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Abstract A general model shows how the long-term growth rate of a population can be partitioned into components
representing various mechanisms of maintenance of species diversity. One component summarises the effects of
fluctuation-independent mechanisms. which include classical resource partitioning and frequency-dependent her-
bivory. Two other components represent fluctuation-dependent mechanisms, the storage effect and relative
nonlinearity of competition,

The general model shows how a community will track an equilibrium set by fluctuation-independent mechanisms
and the environmental state when community dynamics are faster than the rate of environmental change. Fluctua-
tion-dependent mechanisms can be important for diversity maintenance with or without such tracking, but on long
timescales their effects are indistinguishable from those of fluctuation-independent mechanisms.

These considerations lead to a hierarchical view of mechanisms of diversity maintenance where the effects of
different timescales are partitioned or merged depending on the timescale of observation. These issues are illustrated
with model examples involving various combinations of resource partitioning, fluctuations in recruitment rates, varia-
tion in the timing of germination, and seasonality. The very long timescales associated with climate change contain
many complexities but nevertheless many ideas applicable to shorter timescales may be useful in a modified form.

Key words: diversity maintenance, competition, stor-
age effect, temporal hierarchy.

Ecologists have long believed that variation matters a
great in the maintenance of diversity, and that an impor-
tant aspect of variation is the scale on which it occurs.
However, a conceptual framework permitting an under-
standing of variation and scale has been emerging only
recently. Hierarchy theory {(Allen and Starr, 1982;
O’Neill et al., 1986; Q’Neill, 1989) has given some
ways of thinking about temporal scale of variation, and
models of community dynamics have provided an un-
derstanding of temporal variation as a mechanism of
diversity maintenance {Abrams, 1984; Chesson, 1989,
1994; Ebenhoh, 1991; Loreau, 1922).

Animportant issue is the extent to which a communi-
ty at a particular place and time is explicable by condi-
tions observable at that place and time {Davis, 1986).
The traditional equilibrium approach to communities
seeks conditions for a stable equilibrium in terms of cur-
rent conditions. Implicit in this approach is faith that
current conditions can explain communities. How can
such an approach he reconciled with temporal en-
vironmental variation? There is no contradiction if com-
munities follow or ““track’ an equilibrium determined
by environmental conditions. Then a community as cur-

rently observed is determined by current conditions.
Tracking an equilibrium, however, requires a communi-
ty to approach equilibrium at a faster rate than the rate
of change in the equilibrium {(Roughgarden, 1975,
1979).

Irrespective of tracking on any scale, a major in-
fluence on community dynamics arises from the man-
ner in which variation propagates up a hierarchy of tem-
poral scales {Chesson, 1991}. This effect comes from
the phenomenon of nonlinear averaging—see Fig. 1.
When nonlinear averaging occurs, variation on one
scale appears as a systematic effect on another scale,
and has the potential for qualitative as well as quantita-
tive effects on community dynamics. The predictions
of models of environmental variation {e.g. Chesson and
Huntly, 1989), including models of disturbance (e.g.
Hastings, 1980) depend on such nonlinear averaging.
For example, Chesson and Huntly (1989} show how
nonlinear averaging ¢an convert instability on a short
timescale to stability on a long timescale. In their
model, the community is unstable for any fixed en-
vironmental conditions and would lose species over
time. However, environmental fluctuations mean that
the rank order of dominance in the community changes
with time. Nonlinear averaging can convert this fluc-
tuating rank order of dominance into a stable coex-
istence.
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Fig. 1. lllustration of nonlinear averaging: The variable X on
the horizontal axis fluctuates between the values x, and x,,
with equal frequency, or the values x, and x5, with equal fre-
guency. In both cases the average value of X isx. The func-
tion ¥, whose graph is given by the thick line, represents
some property of a biological system dependent on the fluc-
tuating variable X. Because the graph of fis nonlinear (not a
straight line} the average value of fiX]} is not given by the
point G (with vertical coordinate f(¥)) but by the point B or
the point £, the mid point of the straight ling joining the
points A and C or the points £ and F, because the vertical co-
ordinates of these points 8 and £ are respectively the
averages of fX), 1/2[fx,)+ fix,}] and 1/2[f(x;}+ Flxs)). Note
that the difference between fix} and the average of (X} in-
creases with the variance of the fluctuations.

Environmental Tacking and Nonlinear Averaging

A general model of Chesson (1989, 1994) provides an
approach to temporal hierarchies in communities of
competing species. A particular example serves 1o il-
lustrate the important concepts. Consider a community
of n iteroparous perennial organisms with fluctuating
recruitment rates. Let a unit of time be a year and ex-
press the population density of species 7 at time t+1
{Xilt+ 1} in terms of population density at time ¢, en-
vironment, and competition according to the formula

Xit+1)=sX{t) +EALXAD)/ CAn), {n

where s;is the survival rate of mature (aduit) individuals
of species /, £/} is the rate of recruitment to the adult
population in the absence of competition, and CA#) rep-
resents the multiple by which such recruitment is re-
duced by competition between immature individuals. If
population density is measured in terms of biomass per

unit area instead of numbers of individuals, this model
also applies to organisms that increase in size as adulis,
and as a consequence increase their fecundity. In such
cases,'s; is not the mortality rate but the rate of attrition
of adult biomass, thus summarising mortality and
growth {Warner and Chesson, 1985).

We use the Ricker form of the competition parame-
ter, C/{t}, popular in discrete time models (e.g. Turelli,
1981). This competition parameter is here specialised
for competition between immature individuals, whose
numbers are assumed proportional to E{t).X{t} for spe-
cies f:

c,-(r)zexp{_§1a,-,f,-(t)x,-4r)}. (2)
p:

In this formula, a; is the coefficient of competition for
the impact of immatures of species j on survival of im-
matures of species /. The combined maodel consisting of
equations (1} and {2) will be referred to as the */Ricker
recruitment model.”” As is well known, resource parti-
tioning at the immature stage can lead to coexistence.
Resource partition is manifested in these equations by
intraspecific competition coefficients, a; that exceed
the corresponding interspecific competition coeffi-
cients, a;. In the absence of environmental variation,
such a system can come to an equilibrium as depicted
in Fig. Z2a. (Parameters of all simulations are given in Ap-
pendix 1.) What will the effect of environmental varia-
tion be on such an equilibrium?

The environmental conditions at any particular time
can be regarded as setting an equilibrium, an en-
vironmentally-dependent equilibrium, that changes
over time as the environment varies. Such a changing
equilibrium is depicted in Fig. 2b. The figure shows the
effects of environmental variation on two scales, a
short timescale of year to year variation, and a longer
timescale, representing long-term variation in climate.
The actual population densities closely track the major
variation in this environmentally-dependent equilibri-
um, but the short-term variation is not tracked—it
tends to be averaged over.

The tendency of a community to track environmental
variation depends on a number of factors. First is the
magnitude of the variation itself. Fig. 2c shows a higher
magnitude of variation than Fig. 2b and we see that the
equilibrium is tracked less well. In particular, one of the
two species sometimes has an environmentally-depend-
ent equilibrium of zero. This species fails to converge
on the extinction state, and lags behind the environmen-
tally-dependent equilibrium when recovering from low
densities. Second, frequency of environmental change
of a given magnitude has a major influence on tracking
as is illustrated in by comparing Figs. 2c, 3a, b. Track-
ing becomes progressively worse until in Fig. 3b, there
is very little tracking at all. Third, tracking tendency is
influenced by life-history characteristics. The more
abundant species in these figures has twice the aduit
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Fig. 2. OQutput of the Ricker recruitment model with two spe-
cies and resource partitioning. The thick lines are the popula-
tion abundances and the thin lines are the environmentally-
dependent equilibria. {a) No environmental fluctuations. {b)
Slow low amplitude environmental fluctuation. (¢} Higher
amplitude environmental fluctuation.

longevity of the other species, and it shows much less
tendency to track the equilibrium. The findings are in
general agreement with the detailed studies by
Roughgarden (19756, 1979} of discrete-time logistic
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Fig. 3. Output of the Ricker recruitment model as for Fig. 2
but with higher frequencies of environmental fluctuation.

and Lotka-Volterra models. However, timelags due to
the discreteness of Roughgarden’s models decreased
tracking tendency. Adult longevity considered here is
another form of timelag that also reduces tracking
tendency.

in the case of very little tracking, as in Fig. 3b, it is
tempting to assert that the population is simply at some
average environmental state. But several things are im-
mediately clear. First, the population densities of both
species are quite considerably above the average
equilibrium value. Moreover as can be seen by com-
parison with Fig. 2a, in which environmental conditions
are constant at an average value, the population den-
sities in the presence of fluctuations deviate from the
equilibrium densities for average environmental condi-
tions. Rather than wash out, the fluctuations in the sys-
tem have a much more subtle effect. To gain a better
understanding of this effect, we can remove resource
partitioning so that the species are no longer able 10
coexist in a constant environment (Fig. 4a). Putting en-
vironmental variation back in the model (Fig. 4b), we
see a slowing of the rate at which extinction is ap-
proached. Increasing the magnitude of environmental
variation (Fig. 4¢), we see that environmental variation
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Fig. 4. OQutput of the Ricker recruitment model as for Fig. 2
but with no resource partitioning. (a) No environmental fluc-
tuations. (b} and (c) Environmental fluctuations respectively
of moderate and larger magnitude.

can actually lead to long-term stable coexistence. Note
that as there is no resource partitioning in Figs. 4b and
4c, the environmentally-dependent equilibria always
specify one of the two species as extinct.

Such contributions of environmental fluctuations to
coexistence are due to the nonlinear nature of averag-
ing in this system. These contributions to coexistence

are present, though less cbvious, even when the sys-
tem tends to track the environmentally-dependent
equilibrium. To understand these issues we need to
take a quantitative approach.

Quantifying the Long-term Effects of Fluctuations on
Community Dynamics

Rate of decline to extinction and rate of recovery from
low density are useful currency for the study of coex-
istence. To quantify them, we use the long-term low-
density growth rate, which is defined by averaging rdt)
=In X{t+ 1)—In Xit) over time for a population star-
ting at low density. At low density, the growth rate of
the popuiation is insensitive to changes in the actual
density of the species itself, and just depends on the
densities of other species. Then the average of r;(t} over
time, 77, corresponds to the slope of the straight line con-
necting the initial and final values of In X{z} involved in
the average {Fig. 5}. If these initial and final times are re-
spectively O and 7, then

In X{N—In XA0)=Tr, {3)

and so i; defines the actual change in population size
over the defined period. There is no important loss of in-
formation by averaging.

This long-term low-density growth rate, ;, has besn
determined approximately for the Ricker recruitment
model under the assumption that the adult survival
rates s; are the same for all species and that the environ-
ment fluctuates independently from one time to the
next {Chesson, 1994}. The expression for 7 splits into
two components,

r=fF+Al (4)

The first component, 7/, is contributed by classical re-
source partitioning, and takes the form

— *
ff'=5{#i—ﬁ+%} (5)
where, §=1-—s is the adult mortality rate, g is the
average of In £; over time, 2 is average of the g for the
competitors of species /, 3 is the interspecific competi-
tion coefficient, which is assumed to be of similar
magnitude to «, the intraspecific competition coeffi-
cient, and C* is the average level of competition in this
system.

The second cormponent, A/, depends on environmen-

tal fluctuations. It takes the form
gsl1—plg2C*

Af= 1

(6)

where ¢? is the variance of In Ei#), the natural log of the
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rate of recruitment to the adult population in the
absence of competition, and g is the correlation be-
tween In £t} values for different species —it measures
how much species differ from one another In their
responses to environmental conditions,

The quantity 7;is an average, and yet as we see in the
formula for A/, it depends on environmental fluctua-
tions. Indeed, A/ is proportional to ¢2, the variance of
the environmentally-dependent parameter. How can
this occur? Figure 1 illustrates how averages can be
affected by variance when the average is nonlinear.
The average B is higher than £ in Fig. 1 because of a
greater variance contribution to 8. Nenlinearity is criti-
cal in the effect of variance on the average. Figure 1, il-
lustrates just one-dimensional nonlinear averaging, but
more complex forms of nonlinear averaging occur with
more dimensions. Figure 6b illustrates a two-dimen-
sional nonlinearity, called subadditivity (Chesson and
Huntly, 1989; Chesson, 1994}, arising in the Ricker
recruitment model. The figure plots the growth rate as
a function competition for high and low values of the en-
vironmentaliy-dependent parameter, corresponding re-
spectively to favourable and unfavourable environmen-
tal conditions. Subadditivity is recognised in the figure
by convergence of the growth rates with increasing
competition. In contrast Fig. 6a illustrates the additive
case where the curves are parallel. The subadditivity
shown in Fig. 6b depends on adults surviving for more
than one breeding seascn, in other words, having a
nonzero value of s,

A detailed discussion of nonlinear averaging in sub-
additive and moré generally nonadditive models is
given elsewhere (Chesson, 1990}; however, the most

189

important thing to note is that subadditivity leads to the
potential for strong population growth if environmental
conditions happen to be good while competition is low
{point A in Fig. 6b). In contrast, when competition is
strong and environmental conditions are bad the value
of the growth rate is not much different from the situa-
tion of good environmental conditions together with
strong competition (point C in Fig. 6b compared with
point D). In the additive situation depicted in Fig. 6a
this is not the case, as the points A and C are symmetri-
cally located. Thus, points A and C are equally extreme,
and the gains made by occcurrence of A are cancelled by
occurrence of C as the growth rate is averaged over
time to give the iong-term trend. The different outcome
in the subadditive case (Fig. 6b) compared with the ad-
ditive case {Fig. 8a) is an important form of two-dimen-
sional nonlinear averaging that can act as a diversity
maintaining mechanism.

To act as a diversity maintenance mechanism, how-
ever, subadditivity must be combined with two other
factors. First, eqn {2) shows that competition depends
directly on response to the environment. In particular, if
a species is at high density, an in improvementin the en-
vironment simply leads to more competition through
the production of more competing immatures. In other
words, there is covariance between environment and
competition. In terms of Fig. 6, this covariance be-
tween environment and competition means that fluc-
tuations between the points B and D are more likely to
occur than fluctuations between the points A and C.

Second, it is important that covariance between en-
vironment and competition does not apply in the same
way to a species at low density. A species at low densi-
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Fig. 5. Graph of the natural log of population abundance for a population starting at low density. Population
growth is density-independent for a time as indicated by approximately straight line growth. The dashed

line summarises the result of this initial growth.
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Fig. 6. The population growth rate (change in In abundance
over time) as a function of competition, plotted for two
different environmental situations. (a} Additive growth
rates. {b) Subadditive growth rates,

ty contributes little to competition. Therefore, there is
little direct effect on competition as a consequence of
such a species being favoured by environmental condi-
tions. Competition comes from other species, and
whether a species at low density will experience high
competition simultaneously with good environmental
conditions depends on how closely correlated its
response to the environment is with that of other spe-
cies. A value of p<1 means less coupling of environ-
ment and competition for a species at low density com-
pared with a species at high density, and consequently
a more favourable pattern of fluctuations in en-
vironmental and competition, i.e. a larger fraction of
fluctuations between A and C on Fig. 6b than between
B and D. As a consequence a positive value of Af can
result {Chesson, 1990). '
The occurrence of this positive value of A/ is called
the storage effect (Chesson, 1994). We have seen that

there are three ingredients to this storage effect, sub-
additivity, covariance between environment and com-
petition and a value of p<1, which resuits from
species-speacific responses to the environment. The
name storage effect comes from the idea that the gains
made from the occurrence of A in Fig. 6b are in effect
stored by build up of the population in a way that can-
not be cancelled immediately by the occurrence of
poorer conditions.

The storage effect is an important form of nonlinear
averaging that can be a powerful promoter of coex-
istence, and we have argued elsewhere that its three
essential ingredients are likely to be common in nature
{Chesson and Huntly, 1989). However, another form
of nonlinear averaging can affect species coexistence.
Figure 7 depicts the growth rates of two species as
nonlinear functions of competition. These growth rates
are refatively nonlinear as they curve in different direc-
tions. Curving in the same direction but by different
amounts is also a form of relative nonlinearity. Com-
parison of Fig. 7 with Fig. 1 shows that fluctuations in
competition will increase the average growth rate of
species b, but decrease that of species a. Such relative
changes in average growth rates can promote or
demote coexistence depending on the circumstances,
and s0 are part of a coexistence-affecting mechanism
called relative nonlinearity (Chesson, 1994},

These coexistence-affecting mechanisms, the
storage effect and relative nonlinearity, have been
studied for models of the general form

rile)=gdEAt), CAt)), {7)

of which the the Ricker recruitrment model is a special

z_
]
S (a)
2
6]
(b)
Competition

Resource availability

Fig. 7. Population growth rates of two species (a) and (b} as
functions of compétition showing relatively nonlinear
respenses —different sorts or magnitudes of nonlinearity.
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case with
GAEAR), CAt) =In{s;+ EAt)/CAL)}. {8}

In the general case (7], however, g{Edt), C,{f)} can be
essentially any function that decreases in the variable
CAt). The critical point is that £4t} is a population param-
eter, called an environmentally-dependent parameter,
independent of population density but dependent on en-
vironmental factors. The variable Ci{t), the competition
parameter, is a measure of the reduction in population
growth due to competition. The function g; then com-
bines these two parameters of population growth into
overall growth of the population.

This model leads to the general conclusion that the
iong-term low-density growth rate of a species can be
represented in the form

r=r — AN+ A, 9)

where 7 summarises fluctuation-independent or classi-
cal coexistence-affecting mechanisms (e.g. resource
partitioning, frequency-dependent herbivory), Al is the
storage effect, and AN is relative nonlinearity.

The formula {9) explicitly recognises three time-
scales. First is the unit of time, which sets the max-
imum resclution of fluctuations in the model. Second
are lengths of time less than a unit, on which classical
fluctuation-independent mechanisms, such as resource
partitioning, may operate. Third is “"long-term’’, which
is the length of time over which the growth rate rit) is
averaged to produce the long-term growth rate. This
timescale is commonly infinite in theoretical models but
this is not essential; it can in fact represent a particular
finite amount of time as depicted in Fig. 5. As emphasis-
ed in eqn (3}, the long-term growth rate/; is an accurate
summary of actual population growth frem low density
for any period T units in fength (¢ to ¢+ 7, say} provided
F; is calculated for the actual period of time in guestion.

in formuila (9), the mechanisms AN and A/ depend on
there being fluctuations from one unit of time to the
next, and so these mechanisms have been referred to
as fluctuation-dependent mechanisms. Whiie we have
referred to the mechanisms represented in 7/ as fluctua-
tion-independent mechanisms, there is nothing in the
equations to say that they are independent of fluctua-
tions within one unit of time, a timescale on which the
model gives only a summary outcome. The Ricker
recruitment model gives very similar results for both
fluctuation-dependent and fluctuation-independent
mechanisms when viewed on a long timescale {com-
pare egns 5 and 6, disregarding p;— p) suggesting that
the distinction between fluctuation-dependent and fluc-
tuation-independent mechanisms depends very much
on the timescale. We shall explore this further by con-
sidering models in which more timescales can be con-
sidered explicitly.

Fluctuations on Several Scales

Consider a community in which recruitment occurs con-
tinuously throughout a year and maturation of new in-
dividuals takes place on a short timescale such as a
month. An example is the understorey herbaceous com-
munity of moist eucalypt forests of eastern Australia, if
we regard a ramet as individual (pers. obs.). The equa-
tion for population growth can still be eqn (1) with the
interpretation that a unit of time is a calendar month. in-
stead of the Ricker expression (2) for competition we
shall use the lottery form

¥ EDXl8)
C=In{*= {10}

2 Xt
k=1

which is the same for all species in the system and
therefore precludes the possibility of a classical
equilibrium coexistence, This model of competition has
been discussed at length in the literature as a model of
random allocation of space (e.g. Chesson and Warner,
1981). Contrary to popular perception, random alloca-
tion of space per se does not enable coexistence of
competitors. Rather the storage effect, a concept
which is independent of lottery competition, as we
have seen here, is responsible for coexistence in the
model.

Simulations of the lottery model for two species in a
strictly seasonal environment, with species differences
in seasonal patterns of growth, is given in Fig. Ba.
Figure 8b shows the same thing but with randem pat-
terns of growth from month to month in contrast to the
sinusoidal patterns considered in Fig. 8a. The variable
plotted is the relative abundance of species 1 defined
as species 1's proportion of the total amount of space
occupied by the two species. Because the total amount
of space occupied by the species in this model is con-
stant, a relative abundance between O and 1 means
that the species coexist. Note that a nice coexistence
oceurs, and there is little to difference between random
{or aseasonal) and regular seasonal variation. Most in-
teresting is the fact that in both cases the population
trajectories are well approximated by the sort of
smooth approach to an equilibrium abundance normally
associated with classical coexistence mechanisms and
illustrated in Fig. 2a.

To see what is happening in these simulations, we
first convert the model into a standard form by transfor-
ming the environmentally-dependent and competition
parameters so that they are measured in units of the
growth rate {Chesson, 19924). We then approximate
the model by a quadratic equation. The lottery model
becomes

giE, CA=E;— Cit1iEC; {1
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Fig. 8. Output of the lottery model for a population

recruiting monthly. (a) Regular seasonal environmental varia-
tion. (b} Random or aseasonal variation within a year.

where 7; is a quantitative measure of nonadditivity,
here equal to —s/d {Chesson, 1994}, with a negative
value meaning the model is subadditive. (All models in
the form {7) above produce this approximation {11),
the differences between models being expressed in the
value of r and the details of C; and £;.} With a model in
this form we can then evaluate the average of the
growth rate over a period of one year (Appendix I} to
obtain

=E—CT+{(X.B +1E]-C7, (12)

where a bar over variable with a superscript ¥ means
that the variable has been averaged over a period of the
length of a year. The function //{X, E} summarises the
effects of fluctuations within a year. It depends on the
vector X of population densities at the beginning of the
year and the variation in the environment for that year
symbolised by E. This function summarises the out-
come of the storage effect within a year. But what is
this function like? For the lottery model in the situation
depicted in Fig. 8 where population densities do not

change a great deal over a period of a year, we find (Ap-
pendix I} that

JY(X.E)=— (s/a)_§1x,ﬂ,3-’. 13)
|z

The coefficient a,}' is the covariance between £;and £,
calculated for & specific year in question. This is a linear .
function of densities—in essence Lotka-Volterra com-
petition —similar to the specification for immatures in
eqn (2) above. The covariances ¢ are analogous to the
competition coefficients in eqn (2} summarizing the
effects of resource partitioning. However, these
covariances are functions of variation. They are not
prescribed in the formulation of the model, and there is
no resource partitioning in the model. Rather this Lotka-
Volterra result is an emergent property of fluctuations
over time due to nonlinear averaging. In other words,
the Lokta-Volterra result could not be predicted from
the behaviour of the model at any given time. It is only
evident when times are combined to vyield longer-term
dynamics.

To see that this linear function (13) of the densities is
capable of explaining the dynamics seen in Fig. 8, we
form the difference between the growth rate of species
i and the average of the growth rates of its com-
petitors, and then we obtain a growth rate of relative
abundance as follows,

+7ET-ENCY, (14)

where the bar over a variable with a dot subscript
signifies the average over other species {not species 7.

Under the assumptions of the simulations of Fig. 8,
there is respectively no environmental variation and
negligible environmental variation from year to year in
the strictly seasonal and aseasonal versions of the
model. This means that the first term in eqgn {14} can be
regarded as a constant while the last term is approx-
imately zero. Therefore, all the important action is in
the middle term of egn (14}, which defines a stable
equilibrium for the system on the yearly timescale,
Thus, on a timescale appreciably longer than the
timescale of fluctuations, we see that a fluctuation-de-
pendent mechanism can produce dynamics indistin-
guishable from the dynamics of classical deterministic
models of resource partitioning, even though such
classical mechanisms are not included in the model. in
fact the stable equilibrium in Fig, 8 results from the
storage effect, with subadditivity contributing the
nonzero multiplier s/é, covariance between environ-
ment and competition being responsible for existence
of the sum of densities multiplied by environmental
covariances, and species-specific responses to the en-
vironment giving the differences between ¢} and o}
that are necessary for this term to create a stable
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Fig. 9. Output of the lottery model as for Fig. 8. The thick
line is relative abundance of species 1, and the thin line is
the equilibrium determined by variation within a year. (a)
Aseasonal variation within a year and slow environmental
change from year to year. {b) Regular seasonal variation
with random environmental variation from year to year. {c)
As for (b} but with no year to year variation. Note the
change in scale of the time axis to show exclusion (c}. Com-
petitive exclusion illustrated by (c) arises whenever varia-
tion on either scale is omitted from the simulations in {a) or
{b}.

equilibrium. This equilibrium is an emergent property of
the system on the yearly timescale; it is not prescribed
by the equations on the monthly timescale.

Now consider the two levels of variation, within-year
variation and variation from year to year. Figure 2a
shows random variation within a year and regular long-
term variation from year to year. In contrast, Fig. @b
shows regular seasonal variation with random fluctua-
tions from year to year. The first thing to note is that
with regular long-term variation there is a tendency
toward tracking of the equilibrium set by the within-
year variation. In the case of random between-year
variation, an appreciable tendency to track is only evi-
dent when there is a run of similar years; otherwise
there is very little tracking. However, whether there is
tracking or not, variation on both timescales con-
tributes to coexistence. To demonstrate that this is so,
these particular simulations have been constructed
with the property that elimination of variation on either
of the timescales leads to competitive exclusion (Fig.
9c).

A quantitative understanding of the two levels of
variation can be gained by averaging eqn (12} over a
longer timescale (Appendix Il}. Although the general
equation is complex we can nevertheless gain an ap-
preciation of the essentials by considering again the
case where population densities themselves do not
change greatly during the averaging period, {e.g. Fig.
9b}. For the Lottery model we then obtain the formula

P—7P=EP—E P+ (5/5)_51)(,-{(&.}’-— P
2
+@f -} +1IEP—EDCP (15)

where the bar with a D superscript stands for averaging
the variable over two timescales. The covariances 47
are the covariances of £/ and £, over the D timescale.
We now have variation on two timescales, with the
potential for species differences on both the yearly
scale and the longer scale denoted here simply as D,
creating an equilibrium on that scale. Essentially we see
the accumulation of effects on several scales even
though the nonlinearity in question arises on the
shortest of these scales.

Qualitatively Different Timescales

The example above incorporated no fundamental differ-
ences in biological processes occurring on the different
timescales of environmental variation. Often there will
be, however. The cycle of seasons within a year pro-
vides important variation that may maintain diversity
{Stewart and Levin, 1973; Armstrong and McGehee,
1976; Brown, 1989a, b; Loreau, 1989). For example,
consider communities of winter annual plants of the
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Chihuahuan Desert of southwestern U.S.A. These
plants show variation in the fraction of seeds germinat-
ing in any year. With survival in the seed bank, this can
lead to species coexistence by the storage effect
{Eilner, 1985; Chesson, 1994). However, within any
given year there are differences between species in the
timing of germination. While these differences interact
with yearly variation in weather patterns to produce be-
tween-year variation in germination {Huntly and
Chesson, manuscript), within-year differences in germi-
nation patterns may also have important effects. In ad-
dition, it is important to consider growth in size of the in-
dividuals in any given year, in addition to changes in
numbers of individuals growing. For example, some
species may differ in their times of cessation of growth,
or simply their rates of growth at different times of year
in relation to such factors as temperature and solar
radiation.

These environmental effects can be summarised as a
*species activity measure,’’ E{f), which incorporates
both the fraction of the seed bank of species / that has
emerged, and the rate of growth in relation to time of
year, temperature and solar radiation. Water availability
will also affect plant growth, but water availability may
be affected by competition and so it cannot be incor-
porated in £4t). Instead, water availability contributes
to Ci¢). For species /, iet B{f) be the total biomass /, and
Ri(t) be the per unit rate of increase in biomass (R{r) =
[dB{z)/del/Biit)=dlin Bdt)l/dt), then the growth of bio-
mass of species 7/ during a year can be represented as

RAD=EA) AWz, {16}

where WAt} is the water potential of the soil, and # is a
function relating soil water potential to growth of in-
dividuals in the population.

Eqn (16) expresses the relative growth of biomass in
the population in a similar form to eqn (11). indeed,
when we interpret the absolute value of water potential
[ WAt} | as a competition parameter {i.e. consumption of
water increases |WIit)|), a plot of R{t) against | W(#)|
for different values of Eft) vields the subadditive
growth rates illustrated in Fig. 6b. Covariance between
environment and competition occurs because soil
moisture is depleted by a species in relation to its activ-
ity £(t} and its biomass B{t). Species differences in ger-
mination and growth over time mean that the temporal
patterns of variation in the environmentally-dependent
parameters, £E{t}, will be species-specific. Thus,
growth of biomass within a season in this system has
all the ingredients necessary for the storage effect to
operate. If seed production is proportional to final bio-
mass at the end of the year, these processes within a
year are suitably linked to population growth, and we
conciude that the storage effect operating on species
patterns of activity within a year is capable of con-
tributing to diversity maintenance.

What are the special features of timescales much
longer than a year? Trees can be very long-lived and
with climate change may sometimes be found in areas
where they seem quite maladapted because they are no
longer able to reproduce sexually. However, some spe-
cies persist by vegetative means for long periods of
time after climate change has removed the potential for
sexual reproduction (Neilson and Wullstein, 1983;
Allen and Hoekstra, 1990). Such ability of a genet to re-
sist death can make growth rates very strongly sub-
additive in models and should contribute importantly to
the maintenance of species diversity.

Climate change often leads to major changes in spe-
cies distributions (Davis, 1986, 1989; Huntley and
Webb, 1989). However, a species may persist in a
region in refugia. And from these refugia it can expand
again to reoccupy the larger region when favourable
conditions return. In this way refugia may represent
subadditivity that is seen only when large temporal and

' spatial scales are considered. Indeed, spatial patchi-

ness similar to this is known to cause subadditivity in
models of year to year variation {Chesson, 1290). Mov-
ing to alarger spatial scale such as the North American
continent, the fact that a species will often have the
potential of migrating to a different area with a suitable
physical and biological environment is undoubtedly a
major factor maintaining diversity of North America as
a whole.

it has been emphasised (Davis, 1989; Huntley and
Webb, 1989) that species change their distributions in
response to climate change at rates that depend on the
species’ life-history characteristics, similar to the
effects of life-history parameters on tracking in the
models discussed here. Differences in life-history char-
acteristics mean that the associates of a species on this
iarger timescale will be in constant flux. Indeed, the pic-
ture on such large spatial and temporal scales is of con-
stant spatio-temporal variation in species composition
and in the associates of any species. We have no
models that adequately address such timescales,
which will also be complicated by major evolutionary
processes. However, the indications from models for
much shorter timescales are that such spatio-temporal
flux shouid be a major factor in the maintenance of bic-
logical diversity both within communities and within
species (genetic diversity; Chesson, 1985; Gillespie,
1991).

Conclusion

Communities may track an equilibrium specified on a
short timescale, thereby reducing the necessity to un-
derstand longer term variation to understand com-
munities. Tracking, however, will nearly always be im-
perfect and some variation will be averaged rather than



Temporal hierarchies of variation 205

tracked. Such averaging will invariably be-nenlinear and
as a consequence, will have the potential to contribute
to diversity maintenance. Nonlinearities leading to
nonlinear averaging can arise in a variety of ways on a
variety of timescales. Nonlinear averaging can in effect
create a new equilibrium on a longer timescale. Indeed,
dynamics on different timescales, when viewed ap-
propriately, need not appear very different from each
other even though the fundamental biclogical pro-
cesses involved may be very different.

A variety of timescales can contribute to the mainte-
nance of species diversity, and, as we have seen, differ-
ent timescales can act in concert. A full understanding
of diversity maintenance would seem to demand con-
sideration of this possibility, posing a chalienge to
ecologists to develop methods of studying contribu-
tions from muitipie mechanisms and on muitiple scales.
The method of partitioning long-term growth rates
given here is intended as a theoretical tool to this end.
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APPENDIX 1: Parameters of the simulations

In all simulations of the Ricker recruitment model we
set ay=a, and a;=5=0.01. The adult survival rates s;
are respectively 0.5 and ©.9. The natural logs of the
environmentally-dependent parameters {in E{#)} are
equal to the sum of a normal autoregressive process,
and a sine function. The normal autoregressive process
has autocorrelation 0.95 and variance ¢2, and is inde-
pendent between species. The sine function is one half
cycle out of phase between species, has amplitude a
and period p in years. The means of the In £{f) are 0.1
and 0.2 for species 1 and 2. The values of the varied pa-
rameters are as follows:

Figure o a? a p
2a 0.0156 o 0 -
2b 0.015 0.01 0.2 1000
2c 0.015 0.1 0.4 1000
3a 0.015 0.1 0.4 200
3b 0.015 0.1 0.4 20
4a 0.01 0 0 —
4b 0.01 0.1 0.4 20
4c 0.01 0.1 0.7 20

The runs of the lottery model all assume that the adult
death rates are 0.05 per month. The dynamics of the
two species depend also on the ratio of the environmen-
tally-dependent parameters £,/E,, which is equal to the
ratio of the recruitment rates of the two species. The
natural log of this ratio has a mean of g. This in recruit-
ment rate ratio varies with a sinusoidal component hav-
ing period p; months, and variance ¢3, and a random
normal component with time between changes ps
‘months and variance ¢2. The values of these parame-
ters in the simuiations are as follows:

Figure D1 a? P2 a3 4
8a 12 1 — 0 0.3
8b .- Q 1 1 0.3
Sa 400 0.2 1 0.2 0.1
9b 12 0.2 12 0.2 0.1
9c 12 0.2 - O 0.1

APPENDIX II: Averaged dynamical equations

Chesseon (1994} shows how a nonlinear parameter
transformation allows models of the form (7) in the text
to be reexpressed in the form

glE, CA=E—Cit1:EC:, (A1)

under the assumption that the variances of the en-
vironmentally-dependent parameters are small. (How
small depends on the model in question, but in the lot-
tery model it is known [Hatfield and Chesson, 1989}
that even rather large variances permit this approxima-
tion.} Averaging expression {A'l} over some intervat of
time, arbitrarily designated here as a year, we immedi-
ately obtain

i =Ef—CI+IYix, Ey+1E].C], (A2)
where
X, Ey=yC"{E, C)

=L.7% NEe-Ehicis -, a3
s=1

in other words, 7 times the within-year covariance be-

tween the environmentally-dependent and competition

parameters.

For the lottery model, Chesson {1994) shows that 7
=--§/3. It is also easily seen from Chesson (1994} that
with equal adult death rates, the transformed competi-
tion parameter is adequately approximated by

C= _Elx,-f,- . (Ad)
2

from which egn (13} in the text follows under the
assumption that the species densities do not vary great-
ly within a year. An indication of the efror involved in
this assumption can be gained by substituting the spe-
cies densities at the end of the year in this expression in-
stead of the values at the beginning of the year,

In general there is no difficulty averaging expression
(A2} over a longer period of time arbitrarily indicated by
the symhol D—for simplicity think of it as a decade. We
then obtain

P=EP—CP+PIX.E +1EP.CP, (AB)

where the main feature of significance is the iterative
formula

PAX.EV=ITX.Ey+7Co(E],Ch. {AB)
Assuming again only small variation in the species

abundances over the periods of these averages, for-
mula (15} for the lottery model follows.



