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ABSTRACT

't is now well established theoretically that the stability of o population or community
on a large spatial scale may depend an heferogeneities, fluctuations or instabilities
on smaller scales. Asynchrony of local population fluctuations is often viewed as an
affernative to densily dependence in cchieving long-term regional population
stabilivy. However, it is shown here that fluctuations achieve this effect only through
‘heir interaction with density-dependent processes, This observation relies on the
fact that large spatial scales reflect the average of smali scale variation. When local
ponulction dynomics ore nonlinear [o reflection of density dependence), the
variance on the small scale atfects the average at the larger scale. This noniinear
avercging that links small and larger scales may have stonilising or diversity
promoting effects in many systems. MHow norlinear averaging leads to these effects
can be understood by a simple graphical technique.

Key words: Density depenence, non-linear averaging, spatial scale, scoie
trensition, model selection

Frantiors 2¥ Topuletion Ceology, 8.8 Floyd AW Sreppaid ard P De Bamo jeds, CSIRO Pubnshin.
Mebogna 1996 po. 353-348



1996. Pp 353-368 In Frontiers of Population Ecology
(eds. R.B. Floyd, A.\W. Sheppard, and P. J. de Barro) CSIRO.

P. CHESSON .
- " 4

Introduction

There is growing recognition of the need o consider spatial scale in ecological studies. On small
spatial scales, populations are invariably gpen, L.e. there is appreciable immigration from outside the
population. At larger spatial scales, the contribution from immigration dedines in relation to
dynamic processes within-a population, until at some scale a population is effecuvely closed, Le.
eliminating immigration altogether would have a negligible effect on populadion dynamics. It may
not be possible to understand an open population, or 2 community consisting of apen populations,
without an understanding of immigration and emigration. For example, Pulliam (1988) has’
suggested that many local populations may actually be sinks, i.e. insupportable without an excess of |
immigration over emigration. Thus, the persistence of such a population depends on factors beyond _

the boundary of the population itself.

* Most ecological concepts and hypotheses, however, have been developed for dosed populations.
Applying them to local populations that are in fact open could be quite misleading. For example, it
can be shown theorerically that a constant rate of immigration from ocusside a local population can
be highly stabilising (Hughes 1990; Stone 1993), as it is equivalent mathemarically so the ‘constant
number refuge’ discussed in predator-prey models (Hassell 1978; Murdoch er al 1995). Anempts
to explain the stability -of an open population based on the many swbilicy concepts for closed
populations may be pointless because the stbility of such a population may depend entirely on
stable immigration. Similarly, explaining species diversity of an open community suffers from the
problem that a diverse local community can be sustained by immigration whether or not local
conditions favour maintenance of high diversity (Sale 1977).

In both of the above examples, the question shifts from the characteristics of local population
dynamics to the characteristics of immigration. We must ask respecrively, why is immigration stable,
and why is the immigrant pool diverse? These questions then shift to a larger spatial scale from the
which the immigrants are derived. Only when the system is effectively closed can we be sure that
explanations for the system’s propertics are to be found within the system. Moving to a large scale
of an effectively closed system, however, does not mean lower scales can or should be profitably
ignored. Lower scales derive importance from-heterogeneity on those scales (Chesson 1991). Much
ecological theory, however, has been developed assuming that populations are not only closed but
also internally spatially homogeneous. ' :

If a system is spatially homogengous in terms of the physical environment and s fluctuations over
time, and in terms of the biological species and their fluctuations over time, then an open subset of
such a system could be studied as if it were closed as observations anywhere would be indicarive of
the workings of the system as a whole. Thus, the various concepts and hypotheses developed from
models of closed systems would be perfectly applicable. In many fickd studies, the implicit
assumprion is not this extreme spatial homogeneity but unitnportance of the spatial variation that
is present. The variation is treated as noise ~ a nuisance that requires larger samples for scaristical
significance (Chesson 1986). Bur a growing body of theoretical and empirical evidence sees demg“
in purting spaual variation in the category of noise, :

As an initial guide to whether the obsenred spatial variadon is noise, one might first ask che qucSUOD’
Are the important ecological processes qualitatively similar in most localiries? The answer, “no’, 10
this question means that one ignores spatial variation to one’s peril. If the answer is “yes” howeveb
one asks, Are the imporrant evological processes quantitatively similar in space? Quantitative
dissimilarity in the presence of qualitative similarity can often be important but need not be, One
approach to answering this question is given below in the section on The scale transition.

________—-"__
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Variation in space often has 2 temporal component, and so, 1o the questions above, one can add the
guestion, Are temporal fluctuations spadially synchronous or asychronous? It is gencrally unwise ro
ignore asynchronous fluctuations, but synchronous fluctuations that vary spatially in strength can be
of major significance also (Chesson 1990).

The reasons for these answers have to do with the fact that on a large scale the appearance of
processes is affected in major ways by variadon on smaller scales. How this occurs depends on
biological processes that cause various kinds of density dependence.

Density-dependence and the spreading of risk

Asynchronous local population fluctuations and density dependence are often seen as alternative
means of achieving population stability. Indeed, some authors suggest that population asynchrony
dominates over density dependence in nawre (Den Boer 1981; Andrewartha and Birch 1984).
Theorerical evidence, however, implies that fuctuations derive their importance through their
interactdon with densiry-dependent processes (Chesson 1991). To see that this is so, it is first
necessary to develop a clear notion of the phenomenon of density dependence.

Clear definitions of density dependence are hard to come by in the literature. However, most
commonly, density dependence means that the per capira growth rate is a decreasing function of
populadon density (Murdoch and Walde 1989). For example, the logistic model is a simple
expression of this idea. In the Jogistic model, the per capita rate of population growth has the
maximum value # at effectively zero population density, and declines linearly to 0 as population
density approaches the carrying capacity X as follows:

L_é}i_,@,f_\’_)
N dt K/ (1)

The logistic model, however, represents a very special kind of density dependence, because it
assumes that the per capita growth rate responds instantly to changes in population density — the
per capita growth rate at time ¢ is expressed directly as a function of population density at time 2
Such a representation must invariably be an approximation only closely applicable when density
dependence is caused by direct effects of a population on itself, for example by cannibalism or
interference competition. When intraspecific comperition is exploitarive, Eq. 1 is best replaced by
an equation of the form

2L r)

N dr (2)

where Ris resource availability, and f1s some increasing function relating resource availability to per
capita population growth. A separate equation describes the dynamics of resources, for example

dR

— = o{ K}~ A(R)N,

dr §(R)~H(R)N, (3)
where g(R) is the rate of resource renewal and A(R) is rate of consumption of resource per individual
ir. the population.

Eqgs. 2 and 3 describe a feed back loop of a species on uscif chrough che resource. Density
cdependence is not evident from Eq. 2 alone, but only from the pair of Egs. 2 and 3 where the
negarive impact of the population on the resource is clear. However, the density-dependent feedback
of the population on itself through the resource does not lead to instantaneous changes, but is often
regarded as working with a time lag. The effect of an increase in the populacion is to decrease the
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resource growth rate, lowering resource densities over dme with a consequent gradual lowering of
the population per capita growth rate Eq. 2.

From this discussion, it is evident that the rate of response of per capita population growth to
changes in population density depends on the speed of resource dynamics. MacArchur {1970)
pointed our thar when resource dynamics are fast relative to population dynamics, the resource can
be assumed to be acan equilibrium dependent on V. This equilibrium is the solution of the equation
2(RY) — (RN =0 for R* This value K" is a function of Ndescribing the level of resource availability
determined by a particular population density. It represents the balance between consumption and
renewal of the resource for that particular population density. Substituting R* for Rin Eq. 2 leads
to an equation for population per capita growth rate of the form

1 .aN_
g(N) (4)

N dt
where g(N) is some function of IV expressing density dependence once again as an instantaneous
change in per capita population growth with a change in the population density. Depending on the
functions £ gand 4, the function g(V) can be lincar in AV, so that Eq. 4 is the logistic equation once
more (MacArthur 1970). More importantly, but unsurprisingly is the result thar fast adjustment of
resource availability to population density leads to a fast adjustment of per capita population growth
to population densiry.

Although Egs. | and 4 are the srandard way of expressing density dcpendencc mathematically, they
are best viewed as approximations or limiting cases of more complex equations such as the pair of
Eqs. 2 and 3. Equanon 2 alone, however, is not informative abourt density dependence. Indeed,

population growth written in the form of Eq. 2 is sometimes thought of as density-independent
simply because N does not appear explicitly on the right hand side of the equation. The resuits here
show this perception to have limited utility.

In discrete time, rather than focus on the per capita rate of change, it is more natural w express
dynamics in terms of the ratio of population sizes at successive points in time, Mr +1)/Ma). The
analogue of Eq. 4 in thar case is

Me+1)/N9 = QUNG), " %)

where Q(M#) is sume decreasing function of Mg}, For example, in the Ricker mode! (May and
Oster 19763,

QN = RN (6)

where R is a ner reproductive rate without competition and @ is an intraspecific competition
coefficient. This model leads to the discrete time iteration

Mr+ 1) = RN(He*M9, (7

Such discrete-time density dependence can represent exploitative compertition with less stringent
condizions than its continuous time counterpart Eq. 4. Resource dynamics must be on a shorter
timescale than population dynamics, but Eq. 4 can hold simply if resources are renewed

~ independendy of population density in every unir of time, with no carryover of resources froni one
time to the next. Indecd, there are a number of imporwant classes of populations where these
conditions are applicable, for example, insects whose larvae develop in fruit, carrion or other
ephemeral food sources (Shorrocks and Rosewell 1987; Ives 1991).

Density dependence through exploitative competition for resources is an indirecr interaction
berween individuals in the same population. Resources are the medium of the this indirect
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interaction. A similar indirect interaction occurs through predators, pathogens and parasites. Holr
(1977) has termed this indirect interaction ‘apparent competition’ in the situation where predators
lead to indircct interactions between species. However, the idea that predators lead ro density
dependence within their prey populations, championed by Nicholson (1933), has a long history (see
Kingsland this volume}. Such density dependence can occur in 2 number of ways. Predators may
modify their behaviour in response to prey density, and they may also increase in abundance or
individual size and thus increase prey per capita mortality (Murdoch and Bence 1987). Some of
these changes may be fast, so that an equation like Eq. 4 can summarise the impact on the prey, but
those relying on changes in predator abundance will lead to a pair of equarions analogous to Eqs. 2
and 3. In such cases, densiry dependence may not be apparent from the formula for the per capita
growth rate of the prey population alone, Just as in the case of indirect interactions through
resources, the density dependence only becomes apparent when the equation for the mediator of the
indirect interaction is considered.

All of the above are examples of density dependence, but can density dependence be given a clear
definition? Fundamentally, density dependence concerns how an individual is affecred by the density
of other individuals. Per capita growth rates are about average effects on individuals, and are not
fundamental, but derivative. A formal definition is as follows:

“... The dyramics of a population are density dependent if the lines of descent from individual
members af the population are affected by population density...”

By focusing on lines of descent, this definirion allows for arbitrary time lags. For example, if the
numbe: of great grandchildren of an individual is affected by the current densicy. chen dynamics are
density dependent. Normally, the term density dependence refers wo negative effects of current
density on future population numbers. The opposite case, which occurs when there is an Allee effect
ot a type II functional response (Hassell 1978), is commonly caiied inverse density dependence. The
definition here includes both the usual and the inverse sort of density dependence.

The difficulty of defining density dependence in terms of per capita growth rates is apparent in
stochastic models that incorporate demographic stochasticity (May 1973) or within-individual
variability (Chesson 1978, 1990). In such models, the per capita rates of change can never be
independent of density. When a population is not density-dependent according to the definition
above, it is nevertheless true that the variance over time of the per capira growdh rate is inversely
proportional to population density (Nisbet and Gurney 1982). However, the idea that the per capita
growth rate should depend on density provides a useful operational definition of density
dependence, especially in large populations where fluctuations due to demographic stochasticity are
small. In this regard, it is important {0 note that the definition above is an ideal definition for use
theoretically. Indeed, it is exactly the general and precise definition of the concept that is needed for
theoretical analysis, discussed below, of the possible sorts of population dynamics in highly
structured  bur density-independent systems. However, the dcfinidon is difhicult to apply two
empirical data.

For cmpirical studies, opcrational definitions of density dependence must be constructed for
particular systems, and indeed such operational definitions are implicit in many empirical tests of
density dependence (e.g. Turchin 1990; Dennis and Taper 1994; see also Cappuccino and Harrison
this volume). The role of the definition given above is 1o provide the ideal which is to be
approximated operationally. The concepr of density dependence is so general thar we should expect
its expression to vary greatly from system to system, and therefore particular circumstances need
morte restricted definitons of the idea. so that the idea becomes useful in practice for the system or
dara at hand. The ideal definition above then provides a point of reference for judging the adeguacy
of an operational definidon given the assumptions applying for particular circumstances.
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Many ecologists have felt that most populations in nature must have densicy-dependent dynamics
(see Cappuccino and Harrison this volume). I spite of this, density dependence is often difficult to
detect empirically (Murdoch and Walde 1989; Turchin 1990; Dennis and Taper 1994; Murdoch
1994; sce also Fox and Ridsdill-Smith this volume). And if density dependence is weak, or occurs
only some of the time,.one may legiumately. question the.emphasis on. density dependence in
modern ecology (Andrewartha and Birch 1984; Stwong 1986). To address this debate, the
consequences of strict density independence of population dynamics are examined.

The simplest model of population dynamics without density dependence is the geomettic growth |
equation,

Nz +1) = RN - (8)

which can be obtained from Eq. 7 by setting & = 0. The key feature is that population size at time
t + 1 is simply proportional to population size at time z It is well-known that Eq. 8 leads to
exponential population growth, with unlimited increase if R > 1, decline 1o extinction if R < 1, and
constancy if & = 1. The first two situarions cannot describe persisting populations in nature if the
idea of density independence is to be retained. Therefore, density-independent population
persistence must be described by the last situation with R = 1. In this case, however, it is commonly
argued that stochastic fluctuations will lead to a random walk, with extinction being the ultimate
result. The idea of spreading of risk (den Boer 1968, 1981; Andrewartha and Birch 1984) is a
response to this argument. According this idea, it is very important to recognise that populations are
structured in space into local populations (Andrewartha and Birch 1984) or interaction groups (den
Boer 1981). The principal conclusion is that these local populations fluctuate asynchronously over
time and lead to regional population fluctuations of a smaller order. Coupled with dispersal berween
local populadions, such asynchrony and reduced regional variance is expected to lead to prolonged
regional persistence, '

To test chis idea mathematically, we must generalise the density-independent model in Eqn 8 10 2
structured population (see Appendix). No matter how complex we make population structure, there
is an inescapable conclusion: Eq. 8 remains a good summary of regional population dynamics in the
long run. The actual value of R applying in complex scttings is a complicated space-time average of
the parameters of the system, which may fluctvate in various ways in space and dme. However, the
inescapable conclusion is thatr highly structured density-independent populations still grow
exponentally in the long run. The only hope for long-term persistence of such a population is for &
to equal 1 or very nearly. It does not seem likely thar this could apply to many populations in nature.
It it did apply, and there was any phenotypic variation leading to differences in average fitness, then
natural selecdon would quickly ensure that R became greater than 1. Thus, stable regional
populations with density-independent dynamics seem quite implausible, in agreement with previous
arguments {Murdoch and Walde 1989; Murdoch 1994) and the swonger claim that density
dependence is a logical necessity for persisting populations (Godfray and Hassell 1992).

These conclusions, however, do not mean that the concept of spreading of risk is unimportant. It is
most important when population dynamics are density-dependent. Indeed, there is an important
inreraction berween density dependence and variation in space that helps reconcile their respecrive
roles. This interaction is the topic of the next section.

The scale transition

I use che term seale iransition for the changes that take place in population dynamics when the view
shifts from one scale in space or time o another (Chesson 1991). Understanding this scale transition
is crucial to understanding the effects of variation on population dynamics. The development here
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has general lessons that apply in some form co most populations or communities. However, the
analysis uses just a single-species, discrete-time, density-dependent model. To make the discussion
concrete, it is worthwhile to have some examples in mind. Ideal examples are insects such as
drosophilids (Shorrocks and Rosewell 1987) or carrion flies (Ives 1991) thar colonise ephemeral
patches of food in which they develop for just one generation before dispersal. Annual plants
withour a seed bank may also satisfy difference equations of these sorts (Watkinson 1980; Pacala and
Silander 1985), although generally with milder density dependence, and with more local dispersal.
The basic principles are the same. In both cases, organisms interact with each other locally in space
but form part of a much larger population over which dispersal takes place. Although the specific
development fits best in these cases, the lessons are gencral for populations in which density
dependence occurs on the scale of a local population, which is open and therefore influenced
significantly by dispersal.

In the above situation, What happens when we pass from the scale of a local population, where
interactions eccur within a generation, to the scale of a regional, effectively closed population? Total
regional population size is simply the sum of all the local population sizes. Population density as
number per unit area, is an average of the local population densities. This average is a simple
arithmetic average if local populations all occupy the same area (e.g. by defining local populations
in terms of equal sized areas), buc otherwise it is a weighted average of local population densities,
with weights equal to the areas occupiced by the local popularions. Thus, when we pass from the scale
of the local population to the scale of the regional population we are taking an arichmetic average of
the population densities.

Arithmetc averages may seem straigheforward, but they can be rather surprising, especially when
local population dynamics are densiry-dependent. Consider population dynamics in discrete time
with discrere periods of dispersal, such that N (4 is population density in patch j before dispersal,
N{e+h) is this local population density xmmedmtcly after dispersal but before population growth
(Fto r+h is the dispersal period), and [\J; (£ +1} is local populatien density after local population
growth and betore dispersal (N, (#) one unit in tme later). As remarked above, regional population
densicy is the same as average populanon density (appropriately weighted), and can be denoted N(2).
Alchough dispersal commonly involves morality, for simplicity, we shall assume chat dispersal
merely leads 1o a rearrangement of the population without mortality. Thus, regional population
density is the same after dispersal, ie. N(z¢4) = N{#. This assumption has no cffect on the
conclusions below if dispersal is densiry-independent. Let us now assumne thar local population
growth can be described by an equation of the form

I\G(t+ 1) = BNt + b)) _ @

where Fis some function of the local population density. If there were no variation in space, regional
population dynamics would be described by this equation also. In other words

N(r+ 1) = AN(2)) (10)
For example, taking F from the Ricker model Eq. 7, Eq. 10 becomes
N(r+ 1) = RN(2)eNW (11)

With positive values of @, there is a point equilibrium which is stable provided InRis = 2. For values
of InR > 2, the equilibrium is unstable and a regional popuiation satisfying Eq. 11 Qucruares over
time {(May and Oster 1976). These fluctuations can be in the form of regular cycles but for
suthciendy large values of R, the population exhibits large chaotic fluctuacions (Fig. fa).
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Spatial variation can prevent this chaotic behaviour. That in itself is not surprising because if
fAluctuations in different patches are out of phase, the overall fluctuations are bound 1o be less.
However, something more subtle and important is going on. With spatial variation, regional
population dynamics are not described by Eq. 10 but by the equation

ZF( (¢ +h))

ﬁ(:+1)xLT—_F(N(:+f;)). (12)

The imporiant point here is that the average F(N(t + b)) differs from F(N(8) whenever there is
variation in space. The reason for this difference is not a difference berweer N ) and N(t + 5
because we have assumed they are the same. The difference arises instead from che nonlineariry of
the function F — the fact that F specifies a curved relationship between N {t+1)and N(r+ ).

Nonlincarity in turn arises from density dependence, as the density-independent relancnsjnp B is
not curved, but a straight line. The important interaction berween nonlinearity and spatial variation
is explained in Fig. 2

The thick line in Fig. 2, gives the Ricker curve. The points A, B and C represent different spatial
locarions with different values of N (#+ 5) and corresponding values of F(N {z+ £}). Suppose for the
moment that half the local populanom are represented by point A and the other half by point B,

then the average value of F(N (r+ ) (= Nz+ 1)) corresponds to the y coordinare of the point D,

the midpoint of the line j jommg Aand B. The x coordinate of the point D is N(= Niz+ #). These
facts can be deduced from the geomerry of the figure poting that Nz + 1} (= AMr+ ) )} ltes half
way between the two 'values of F(N {(r + ), and N2} lies halfway berween the two values of
N(t + h).

This diagram shows how spatial variation alters regional population dynamics. Note first of all thar
F(N A) yorresponds to the y coordinate of the point E, directly above N, showing that here,
FN(r+ B) > RNVt + B). Although this may inidally be counter intuitive, the diagram makes it
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Fig. 2. Avercging the Ricker curve in space
cs explained in ihe text, (Paramerers cs for
Fig. 1)

N{t+ 1)

clear that in this case there is no other possibility as F(!V(: + A)) is greater than both values of
F(N;(ni;)) and so certainly must be larger than their average.

The inequality F(f\?(t + £)) > F{N¢+ A)) holds in all places where the curve is bending over (is
concave), while the reverse inequality FIN(2 + 5) < F(Mr + #)) applies whenever the curve is
bending upwards (is convex). For example, if half the patches correspond 10 the point B and the
other half ro the point C, the new regional population density is the y coordinate of the point F
midway becween B and C. This point F has x and y coordinates N(t+ b)Y and ANz + ) and lies
above the point G with x and y coordinates N(r + £) and F(/V(¢+ #)). The important thing to note
is that this spatial variation has led to 2 moderation of the density-dependent response on the larger
spatial scale. The point D being less than the peak value E shows moderation by spartial variation of
the maximum achievable density the next time period. Similarly, the point F being above G shows
that the extent of the crash ac high populmon densities is reduced also.

Applying the procedure illustrated in Fig. 2ioa continuous range of two-point spatial discributions
allows the construction of a relationship between N(t+ 1) and N{t). Thus, in Fig. 3 each chord on
the Ricker curve joins two different values of local population density; and the mdpomts of these
chords (large dots) then give the relation between N{z + 1) and N(#) arising with spadial variation.
As can be seen, the dens:cy dependent response is much more moderate on the larger scale in the
presence of spatial variation.

The simple two-point spatial distributions used in these figures illustrare well the phenomenon of
nonlinear averaging, but they are not very realistic. Local density variation in nawre, however, is
often well-approximated by 2_ncgarive binomial distribution (May 1978). For this spatia
distriburion, the exact value of A{z+ 1} is

R'N(t)
(1 + a'?\f_'(z) / k)kﬂ ’ . ) (13)

where R'= Re™ and 0= 1 — ¢ *(de Jong 1979; Hassell and May 1985). These curves are plorted
along with the Richer curve in Fig. 4. Clearly shown is the strong flattening of the densiry-
dependent reiationship for smali 4 corresponding to high spatial hererogeneiry. The steep peak of the
Ricker equation leads to a large build up of population dersity followed by a crash, and thus the
highly osciilatory population dynamics shown in Fig. 1a. With spadal heterogeneity, the peak is

N(t+1)=
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Fig. 3. Confnuous averaging of the Ricker
curve in space a3 expigined in the text.
\Parameters as for Fig. 1]

N(L+T)

Fig. 4. Thre Ricker curve and E5. 13 ploted
fork = 0.1 %0 7 in an ascending orge:,
(Parameters os for Fig. 1,

N{t+1)

N(t)

reduced ar the regional level (at the local level nothing has changed) and the decline after the peak
is quite mild. Indeed, with high levels of heterogeneity, the response is nearly complerely flat, which
means that a regional equilibrium is achieved very rapidly and is very stable. This stability is a
product of 2 high level of spatial variation (Hassell and May 19835). N T, \k

The above discussion of the dynamics of Eq. 13 assumes that £, the clumping parameter of the
negative binomial distribution, remains constant over tme. This is a reasonable proposidon in some
situations, for example, if local populations are ephemeral habitat patches that are colenised each
time period based on their physical artributes withourt any density-dependent interactions between
the organisms colonising a patch. In such cases, the negative binomial atises from heterogeneous
Poisson sampling (a ‘mixed’ Poisson distribution; Johnson and Korz 1969; Southwood 1978}, and
implies a constant value of 4 Such heterogeneous Poisson sampling is potendally applicable to
insects that colonise dead organisms or fruits (Ives 1991; Shorrocks and Rosewell 1987). With a
constant value of 4 Eq. 13 provides a sufhicient description of the dynamics of regional density.

Other cases of colonisation of ephemeral habirats may involve some density dependence in the
colonisation process. This is to be expected any rime the number of individuals already present ar a
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site affects subsequent arrivals. In such instances, # should vary with density but not necessarily
otherwise with time. Equation 13 is then modified by having a function of density substituted for
k. There is no reason, however, ro restrict application of these ideas to the case of ephemeral habirats
(Hastings and Higgins 1994; Kareiva and Wennergren 1995}, but in more general situations,
parchiness will be affected by local population dynamic processes in addition to migration. Although
the negarive binomial distribution may remain a reasonable approximation, the value of £ may vary
aver time in a manner that is not ted to population density. Even so, the graphical analysis above
suggests that the stabilising tendency of variation should still be applicable provided variaton in £
is not too large. An example is instructive. From Fig. ¥ we can sec that provided £ never varies 4
ousside the range 0.1 10 1, no maner how £ changes with time in this range, regional densities
cannot fluctuate more than four fold, which contrasts with the more than eighuy fold fluctuadon of
the corresponding Ricker model in a spatially homogeneous system. Such stability from spacial
variation is amply illustrated by the Ricker model of Hastings and Higgins (1994) and Kareiva and
Wennergren (1995), who consider continuous rrugranon in one dimension. Although they make the
point that cheir model may take a very long time 1o sertle into its final pattern of fluctuation, the
dampening effect of spatial variation is immediately evident.

The stabilising effect of spatial variation seen here does not depend on fluctuations being out of
phase in the different localities, although such out of phase Huctuations appear to be a feature in
Hastings and Higgins (1994) and Kareiva and Wennergren (1995). Indeed, the spatial pattern of
densities could be fixed. Such a fixed pattern of variarion might arise, for example, because some
localities are more difficult for migrating organisins to find than others. Incuitively, spatial variation
leads to stability by the fact that patches with high numbers are balanced by patches with low
numbers such that the severe decline experienced in the high density localicies is buffered by more
moderarte decline or even increases in other localiries. There is no requirement for fluctuartions o be
out of phase in different localivies for this to occur. There is also no requirement here for particular
dispersal distances relative to the scale of local interactions so long as spatial heterogeneity is
muaintained within the regional population, s the results of Hastings and Higgins (1994) auest.

This paper has shown how this stabilising effect involves nonlinear averaging: the dynamics of
regional density are given by F(N + b)) which differs from F(N(t + #£)). This inequalicy is the key
to the scale transition, or change in the dynamical behaviour when passing from local dynamics to
regional dynamics because consideration of local population dynamics alone, without regard (o
spatial variation, predicts that regional dynamics should be gwen by F(V(# + 4)). Quantitative and
qualitadve differences between local and regional dynamics arise quite generally from nonlinear
averaging in both single-species and mulrispecies settings (Chesson 1981; Durrett and Levin 1994),
with both spatial and temporal variation (Chesson 1990). Moreover, such nonlinear averaging can
occur on small scales as well as large scales (Chesson 1981; Durretr and Levin 1994), leading to
large-scale dynamics thar can be viewed as the outcome of an accumulation of scale transitions
involving nonlincar averaging (Chesson and Hundy 1993}, There is no nccessity that nonlinear
averaging should lead to stability as it has in the illustration given above. Instability from nonlincar
average is possible also (Chesson 1990).

Discussion

Aithough variation in space.may lead 1o lower temporal fluctuation at the regionai scaie than the

local scale, in the densiry-independent case, population dynamics at the regional scale are not

qualitatively different from dynamics ar the local scale. In essence geometric growth occurs on both
- scales, discounting dispersal on the local scale. With density dependence, local and regional

dynamics can be qualitatively different. For exampie, we have seen how chaos at the level of a local
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population can change to very strong stability at the regional population scaie as a consequence of
the combined effects of variation and locally nonlinear dynamics. The reasor for this qualitative
change is fhe noniinear nature of averaging occurring with the transition berween scales,

In studies of metapopulation medels (Gilpin and Hanski 1991}, there is often such a strong
emphasis on density-independent processes of colonisation and extinction (Caswell 1978) thar there
is a danger of assuming that they are examples of regional stabilisation with density-independent
dynamics. However, the usual assumption in such models thar local communities can be cescribed
adequarely by the lisc of species present is an implicit assumption of strong density dependence
locally in space. Although many kinds of density dependence will suffice, this simplesc such
assumption is that upon colonisation, a local population rises quickly to a carrying capacity, about
which it fluctuates until extinction occurs. Hence strong density dependence is in fact assumed, and

 stabilisation of regional dynamics in such models can be viewed also as an outcome of nonlinear
averaging (Chesson 1981).

Stabilisation of population fluctuarions, however, is just one possible effect of nonlinear averaging in
the scale transition. In models of competing species, nonlinear averaging can enable coexistence in
spatially variable environments (Chesson 1985; Comins and Noble 1985; Shmida and Ellner 1985;
Pacala 1987; Durrett and Levin 1994) and in temporally variable environments (Abrams 1984;
Ellner 1984; Chesson 1986, 1990; Loreau 1992). Nonlinear averaging can also lead o persistence
of predator-prey, and host-parasitied associations (Comins and Hassell 1987: Hassell ef 2/ 1991).
The variation on which these effects depend can arise from fixed patrerns of spatial (Chesson 1985)
or temporal environmental variatien (Loreau 1992; Chesson and Huntly 1993) or randomly varying
patterns {Comins and Noble 1985), or it may be generated largely by intrinsic population
Auctuations {(Armstrong and McGehee 1980; Hastings and Higgins 1994).

In some cases, nonlinear averaging can create a stable equilibrium ar the regional scaie (Hassell and
May 1983; Chesson 1985; Gilpin and Hanski 1991; Murdoch 1994) or on a large remporal scaie
(Chesson 1984; Chesson and Huntly 1993}, where no equilibrium exists on smaller scales. This is
most apparent in competition models where in the absence of spartial and temporal variation, only
one species could persist in the long run and therefore stable equilibria have just a single species at
positive density, with other species at zerc densicy. Spatial and temporai variation may have the effect
of creating stable equilibria with many species at positive densities. Murdoch (1994) has posed the
question of whether long-term persistence must always involve an equilibrium of some form. The
answer to this question is “yes” in all essentiais. Indeed, it is essentially rautologicat that long-term
persistence on particu.ar spatial and temporal scales involves an equilibrium on the relevanr spatial

and temporal scales.

This fact is commonly used in the standard invasibility analysis for species coexistence (Turelil 1978;
Levins 1979; Chesson 1994}, which involves an argumenr of che following sort. Ruling out che
possibiliry of indefinite increases in density, and assuming that persistence means thar the population
does ot converge o zero or show ever stronger population crashes, the long-term average change
in log popularion size must be approximately zero. This near zero average change can be regarded as
implying that the system is in equilibrium or approximately so. In this sense, equilibrium is
inevitable on a sufhciendy long timescale, and is almost a reparasing of persistence as the idea that
on a long tmescale population density does not change much relative to the time involved. Thus, it
makes no sense to expecr long-term population persistence withour an equilibrium on a long
timescale. Such an equilibrium may not involve precise densities (a poinr equilibrium), however, but
4 probabiliry distribution of densiries, being the stochastic analogue of an equilibrium point { Turelli
1981; Ellner 1989).
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Density-independent systems are no exception to the equilibrium requirement for long-term
persistence. As remarked above, they must have R close to one (on 2 log scale, InR close to 0;.
However, such an equilibrium cannot be stable in the sensc thar perrurbations of density will lead
to a return to some range or distribution of densities. Indeed, systems with density-independent
dynamics are neurral to perrurbations of density. To suggest otherwise is to contradict the assumed
density independence. In depsity-dependent systems, however, the long-term equilibrium can be
stable, which is observed as a long-term trend to increase or decrease when a population is perturbed
from its normal range or distribution of Huctuations (Ellner 1984; Chesson and Hundy 1993;
Chesson 1994), But, it is importanc to keep in mind that a stable equilibrium on a long timescale
may be an emergent property of heterogeneity and nonlinear dynamics on smaller scales. Smail scale
hetcrogeneiry may stabilise the equilibrium on a larger sparial scale, even though an equilibrium
need not be present on the smaller scale for it to emerge on the larger scale. It can be created on the
farger scale by nonlinear averaging in the transition berween scales.

Appendix

The population projection marrix approach (Caswell 1989), commonly used for stage or age
structured populations can also be generalised to model density-independent population growth for
a population with any spatial structure or stage structure, or combinarions of both stage and spacial
strucrure; elements of the matrix can represent density-independent migration rares berwceen
localities in addition to wansition rates berween stages. The elements of this macrix can also vary
stochastically in time, and thus represent environmental variability of grear complexity. Population
dynamics are then given by the equarion

N{s+1) = M(aN(2 {14)

where the components of N correspond to the numbers of individuals in each stage, age and place
combinartion, and the elements of M (8 express the rates of change berween these possible states of
an individual organism. This iteration was studied mathematically many years ago (Furstenberg and
Kesten 1960), and generalised more recently {(Heyde 1985) with the conclusion that the elements
of N{#) exhibit a common exponential rate. of gtowth with stochastic fuctuacions abour this race.
More specifically, there is a consrant R such that rotal population size M2 satisfies the following
equation:

N(@) = NDYRA +Z @) (15)

where Z{(4 is 2 rancom variable that converges to (¢t as # becomes large. The individual elemencs of
N{(#) all sarisly similar equations.

This analysis does not include demographic stechasticity, but branching process theory (Jagers
1975) shows that the addition of demographic stochasticity does not alter the essence of these
conclusions.
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