottery model can be 
put in a genetical context by assuming a haploid genetic system in which 
the P, are the allele frequencies. It then shows that population limitation at 
the time of recruitment to the adult population coupled with fluctuating 
selection intensities, resulting from purely temporal fluctuations in 
fecundity or juvenile survival, can maintain a haploid or asexual poly- 
morphism. This is a new result. 

The genetics literature approaches the diffusion approximation a little 
differently, and to compare our results directly with Gillespie’s for the case 
of constant adult death rates, we would define fli( t)/d, = 1 + X,(t), 
E[X,(t)] =&pi, Var[XJt)] =&a;?, and Cov[X,(t), X,(t)] =&?iz. These 
assumptions lead to a diffusion process with the infinitesimal coefficients 

pL(x)= [d,x+d,(l -x)12 
d1d2x(1-x) {d,x[p,-p*-~;+e,,] 

+ d*(l - x)t-PI - P2 + 4 - O,,l) (16) 
and 

o’(X) = Cd,d*x(l -x11* co: + 4 - 2flI21 

[d,x+d,(l -x)-J’ . (17) 

Although (16) and (17) appear to be different from the infinitesimal 
coefficients given in (5) and (6), they are in fact identical when one 
considers that we used the log scale to derive (5). Note that s,u = 
E[ln p(t)] = E[P, --p2 + (4- a:)/21 + O(E) and EC2 = Var[ln p(t)] = 
&Co: + 0: - 284 + O(E). Letting ~==i-~2-t(a:-cr~)/2 and o*= 
+0:-2e,,, we get the infinitesimal coefficients given in (5) and (6). A 
similar argument can be put forth for the case of variable adult death rates. 

CONCLUSION 

The diffusion approximation that we have derived for the lottery model 
appears to provide a good approximation to the behavior of the original 
discrete-time lottery model over a broad range of conditions, but performs 
best when the population parameters in the model have lognormal dis- 
tributions. This approximation has allowed us to obtain simple formulae 
giving conditions for coexistence and the stationary density, which permit 
the predictions of the model to be understood more easily. Especially 
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important is the observation that the adult death rates are the primary 
determinants of the population fluctuations of the coexisting species. While 
the environmental variance is critical to coexistence, its effect on popula- 
tion fluctuations, once coexistence has been achieved, is much less impor- 
tant than the adult death rates. In some ways this is not surprising because 
environmental variation has a dual role in the model. As shown in other 
work (e.g., Chesson and Warner, 1981) environmental variation leads to 
positive mean instantaneous growth rates at low density, which means that 
positive growth away from the boundaries toward the mean population 
density is promoted by environmental variability. But it is also clear that 
environmental variation should tend to cause a population near the mean 
to be pushed away from the mean. Thus environmental variability has two 
opposing tendencies in this model (Eqs. 7 and 8), and the results that we 
have obtained here suggest that these two opposing tendencies of environ- 
mental variation come to an equilibrium as environmental variability is 
increased. 

As emphasized by Chesson (1986, 1988) coexistence in a stochastic 
environment results from an interaction between environmental variability 
and competitive factors. This interaction is caused here by the particular 
kinds of life-history traits that the organisms have. The life-history traits of 
relevance in the lottery model are that the organisms have overlapping 
generations and that competition occurs at the juvenile stage, which is also 
a stage that is sensitive to environmental fluctuations (through variability 
in the /3’s). The overlap in generations can be measured quantitatively as 
l/d,, which is essentially the mean longevity of adults. We have seen that 
this quantity involving life-history traits is most important in determining 
the stationary distribution and therefore the magnitude of the population 
fluctuations. Given that many properties of the lottery model have proved 
generalizable to other models (Chesson, 1986) it seems a reasonable 
conjecture that life-history features may well be the major determinants of 
population fluctuations in general stochastic environment models in which 
environmental variability promotes coexistence. 

APPENDIX 

Diffusion Coefficients 

We have defined p(t) = PI(t) d2(t)//12(t) d,(t) = eX(‘) and assumed 
E[X(t)]=Ep, Var[X(t)]=sa’, di(t)=dier,(‘), E[Y,(t)]=O, i= 1,2, 
Cov[Y,(t), X(t)] =sO,, and Cov[Y,(t), -X(t)] =sO*. Note that X, Y,, 
and Y,areoftheformX=.s~+&V, Y,=&V,,and Y,=&V,,with 
the V’s having mean zero and appropriate variances and covariance (e.g. 
Var( V) = a’). In the following derivation, it will be necessary to have con- 
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vergence in mean to O(E) of functions of X, Y,, and Y, which are O,(E~‘~) 
terms, and thus we must assume regularity conditions which allow us to 
conclude that E[0,(s3”)] = O(s3j2) = O(E). For example, assuming that V, 
V, , and V2 are bounded random variables is one such set of conditions. To 
see this, suppose that f(X) = C,“= 1 (~l’~)” a,( V) is a continuous function of 
V. Now, to approximate f(X), note that f(X) =Cz= 1 (E~‘*)~ a,,( V) + 
0 (E@‘+~)“) and E[Op(~(m+1)‘2)] does not necessarily equal O(E@+~)/~) 
umess V is a bounded random variable. We are not seeking the most 
general conditions under which the moment approximations hold, but only 
to verify that they at least apply to a broad class of situations. Thus, 
assume that E[Op(s(mf1)‘2)] = O(E@+‘)‘~) with m = 2 in the derivation 
which follows. Substitution of the above assumptions and definitions into 
the lottery model yields 

LlP, =IJ,(t+E)-P,(t)=P,(t)P2(t) 
i 

B1(t) (32(t) -P2(f) h,(f) 

PI(f) PI(t) +/32(t) P2(f) I 

= dld,Pl(f) P*(t) 
i 

evC-Vt)l - 1 
VA4 expW(O- Y2(f)l +d2P2(t) evC- Y,(t)1 I 

(AlI 

Using power series expansions for eX(‘), e ~ ‘lCt), e - y2(‘) and taking expected 
values gives 

Ed1d2x(1 -x) ~C~~,I~,~~~=~l=[dlx+d2(l~x)12 {d*[p + e1 + 0721 

+ [(d, - 4)~ - d,e, - 40, - (d, + d2)a2/2]x} + O(E) 

Ed1d2x(1 -x) {dlX[p-(j2-a2/2] 
= [d,x+d2(1-x)12 

+ d,(l -x)[p+ 8, + a2/2]} + O(E) (AZ) 

and 

c[dId2gx( 1 -x)1’ 
Jmfc I P,(t) = xl = [d,x + d2(l -x)l2 + de). 

Therefore, 

p(r)=li~~E[P,(t+f)-p,(r)lP,(1)=xl 

(A3) 

d1d2x(1 -x) 
= [d,x+d,(l -x)1’ 

{d,x[p-e2-02/2] +d,(l -X)[P++,+02/2]} 

(A4) 
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and 

[d,d*ax(l -x)1’ 
o’~x~=~~~~~~P,~~+~~-~,~1))2Ip,o=~l= [d,++d (l-x)12’ 

2 

(A5) 

Boundary Classification 

In order to classify the boundaries, it is necessary to determine the condi- 
tions under which certain integrals are finite (Karlin and Taylor, 1981). If 
MI= -(YI+ 1)/d,, ~2= -b2+ 1)/d,, y1=W++A/(r2, ~2=2(-~++2)/~~, 

cl and c2 are positive constants, l E (0, 1) is arbitrary, then for the left 
boundary these integrals are 

W, xl = ‘J’; J; S(Y) dy, 

where 

s(y) = exp - ’ {2p(x)/a2(x)} dx 
[I 5 1 

= c, y”‘(l - yy’ (for the lottery model), 

M(0, x] = lim 
s 

x 
4~) 4, 

010 u 

where 

m(v) = b’(Y) S(Y)1 -’ 

=c,[d, y+d,(l - y)12 ~-‘*l+~)(l - Y))(~z+~) 

(for the lottery model), 

(A7) 

(A81 

w=j,:{j’ } 4~) dy s(z) 4 
z 

and 

WO) = j; { j-‘s(y) dy} 4~) dz 
z 

(A9) 

(AlO) 

(All) 

Now, S(0, x] < co when czl > -1, which implies d1 > yi + 1. Otherwise, 
S(0, x] = co. Similarly, M(0, x] -C co when - (GL~ + 2) > - 1, which implies 
d, < y1 + 1. Otherwise, M(0, x] = co. According to Karlin and Taylor 
(1981), S(0, x] = cc *C(O) = CYZ and M(0, x] = cc = N(0) = 00. Thus, 
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C(0) = co when d, d y , + 1 and N(0) = cc when d, > y1 + 1. After some 
algebra (Hatfield, 1986), it can also be shown that C(0) = GO when 
d, > y, + 1 and N(0) = cc when d, < y, + 1. Using the boundary classifica- 
tion scheme in Karlin and Taylor (1981), the left boundary, 0, is a natural 
boundary because C(0) = N(0) = +cc for all d, E (0, 1). Due to the 
symmetry of the process, the right boundary, 1, is also a natural boundary. 

Comparison of Coexistence Criteria 

The conditions given by Chesson and Warner (1981) are 
CMWt) - 1 >I ’ 0 and E[G,(t){p-‘(t) - l}] > 0, where p(t) = 
Bl(t) d2(t)/lj2(t) J,(t). Making the definitions that p(t) =eX(‘), E[X(t)] =p, 
Var[X(t)] =a’, hi(t)=dieylcr), where E[Yi(t)] =O, Cov[Y,(t), X(t)] =t3,, 
and Cov[ Yz(t), -X(t)] = e2, and assuming that Yi(t) and X(t) have 
normal distributions, then 

-WIG,(t) {p(t)- 1 )I = EC~,(tkx”‘l - EC~,(t)l 

= d, E[e x(t) + Yl(r)] _ d, E[eY1”‘] 

=d, exp{E[X(t)+ Y,(t)] +Var[X(t)+ Y,(t)]/2} 

-d, ev(ECY,(t)l + Var[ Y,(t)lP) 

=d,exp{~++I+cr2/2} exp{Var[Y,(t)]/2} 

-d, ewParC Y,(t)lP). (A12) 

Now, E[G,(t){p(t)- l}] >O implies exp{p++8r +a*/2} > 1, giving the 
condition rs2 > -2(p + 0,). Similarly, for the condition E[G,(t) 
{p-‘(t)- q1 >o, we get o2 > -2(-p + 0,). Therefore, the coexistence 
criteria from Chesson and Warner ( 1981) become g2 > 2 max [ - (p + 19,) 
-(-P++e,)l. 

REFERENCES 

ABRAM, P. A. 1984. Variability in resource consumption rates and the coexistence of 
competing species, Theor. Pop. Eiol. 25, 106124. 

CHESSON, P. L. 1982. The stabilizing effect of a random environment, J. Math. Biol. 15, l-36. 
CHESSON, P. L. 1983. Coexistence of competitors in a stochastic environment: The storage 

effect, in “Population Biology” (H. I. Freedman and C. Strobeck, Eds.), pp. 188-198, 
Lecture Notes in Biomathematics, Vol. 52, Springer-Verlag. New York/Berlin. 

CHESSON, P. L. 1984. The storage effect in stochastic population models, in “Mathematical 
Ecology” (S. A. Levins and T. Hallam, Eds.), pp. 76-89, Lecture Notes in Bio- 
mathematics, Vol. 54, Springer-Verlag, New York/Berlin. 

CHESSON, P. L. 1985. Coexistence of competitors in spatially and temporally varying environ- 
ments: A look at the combined etfects of different sorts of variability, Theor. Pop. Biol. 28, 
263-287. 



266 HATFIELD AND CHESSON 

CHESSON, P. L. 1986. Environmental variation and the coexistence of species, in “Community 
Ecology” (J. Diamond and T. Case, Eds.), pp. 24&256, Harper & Row, New York. 

CHESSON, P. L. 1988. Interactions between environment and competition: How fluctuations 
mediate coexistence and competitive exclusion, in “Community Ecology” (A. Hastings, 
Ed.), pp. 51-71, Lecture Notes in Biomathematics, Vol. 77, Springer-Verlag, New York/ 
Berlin. 

CHESSON, P. L., AND WARNER, R. R. 1981. Environmental variability promotes coexistence in 
lottery competitive systems, Amer. Nut. 117, 923-943. 

COMINS, H. N., AND NOBLE, 1. R. 1985. Dispersal, variability and transient niches: Species 
coexistence in a uniformly variable environment, Amer. Naf. 126, 706723. 

DEVORE, J. L. 1982. “Probability and Statistics for Engineering and the Sciences,” Brooks/ 
Cole, Monterey, CA. 

FAGERSTROM, T. 1988. Lotteries in communities of sessile organisms, Trends Ecol. Euol. 3, 
303-306. 

GILLESPIE, J. H. 1977. Sampling theory for alleles in a random environment, Nature (London) 
266,443hl45. 

GILLESPIE, J. H. 1980. The stationary distribution of an asymmetrical model of selection in a 
random environment, Theor. Pop. Biol. 17, 129-140. 

HATFIELD, J. S. “Diffusion Analysis and Stationary Distribution of the Lottery Competition 
Model,” Ph.D. Dissertation, Ohio State University, Columbus, Ohio. 

HERBOLD, B. 1984. Structure of an Indiana stream fish association: choosing an appropriate 
model, Amer. Nat. 124, 561-572. 

KARLIN, S., AND TAYLOR, H. M. 1981. “A Second Course in Stochastic Processes,” Academic 
Press, New York. 

LEIGH, E. G., JR. 1982. Introduction: Why are there so many kinds of tropical trees? in “The 
Ecology of a Tropical Forest: Seasonal Rhythms and Long-Term Changes” (E. G. Leigh, 
A. S. Rand, and D. W. Windsor, Eds.), pp. 63-66, Random House (Smithsonian Inst. 
Press), New York. 

MANDL, P. 1968. “Analytical Treatment of One-Dimensional Markov Processes,” Springer- 
Verlag, New York/Berlin. 

RAHEL, F. J., LYONS, J. D., AND COCHRAN, P. A. 1984. Stochastic or deterministic regulation 
of assemblage structure? It may depend on how the assemblage is defined, Amer. Naf. 
124, 583-589. 

SHMIDA, A., AND ELLNER, S. 1984. Coexistence of plant species with similar niches, Vegetatio 
58, 29-55. 

SILVERTON, J., AND LAW, R. 1987. Do plants need niches?, Trends Ecol. Evol. 2, 24-26. 
STROOCK, D. W., AND VARADHAN, S. R. S. 1979. “Multidimensional Diffusion Processes,” 

Springer-Verlag, New York/Berlin. 
TURELLI, M. 1978. Does environmental variability limit niche overlap?, Proc. Nutl. Acad. Sci. 

U.S.A. 75, 5085-5089. 
TURELLI, M. 1981. Niche overlap and invasion of competitors in random environments. 

I. Models without demographic stochasticity, Theor. Pop. Biol. 20, l-56. 
TURELLI, M., AND GILLESPIE, J. H. 1980. Conditions for the existence of stationary densities 

for some two-dimensional diffusion processes with applications in population biology, 
Theor. Pop. Biol. 17, 167-189. 

WARNER, R. R., AND CHESSON, P. L. 1985. Coexistence mediated by recruitment fluctuations: 
A field guide to the storage effect, Amer. Nut. 125, 769-787. 

YANT, P. R., KARR, J. R., AND ANGERMEIER, P. L. 1984. Stochasticity in stream fish com- 
munities: an alternative interpretation, Amer. Nut. 124, 573-582. 


