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MacArthur’s consumer-resource model is reviewed and new ways of under- 
standing it are presented. Statistical measures of association between the utilization 
functions of different species are developed to show how coexistence conditions can 
be expressed in simple and understandable ways without the need to introduce 
strong symmetry assumptions. It is hoped that this new analysis will encourage 
both the use of the model in its full form without special simplifying assumptions, 
and the development of competition models of similar biological richness but 
different basic assumptions. c 1990 Academic Press, Inc. 

INTRODUCTION 

Recently, several authors have discussed the prominence of the idea of 
competition in the history of community ecology (Schoener, 1982; Grant, 
1986; Roughgarden, 1989). During much of this history, the Lotka- 
Volterra competition equations provided theoretical guidance, but an 
important question was how could the parameters of the equations, espe- 
cially the competition coefficients, be understood and measured empiri- 
cally? Answers to this question were put forward in several articles by 
MacArthur and Levins. The first of these (MacArthur and Levins, 1967) 
introduced the concept of a utilization function and derived a formula for 
competition coefficients by heuristic arguments. A more elaborate formula 
with a firmer foundation was presented briefly in MacArthur (1969) and 
discussed fully in MacArthur (1970). This last article, which I find most 
enduring, was the first article of the first issue of Theoretical Population 
Biology. Its contributions are the subject of this paper. 

The importance of MacArthur (1970) lies in its explicit analysis of a 
system of consumers interacting indirectly by exploiting common resources. 
The article has several sources of novelty. First, it made use of different 
timescales for the dynamics of consumers and resources. The 
Lotka-Volterra equations do not represent resources explicitly, and by 
exploiting these different timescales MacArthur showed how resources 
could be included in the LotkaaVolterra competition equations. The 
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second source of novelty was a minimization principle, which is related to 
the use of Lyapunov functions for demonstrating global stability, although 
the latter does not seem to have been MacArthur’s goal. The work, 
however, is mostly remembered for its formulae for competition coef- 
ficients. 

These formulae seemed to provide a way of measuring niche overlap that 
might represent the actual effect of resource sharing on interactions 
between consumers. Soon after, Robert May, in collaboration with 
MacArthur (May and MacArthur 1972), coupled these formulae with ideas 
on the possible effects of a stochastic environment, and it appeared to 
many that the problem of community structure (an explanation for the 
numbers and relationships among competitors in natural environments) 
might have been solved. The reasons for failure of the theory to live up to 
this expectation have been extensively examined and debated elsewhere 
(see, e.g., Roughgarden 1989). It is not the purpose of this article to review 
this discussion. It is instead written with the conviction that a great deal of 
useful and robust theoretical work was in fact achieved at that time, and 
that its failings have more to do with overly ambitious expectations from 
distorted versions of the theory, than with any fundamental error in the 
theory itself. 

For most users, MacArthur’s competition coefficient formulae were too 
complicated to be implemented in practice. For empirical work, special 
assumptions were generally necessary before the formulae could be applied 
(Schoener, 1974a). Similar assumptions were often made for further theoreti- 
cal development (e.g., May and MacArthur, 1972). As a consequence the 
full richness of the model presented by MacArthur was never explored. 

This article proposes ways of understanding the original formulae 
without special assumptions. It is hoped that his may stimulate further 
theoretical study of the model and its generalizations in their full form. 
In addition, the development of alternative models of similar biological 
richness would be of great value. 

THE CONSUMER-RESOURCE MODEL 

MacArthur (1970) proposed the following equations for the percapita 
growth rate of a consumer species i: 

c,,wJ, - m, . (1) 

Here, Xi is population density; R, is the population density of resource 
species I, which in these equations is probably best thought of as a food 
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resource; w, is the value of one unit of resurce species 1 to the consumer; 
cil is the rate at which consumer species i captures resource 1 per unit 
abundance of resource 1; mj is the total value of resource that must be har- 
vested per capita for the growth rate to be exactly 0. I shall refer to mi as 
the maintenance requirement, but we must remember that it includes all 
forms of loss from the system including death as well as physiological 
maintenance energy. Finally, 6, is a factor converting the resource excess 
into the per capita growth rate. 

The equation for resource dynamics has logistic population growth 
reduced according to consumer-imposed mortality: 

1 dR, -.-=r 
R,dt ’ 

- i CJ,. 
I=1 

Properties of the full system of Eqs. (1) and (2) have been studied by Case 
and Casten (1979), but MacArthur’s analysis assumed a timescale dif- 
ference between consumers and resources. Population dynamics of resour- 
ces were assumed to be faster, which means that Y, and cil are of larger 
order than b,c,w, and b,m,. As a consequence, R, in Eq. (1) can be 
approximated by its consumer-dependent equilibrium value derived by 
setting the RHS of Eq. (2) to zero. With this substitution, Eq. (1) takes 
the LotkaaVolterra form 

where the coefficients ai, are given by 

WA a, = C ci,cj, - 
/ r/ 

(4) 

and 

ki=x c;,w,K,-m,. (5) 

Equations (3) need not have a unique positive equilibrium value 
X* = (XT, . . . . X,*)‘. As we shall see, when a unique positive equilibrium 
exists, it is globally stable. It is obvious from (3) that a unique positive 
equilibrium can only exist if the matrix A = (av) is of full rank. This is so 
if and only if the rows of the matrix C = ( cu) are linearly independent. Now 
the ith row of C is the vector of per unit consumption rates of resources 
by consumer species i, and may be called the resource utilization function 
of species i (according to the usage of MacArthur, 1970). Linear inde- 
pendence of utilization functions means that no utilization function of a 
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species can be manufactured by combining linearly the utilization functions 
of other species. In particular, no two species can have proportional utiliza- 
tion functions. 

Given linear independence, the equilibrium is defined by 
X* = A-‘k. (6) 

The required solution therefore exists if ail the components of the RHS of 
(6) are positive. 

The next innovation, reviewed recently by Case (1980), was MacArthur’s 
demonstration that the evolution of these equations minimizes a certain 
quadratic form involving resource availability and resource supply in the 
presence of a unique positive equilibrium. This quadratic form was related 
to the function 

This function has all the required properties for a Lyapunov function for 
this system (Goh, 1977) provided only that its time derivative is 
everywhere negative except at the equilibrium point. This time derivative is 
easily shown to be equal to 

(8) 

where u(= w,K,/r,. It is clear that this quadratic form is negative definite if 
and only if the utilization functions are linearly independent. Without this 
linear independence, the system would approach a linear manifold of 
neutrally stable equilibria rather than a point equilibrium. Linear inde- 
pendence is thus necessary for a unique globally stable equilibrium point. 
In addition, the rate at which the Lyapunov function decreases, and thus 
the rate of approach to equilibrium, is related to the degree of linear 
independence. 

Linear independence has featured in the above discussion in several criti- 
cal places. First, it is necessary for uniqueness of the equilibrium, and as we 
shall see below, the degree of linear dependence is involved in the breadth 
of the parameter space permitting the equilibrium to be positive. Finally, 
we have just seen that it appears in the rate of approach to equilibrium. 

In the work following MacArthur (1970), and in a number of other 
articles about the same time, there was much focus on the amount of linear 
independence needed for a stable coexistence. Usually, it was phrased in 
terms of the degree of niche overlap necessary for coexistence (May, 1973). 
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To examine the permissible niche overlap, rather strong assumptions 
were made, including particular shapes for utilization functions, equality of 
the ki, and equality of the 0,. It might be argued following MacArthur 
(1972) that the o, can be absorbed into the utilization functions, but this 
underrates the significant biological information that the u, contain. In mul- 
tispecies contexts it was frequently assumed that the utilization functions 
are of equal widths and arrayed linearly equidistant apart. As pointed out 
by Roughgarden (1989), many thought that such assumptions, imposed to 
make the theory more understandable and more easily analyzed, were in 
fact conclusions. For example, constant body size ratios (Simberloff and 
Boecklen, 1981) that were presumed to come from competition theory in 
fact were only loosely associated with assumptions of convenience and had 
nothing at all to do with the conclusions. 

MacArthur’s model, however, and the formulae derived from it can be 
interpreted intuitively via the statistical measures discussed below, without 
making assumptions of convenience. Very special assumptions do not seem 
necessary for a good intuitive appreciation of the model. 

STATISTICAL MEASURES OF LINEAR DEPENDENCE 

A suitable measure of the degree of linear independence that does not 
involve special assumptions is the minimum eigenvalue of the matrix A 
divided by the minimum diagonal element of A. This measure has a maxi- 
mum value of 1, which is achieved when all rows of C are orthogonal to 
each other; in other words, when no two species share resources. This 
measure of linear independence can be related to the rate of approach to 
equilibrium given by the Lyapunov function. It gives the minimum rate of 
approach with the given utilization functions compared with the minimum 
that would apply if the utilization functions of different species were 
orthogonal. 

This suggested measure of linear independence is related to principal 
component analysis (Anderson, 1984; Ludwig and Reynolds, 1988), where 
linear dependences of the rows of a data matrix are of interest. The 
columns define observations of different individuals or samples and the 
rows correspond to different measurements on a set of individuals or 
samples. In this regard the coefficient ai, is analogous to a covariance. The 
main difference is that in principal component analysis, linear dependence 
is usually examined with the mean of a row as the origin. Here 0 is the 
origin. 

The problem can be approached from the opposite direction by looking 
for measures of linear dependence. If we examine two species at a time, 
such a measure indicates the closeness of the utilization function to propor- 
tionality. 
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Plotting one utilization function against another, as in Fig. 1, gives a 
visual impression of how close the points lie to a straight line through the 
origin. Fitting such a line using weighted least squares with weights u, gives 
the relationship 

c,,=%,,+c,, (9) 
aii 

where E, is the error in fitting the line and au/a,; is the regression coeffkient. 
The elements of the matrix A thus naturally appear. The weights, uI, used 
in this regression are biologically significant quantities. They measure 
importance of a resource in terms of its value, w,, multiplied by KJr,. The 
latter quantity combines the unexploited equilibrium abundance of the 
resource and its basic per unit productivity, rl, which determines its ability 
to remain plentiful in the face of exploitation. 

How do we assess the closeness of this fit, i.e., the closeness to propor- 
tionality? The usual answer is by R2 or what we shall call p* here. It is 
defined by 

p=&- (10) 

Now p* is the proportion of the weighted sum of squares 

accounted for by the fit of cj, to ci,, i.e., 

p2 = C ((aoh,) cd)*u/ 
c+, . 

‘jl 

‘il 

(12) 

FIG. 1. The dots represent the utilization function, c,,, of species j plotted against the 
utilization function of species i. The solid line is the weighted least squares proportional lit of 
c,, to c,,, and the vertical lines represent the deviations E, from proportionality. 

653’37’1-3 
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Note that while this formulation is asymmetric in i andj, the actual value 
of p is symmetric in i and j (formula (10)); i.e., it does not matter whether 
we consider a weighted least squares fit of j on i or i on j. 

The most useful aspect of p is that it can be related directly to existence 
of a positive equilibrium in a two-species system. If p = 1, the utilization 
functions are proportional and there is no unique solution; however, if 
p < 1, examination of Eq. (6) shows that a positive equilibrium exists if and 
only if 

(13) 

where the scaling constant 8 = d( measures the relative magnitudes 
of the utilization functions. This shows that with very small values of p 
there is a broad range of possible values of the ratio of ki and k.i consistent 
with coexistence. However, if p is close to 1, k,/k., must be very close to 1 
for coexistence to be possible. These relationships are represented in Fig. 2, 
with a log scale for ki/kj to give a symmetrical diagram. 

The analysis here is closely related to that given by May ( 1973, formula 
(6.25)), with the difference here being simply that no symmetry assump- 
tions have been made, and the interpretation is directly in terms of 
measures of proportionality rather than in terms of spacing of utilization 
functions on a recource axis. 

FIG. 2. Coexistence regions in the two-consumer version of MacArthur’s model in terms 
of the ratio k,/k,, the measure of proportionality p. and the relative magnitudes of the utiliza- 
tion functions 0. A is the coexistence region. In B, ,j is excluded, and in C, i is excluded. 
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Further insight is available if we delve into the formula for kj. Defining 
hi = 2, c,w,K,, we have from (5) 

ki=hi-m,. (14) 

The quantity mi is the maintenance requirement, and hi is the amount of 
resource that would be harvested by each individual if there were no com- 
petition (and each resource were therefore permanently at carrying 
capacity). 

The ratio of hi to h, takes into account the relative magnitudes of the 
utilization functions of the two species as measured by 8. Indeed, when p 
is near 1, h,/h,, will be near 0. Therefore, requiring the ratio of k, to kj to 
be near 9 is equivalent to requiring the ratio of the maintenance 
requirements to be approximately equal to 0. Thus, maintenance 
requirements and harvesting rates must be approximately proportional if 
the species are to coexist with p near 1. Such proportionality is perhaps a 
consideration in physiological ecology. Maintenance energy might be deter- 
mined allometrically (Peters, 1983); if harvesting rate is determined 
similarly, then this requires identical allometric exponents for harvesting 
rates and maintenance requirements. 

It must be kept in mind, however, that the maintenance requirement m, 
involves all forms of loss from the population in addition to metabolic 
maintenance energy including death of individuals by all causes. Thus, if 
one species is more subject to predation and disease than another, its main- 
tenance requirement will be increased in comparison to the other species. 
For coexistence, a value of p near 1 means that the ecological differences 
between species that could lead to differences in maintenance requirements 
are sharply restricted. 

GENERALIZATIONS 

A significant weakness of MacArthur’s consumer-reource model is the 
assumption that there are no interactions between resources except the 
indirect interaction that comes about from the numerical response of con- 
sumers to resources. The use of the logistic growth model implies that 
resources are biological. Since in practice the resources are often similar 
species, they might interact through competition, and in general, predator- 
prey interactions or mutualism can be expected. In other cases, sizes or 
stages of single species may be treated differently by consumers, so that 
multistage resource dynamics should be included. Finally, when resources 
are defined by places or times of foraging on the same species or same set 
of species, movements of resource species in space and connections over 
time need to be considered, too. 
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MacArthur (1970) made an important start on this collection of 
possibilities by permitting resource dynamics to take the general form 

1 dR, -.-=y 
R,dt ’ 

1-k i b,,R, 
/,=I 

(15) 

This allows any relationship among the resources compatible with a linear 
per capita growth rate. Making the same timescale assumptions as before, 
the Lotka-Volterra equation (3) again results, but the formula for the a,, 
is now 

M m 
aij= 1 C cipvpqcjq* 

p=l y=l 

where the weight matrix V= (v,,,) is defined as 

(16) 

V= WB-‘U, (17) 

with W= diag(w,), B = (b,,) and U = diag(K,/r,). Note that this differs from 
MacArthur (1970), due to a misidentification of subscripts. 

The form of the matrix V is important for further development. If V is 
a positive definite symmetric matrix, then A remains symmetric and the 
previously suggested measures of linear independence and proportionality 
are still applicable. The main difference is that the weights v[ used before 
have been replaced by the weight matrix V and are not so simply inter- 
preted. For the measure p, positive definiteness of V can be relaxed to 
simply that A be a positive definite symmetric matrix, which can occur 
without vs being positive definite. A little algebra shows that for an 
arbitrary constant 6, 

C (c,, - bcip) vp&,y - bciJ 
P-4 

= (a/a,, - b)’ ai, + 1 ~~~~~~~~ 
P. 4 

(18) 

where E, = cir - (a,jla,,) ci,. This means that the quadratic form on the LHS 
is minimized by setting b = au/a,,. Thus, using this quadratic form to judge 
fit to a straight line through the origin, the best tit is obtained with 
b = aii/aii. The interpretation of p as defining the closeness of a fit to a 
straight line is still applicable. Setting b = 0 in (18) shows that p* measures 
the fraction of 

1 cjp vpq ciq = aii 

P. Y 

(19) 

attributable to the weighted regression through 0 of c,, on c,,. 
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When A is not positive definite, we enter uncharted territory. In 
particular, the two-species coexistence criterion, (13), no longer applies. 

DISCUSSION 

Recently there has been a strong appreciation of the need to study com- 
petition models that cannot be represented in the Lotka-Volterra form 
(Turelli, 1981; Schoener, 1982; Chesson, 1988; Roughgarden, 1989). 
However, it would be wrong to think that Lotka-Volterra models have no 
further instructional value. MacArthur’s resource-competition model, 
which can be reduced to LotkaaVolterra form, has a richness of biological 
detail that deserves further study. Within the context of substitutable 
resources (Tilman, 1982) it permits arbitrary complexity of resource use 
and specifies in a detailed quantitative way how resource use differs among 
species. The development of other ecological models with similar detail, but 
without Lotka-Volterra assumptions, would be useful to see in what ways 
the results of the model generalize, and also to provide alternatives to it. 
Schoener (1974b) has provided a beginning to such a program. 

The results in the section on generalizations, above, show that the 
simplest results from MacArthur’s model, interpreted naively, do not 
generalize. In particular, the formula (4) for the au is incorrect when the 
model is generalized. However, interpreted more broadly, the results clearly 
do generalize in the sense that the formula (4) for the a, is a special case 
of formula (16). This does not make formula (4) wrong, only restricted in 
its application, like all formulae. Thus, further exploration of models, even 
Lotka-Volterra models, will show the conclusions of MacArthur’s model 
to be wrong in the narrow sense, but they will be correct in a broader 
sense. 

For further illustration consider the remark of Case and Casten (1979) 
that the simple global stability properties of MacArthur’s model might be 
replaced by multiple domains of attraction in the presence of some kinds 
of interference competition. To find a generalization of MacArthur’s results 
on global stability one might consider interference and exploitation 
simultaneously in a model and ask whether exploitative competition as 
defined in MacArthur’s model has a general tendency to reduce the number 
of domains of attraction. 

Research interest in MacArthur’s model should extend beyond attempts 
to generalize it, for there is much still be learned from the model in its 
original form. As has been emphasized, most studies of MacArthur’s model 
proceed as if the weighting terms u, in the ad did not exist. Moreover, 
strong symmetry assumptions on the relationships of among utilization 
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functions and among resurces are often imposed; however, Roughgarden 
(1979) has discussed some variations on strict symmetry. 

As illustrated by Spiller’s (1986) field study, the terms, a,, incorporating 
resource value and resource productivity have important information. For 
example, making one of these much larger than others reduces linear 
independence for it places great emphasis on just one resource. Thus, 
coexistence is much more difficult. In some cases, the u, could be 
manipulated experimentally in nature, and such manipulations could lead 
to new tests of the model and new ways of exploring competition. 

Does the model predict patterns of size differences among competing 
species, as have often been sought in competition studies (e.g., Schoener, 
1984)? In the absence of many special assumptions, such results are 
not predicted by the model (Roughgarden, 1989). Indeed, simple overall 
patterns applicable broadly are unlikely to result. The patterns that are 
produced will depend on information on resources, as incorporated in the 
much neglected u,, in addition to the possible forms that the utilization 
functions might take. 

Any test of such patterns will likely involve information of a different 
and more detailed nature than ecologists have been accustomed to. There 
is no reason to believe that such a test would be intractable. For example, 
I have mentioned above that the uI might be subject to experimental 
manipulation. However, it also might be concluded that in some systems 
community dynamics cannot be adequately investigated with current 
technology. This is a better conclusion than an affirmation or rejection of 
competition based on a seriously oversimplified mathematical or verbal 
model. 

There two other useful areas of exploration of MacArthur’s model that 
I would like to mention. First, the statistical measure of linear dependence 
derived here needs to be extended to the multiconsumer case, and more 
generally to the case of interacting resources. Second, the interacting 
resource model needs further exploration because very few conclusions are 
available from it as yet. Because interacting resources might lead to an 
insuperable degree of complexity for study in nature, it would be useful to 
know when such interactions can safely be ignored or got around by 
suitable aggregation of resources. For example, a guild of competing 
resources in some circumstances could be treated like a single resource. 

The statistical measures derived here are intended to show that 
MacArthur’s model, as rich and detailed as it is, can be reduced to intuitive 
tractability without making special assumptions. Measures of a similar 
nature but applied to competition in a stochastic environment are dis- 
cussed by Chesson and Huntly (1988). Given the complexity of the natural 
world, it seems not unreasonable to propose that strong theoretical 
explanations of the functioning of natural communities might well 
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generally involve statistical measures summarizing the diverse effects of the 
many species, processes, microhabitats, etc. Such statistical measures would 
be derived from models of ecological processes. 
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