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Abstract.—Harsh conditions (e.g.. mortality and stress) reduce population growth rates directly:
secondarily. they may reduce the intensity of interactions between organisms. Near-exclusive fo-
cus on the secondary effect of these forms of harshness has led ecologists to believe that they
reduce the importance of ecological interactions. such as competition, and favor coexistence of
even ecologically very similar species. By examining both the costs and the benefits, we show
that harshness alone does not lessen the importance of species interactions or limit their role in
community structure. Species coexistence requires niche differences, and harshness does not in
itself make coexistence more likely. Fluctuations in environmental conditions (e.g., disturbance,
seasonal change, and weather variation) also have been regarded as decreasing species interac-
tions and favoring coexistence, but we argue that coexistence can only be favored when fluctua-
tions create spatial or temporal niche opportunities. We argue that important diversity-promoting
roles for harsh and fluctuating conditions depend on deviations from the assumptions of additive
effects and linear dependencies most commonly found in ecological models. Such considerations
imply strong roles for species interactions in the diversity of a community.

In a series of influential works, Gause (1934), Hutchinson (1959), and Mac-
Arthur and Levins (1967) suggested that species interactions such as competi-
tion are a major impediment to species coexistence and community diversity and
that competition has a major role in shaping the structure of communities. De-
spite early enthusiasm for these ideas, many ecologists have since argued that
population densities are often low, because of harsh conditions resulting from
physiological or resource stress or from mortality caused by disturbance, preda-
tors, or pathogens. They reason that competition therefore is weak or infrequent
and consequently does not have appreciable effects on properties of communi-
ties such as species composition, diversity, and niche overlap (Wiens 1977;
Grime 1979, 1985; Huston 1979; Menge 1979; Greenslade 1983; Strong 1983;
den Boer 1986; Zobel et al. 1994). A common extension of such reasoning is
that community properties are largely determined by chance and history (Hub-
bell and Foster 1986a, Cornell 1993).

A related argument is that competition only structures communities at equilib-
rium. Proponents of this view have argued that environmental fluctuations, such
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as seasonal variation, vagaries of the weather, and disturbance, disrupt equilibria
and prevent consistent effects of competition (Hutchinson 1961; Wiens 1977;
Huston 1979; Ricklefs 1987). Unpredictable environmental fluctuations are
sometimes also assumed to reduce selection for ecological divergence that may
result from interspecific competition (Wiens 1977; Hubbell 1979; Connell
1980). Indeed, Hubbell and Foster (1986a) argue that high environmental uncer-
tainty leads to ecological convergence, high niche overlap, and coexistence of
many very similar species. Hutchinson (1961) suggests that environmental fluc-
tuations of the right frequency can reverse competitive exclusion and allow per-
sistence of a richer nonequilibrium community. However, ecologists have most
often viewed environmental fluctuations as promoting extinctions and reducing
species diversity (Pimm 1991).

The recent acceptance of the concept that multiple mechanisms are most
likely involved in diversity of any community and that the ecological processes
of most importance may vary with locality, trophic level (Menge and Sutherland
1987; Menge and Farrell 1989), or spatial scale (Cornell and Lawton 1992;
Ricklefs and Schluter 1993; Levin 1994) has also been construed as indicating
that competition or other density-dependent processes may often be unimportant.
The unfortunate failure to emphasize that, at some spatial or temporal scale,
niche differences are essential to species coexistence has allowed logical incon-
sistencies in the ideas described above to remain unnoticed. Thus, these ideas
remain commonly accepted though they fail to identify correctly the circum-
stances in which harshness and environmental fluctuations can importantly in-
fluence community structure.

We reexamine the role of harshness, arguing that it does not necessarily di-
minish the importance of competition because harshness has direct negative ef-
fects on population growth that must be compared with the positive effects of
lowered competition. As Holt (1985) has shown for density-independent preda-
tion in Lotka-Volterra systems, such harshness may make a population less tol-
erant of competition: although competition may be reduced, harshness also
means that competitive exclusion can occur with weaker competition. Thus,
harshness resulting from a regime of disturbance, mortality, or stress does not
have a general consequence for communities. Although harshness need not have
any effect on diversity, we discuss several ways in which it can, and we offer
ways of understanding its effects for particular ecological communities.

We argue further that the effects of environmental variation depend on partic-
ular ecological circumstances. Although environmental fluctuations may keep a
system away from a traditional equilibrium where species densities remain con-
stant over time, environmental fluctuations need not reduce the average effects
of competition nor the selective value of resource partitioning. Rather, environ-
mental fluctuations can provide temporal niche opportunities, permitting species
to be differentiated from each other in their relationships with specific environ-
mental conditions that occur over time; therefore, species can coexist by having
complementary relationships with the temporally varying environment, for ex-
ample, by having different periods of maximum growth and quiescence or dor-
mancy. Competition may shape such complementary patterns by competitive ex-



THE ROLES OF HARSHNESS AND FLUCTUATIONS 521

clusion within groups of ecologically similar species or by coevolutionary
adjustments between coexisting species. Environmental fluctuations provide op-
portunities for temporal niche partitioning but do not fundamentally change the
impact of interspecific competition.

Although we express much of our argument in terms of competition for re-
sources, the conclusions apply also to other density-dependent population inter-
actions that have the potential to generate ecological opportunities for species,
that is, that can serve as niche dimensions (Levin 1970). It has long been recog-
nized that shared natural enemies may have such a role. For instance, MacAr-
thur (1970) discussed the concept of predator partitioning where members of a
community are limited by predation; and the analogy between the effects of
competition and shared density-dependent mortality from natural enemies is rec-
ognized in the concepts of ‘‘apparent competition’” (Holt 1977) and ‘‘competi-
tion for enemy free space’’ (Jeffries and Lawton 1984).

Our arguments are developed by means of a general mathematical model that
permits us to examine the logic of the ideas summarized above. The model in-
cludes as special cases the Lotka-Volterra model in a variable environment (Tur-
elli 1981) and the lottery model with nonoverlapping generations (Chesson and
Warner 1981) but is much more general than either of those models. We do not
present this general model because we believe it has broad application; we will
argue below that it does not. However, the model includes the elements that
commonly enter discussions of the effects of harsh and fluctuating conditions,
and comparison of this model with others highlights the ecological conditions
under which harsh or fluctuating environments can play a significant role in di-
versity and community structure.

We begin with a study of the general model, which demonstrates that, at best,
harsh and fluctuating conditions have severely limited roles in the maintenance
of diversity when common premises apply. We then use these results to exam-
ine the views of Hutchinson (1961), Grime (1985), Hubbell (1979), and Huston
(1979), arguing that in general these authors have presented inadequate, incon-
sistent, or improbable explanations for the role of competition in the mainte-
nance of species diversity. Finally, we examine models that deviate in important
ways from the general model, incorporating realistic features of nature that
allow harsh and fluctuating conditions to promote strongly the maintenance of
species diversity.

A GENERAL MODEL

Consider a guild of several potentially competing species. If N;(¢) is the popu-
lation size of species i at time ¢, then the per capita population growth rate (r)
over discrete units of time can be defined as

r( = In[N(t + 1)/N®] = In Nz + 1) — In Ni(1), (1)

or simply the change per unit time in the natural log of the population size. We
assume that the growth of a population can be represented by the difference of
two general sorts of effects, density-independent effects measured by a quantity
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E(t) (which we refer to as the environmental response) and multispecies den-
sity-dependent effects measured by a quantity C;(t) (competitive response).
Thus, in simplest terms our model is

ri(t) = E(1) — C(n). (2)

The density-independent effects accounted for by E,(f) include the effects of
the physical environment and also any biotic effects that do not depend on the
density of the population, for example, mortality by a predator or a pathogen
whose dynamics and behavior are not strongly linked to species of the guild in
question. Biotic effects linked to the species in this guild are accounted for by
Ci(t) and can be expected to depend on the densities of these species. In this
sense these effects are density dependent. They include competition and density-
dependent disease or predation (apparent competition; Holt 1977), although for
simplicity our discussion is framed in terms of competition alone.

The competitive response may be defined as the total effect on the growth rate
of both intra- and interspecific competition. It is not a competition coefficient,
which measures the per unit effect of a species’ density on the per capita growth
rate of a species. The competitive response measures, instead, the total reduction
in the per capita growth rate because of competition. Although similar to Gold-
berg’s (1990) terminology, our usage applies at the population rather than the
individual level and is the actual reduction in growth rather the relationship be-
tween growth and resource availability.

The environmental response can fluctuate over time because of fluctuations in
the weather, fluctuations in predators and pathogens, and fluctuations in mortal-
ity rates because of disturbance. The competitive response may also fluctuate
over time. It may do this because population densities fluctuate, because inputs
of resources to the system fluctuate, because environmental factors modify re-
source uptake rates (Abrams 1984), or because environmental conditions modify
the number or size of individuals competing for resources (Chesson and Huntly
1988).

To understand how different species respond to competition, we assume that
the competitive response of a species can be broken down into responses to m
distinct factors, with magnitudes F(¢), Fy(?), . . ., F,(t). In the Lotka-Volterra
model (app. A), the species themselves are the competitive factors, and the F (),
Fy(9), ..., F,(t) are the species’ densities. Each species is considered to contrib-
ute some amount of competition of a particular sort to the system, depending on
the rates at which it consumes particular resources, and this amount of competi-
tion is assumed proportional to the species’ density. In more mechanistic models
(e.g., Tilman 1982), the competitive factors could be resources, and F;(f) would
then be a measure of the shortage of resource /.

We assume here that the competitive response depends linearly on the com-
petitive factors:

i)y = > buF(). 3)
=1
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Thus, the response of species i to factor [ is b, F(t), and the combined response
to all factors is just the sum of the response to each factor separately. The con-
stants b, give the per unit response of species / to factor /, and we shall refer to
by as the sensitivity of species i to factor L

Stable species coexistence occurs without difficulty in a model of this sort
when there are at least as many competitive factors as species (Levin 1970), as
then different patterns of sensitivity to these factors (MacArthur 1970) mean that
the species have distinct resource niches. Harshness and fluctuations are be-
lieved to allow coexistence with just a few or even just one competitive factor
(one resource niche). Can this be so?

Arguments that there are many fewer competitive factors than species are
common in the literature. For example, it is claimed that space may represent a
single-competitive factor in some plant communities (Hubbell and Foster
1986a), as space brings the resources required by plants, which may be summa-
rized broadly as nutrients, water, and light (Grubb 1986). If the species in a
guild have similar dependence on resources, then such a single-factor summary
is adequate. In Lotka-Volterra competition with a single competitive factor, the
species collectively form the factor, which is measured as a weighted sum of the
densities of the species (app. A), the weights being the competitive effect (sensu
Goldberg 1990) of each. With just a single competitive factor, equation (2) can
be expressed as

ri(t) = E() — b F(1), 4)

where F(f) is the common competitive factor, and b, is the sensitivity of species
i to this factor.

The dynamics of competitive factors, whether single (eq.[4]) or multiple (eq.
[3]) can be complex, but all we need to know is that competitive factors prevent
indefinite increase in population densities. We assume that if a species i is sensi-
tive to factor /, then an increase in the density of species i tends to increase fac-
tor [ (e.g., makes the resource less available). We assume that such density de-
pendence prevents indefinite growth of a population, even if it operates with a
time lag. In other words, we assume that populations are stochastically bounded
from above (Chesson 1982).

GENERAL PREDICTIONS OF THE MODEL

There are several ways of considering harshness in the model. Lower values
of the environmental response, E;(¢), higher values of the b;, and lower values
of resource supply (which affects F(7)) all indicate harsher conditions. Thus, we
can use the model to ask, How does harshness affect community dynamics, the
coexistence of species, and the rate of approach to extinction? What is the role
of fluctuations over time in environmental responses and competitive factors?

The quick route to answering these questions is through the special case of
the model with a single competitive factor (eq. [4]), which is the object of study
for the rest of this section and appendix B (stochastic analysis). The conclusions,
however, extend to the case of several competitive factors (app. C). With just
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one competitive factor, an equilibrium analysis would predict that species loss
must occur until just one species 'survives (Armstrong and McGehee 1980).
Fluctuations in E;(f) can mean that competition occurs only infrequently, and
with low average values of the environmental responses, average levels of com-
petition are weak (fig. 1). Can competition be important in such circumstances?
Can competitive exclusion still occur? Will exclusion be delayed for a very long
time? The answers can be found by studying the dynamics of a measure of rela-
tive abundance.

We define the relative abundance of some species i compared with another
species j as the scaled difference in log population sizes

Ry(0) = [In N(O1/b; — [In N;(1)]/b;, (5)

with scaling factors b; and b; representing different magnitudes of response to
the common competitive factor. Dividing by the b’s in equation (5) allows for
species operating on different timescales because 1/b is proportional to the time
for a given magnitude of response to a given level of competition. The most im-
portant property of R;(7), however, is that it can be used to study competitive
exclusion: indefinite increase in R;(f) means that species j must be heading to-
ward extinction. (Indefinite increase in species i cannot occur, and so cannot ex-
plain indefinite increase in R;(¢)). Equivalently, if R;(f) decreases indefinitely,
then species i/ must be heading toward extinction.

Combining equations (4) and (5) reveals the change in R;(7) from one time to
the next:

Ryt + 1) = Ry() = E«nlb; — Ej1)/b;, (6)

which leads to the surprising conclusion that the dynamics of relative abundance
do not involve the competitive factor F(¢) and, thus, do not depend on the
amount of competition. Hence species are not limited relative to each other by
the amount of competition. The role of competition is instead to limit the com-
munity as a whole. Does this observation mean that competitive exclusion can-
not occur? We shall see below that the truth is exactly the opposite: competitive
exclusion takes place independently of the amount of competition.

The Importance of Averages and the Role of Competition

Equation (6) can be summed over time to reveal the total change in relative
abundance from time O to some time T as

Ry(T) — Ry(0) = T - (Ei/b; — Ej/b)), (7

where E; and E,- are respectively the averages of E;(f) and E;(f) over the time
period t = 0tot = T — 1 (app. B). This expression of total change in relative
abundance in terms of average environmental responses, with no terms for vari-
ance in these environmental responses, leads to the second surprising conclu-
sion: the change in relative abundance over any period of time depends only on
average environmental responses for the given period of time and is independent
of fluctuations about these average values.

As discussed below in the section on the role of fluctuations, the average en-
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Fi1G. 1.—A, Fluctuations in population density for the dominant species of a three-species
system experiencing random disturbances. Competition only occurs when population exceeds
10. B, Fluctuations in the magnitude of competition experienced by the population in A.
Without disturbance, the equilibrium value of competition is 0.13. In the presence of distur-
bance, competition is infrequent and has an average value of only 0.0026, or 2% of the equi-
librium value. The simulation is based on equation (4) of the text, with () = max|{0, X;
0.01N; — 0.1}, b; = 1. Fluctuations in E,(f) are independent over time, normal but with val-
ues above the mean truncated to the mean. The normal variance is 0.102 (chosen to give the
2% value for competition) and the mean for the dominant is 0.13.
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vironmental responses, E, and Fj, themselves may change with the interval of
time T over which they are calculated, but in a variety of circumstances, for ex-
ample, if the environment varies randomly over time, or regularly (e.g., season-
ally), or is a combination of both, then E, and E; are approximately constant for
large T in accordance with the law of large numbers (Feller 1968). Denoting
these constant values by W; and W;, equation (7) becomes

Ry(T) — Ry(0) = T - (W;/b; — W;/b)), (8)
showing that relative abundance changes approximately linearly with time, ex-
cept in the unlikely event that W,/b;, = w,;/b,. Thus, species must grow steadily
apart in abundance with time. Indeed, relative abundance must approach plus in-
finity (u,/b; > W,/b;) or minus infinity (W;/b; < W;/b;), and so we must conclude
that species i, species j, or both become extinct. Indeed, in a community of
species having differing values of /b, only that species with the highest value
of W/b will persist in the system because the relative abundances of other species
must converge on minus infinity, signaling their extinction. Thus, the system has
a dominant species that eliminates all other species. This is the case even though
competition may be weak on average, which is so when the dominant has a low
value of | (fig. 2). As anticipated, competitive exclusion takes place indepen-
dently of the magnitude of competition, independently of fluctuations in the en-
vironmental responses, and independently of the dynamics of competition be-
yond the assumption above that competition prevents any species from
increasing indefinitely.

The Nature and Role of Ecological Dominance

As dominance in this system is determined by the ratio /b, a species can be
dominant by having a large value of pu—a measure of the average effect of
density-independent factors—or a small value of b (sensitivity to competition).
The competitive dominant is not necessarily the species whose growth rate is
least affected by competition, that is, the species least sensitive to competition.
Rather, a species can be dominant by having a high [, due, for example, to short
development times, high fecundity, or low mortality in a particular environment.
In Lotka-Volterra models, however, the commonly assumed trade-off between r
and K does imply that the dominant is the species least sensitive to competition
(app. A).

The ratio /b can be thought of as tolerance of competition or, more pre-
cisely, tolerance of the competitive factor, because W/b is equal to the average
value of the competitive factor F that leads to zero average growth over time for
a species, as can be seen by taking the average of both sides of equation (4). A
larger average F than this means negative average growth and convergence to
extinction. A smaller average F means an increasing population. Corresponding
to Tilman’s R* rule (Tilman 1982), the species that dominates is indeed the one
able to tolerate the most competition.

Rates of Approach to Extinction

Rates at which nondominant species are excluded from the system are avail-
able by rearrangement of equation (8). If species | is the dominant, that is, has
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F1G. 2.—A, Fluctuations in the population densities of three species experiencing random
disturbance and common competition. B, Fluctuations in the magnitude of competition.
C, Relative abundances of the two subordinate species relative to the dominant. Note that
relative abundances decline approximately linearly even though competition fluctuates a great
deal. The simulation is based on equation (4) of the text, with F(r) = max{0, X, 0.0IN, —
0.2}, b, = . Fluctuations in E(r) are independent over time, normal but with values above
the mean truncated to the mean. The normal variance is 0.07, with correlations between spe-
cies of 0.9. The mean is 0.14 — 0.01i. 7 = 1.2, 3.
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the highest value of /b, then dividing equation (8) by 7, with j = 1, yields
R,’] = T",/b, - 7']/b1 = l.l,'/b,' - ul/blv (9)

where R;;, 7, and 7, are the averages of R, (f), r,(f), and r,(¢) over the time pe-
riod 0 to T — 1. For large 7, the average per capita growth rate, 7;, of the domi-
nant approaches 0, as the dominant can show no long-term trend in abundance
(see, e.g., Chesson 1994). It follows that

?, I l"l'i - ulbi/bl' (10)

The rate of convergence to extinction is just the negative of 7, a fact that we
now use to draw conclusions about the potential effects of various kinds of
harshness on rates of competitive exclusion.

HARSHNESS AND RATES OF APPROACH TO EXTINCTION

The general results above show that harshness cannot alter the conclusion that
there must be a competitive dominant that drives the other species extinct, ex-
cept in the unlikely event that harshness leads to equal tolerances of competition
(u/b). Even then, as we shall see below in the section on fluctuations, competi-
tive exclusion of all but one species is still the most likely outcome. Harshness,
however, can alter the rate at which exclusion is approached and it can alter the
dominance ranking in a system. To see when and how these effects may occur
we examine several possible sorts of harshness.

High Mortality Rates or Metabolic Costs

High mortality rates because of disturbance, density-independent disease, or
predation all lead to low values of the environmental response, E,(f), and hence
low values of W, the time average of E,(f). In small mammals and birds, low
temperatures, which require high metabolic rates to maintain body temperature,
may be another way in which environmental responses are lowered. To under-
stand how rates of approach to extinction may be affected by such harshness, let
0, be the decrease in W; with the imposition of harshness, which we may regard
as the sensitivity of species i to harshness. Equation (10) implies that the change
in the rate at which species i approaches extinction is

3(bilb) — &, 1n

which means that species i’s rate of approach to extinction declines with harsh-
ness if

di/b; < 8,/b,. 12)

Thus, species i’s rate of approach to extinction declines with harshness if the
ratio of species i’s sensitivity to harshness and its sensitivity to competition is
less than this ratio for the competitive dominant.

If harshness is due to indiscriminate mortality, as might occur with distur-
bance or nonselective predation, then the §’s are similar and extinction will be
slowed simply if b; > by, that is, if the growth rate of species / is more sensitive
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to competition than is the growth rate of the competitive dominant. Thus, in
those cases when dominance is caused by low sensitivity to competition, indis-
criminate mortality reduces rates of approach to extinction. If dominance results
instead from a larger p, harshness would not affect extinction rates or would in-
crease them if the dominant were more sensitive to competition than other spe-
cies.

In some situations mortality may fall selectively on the dominant. For exam-
ple, the dominant may have a higher value of u than other species because it
invests less heavily in defenses against predators or harsh environmental condi-
tions. Thus, it would be more sensitive to harshness than other species would,
with the consequence that extinctions are slowed by harshness. At some level of
harshness, however, the rank order of dominance would change so that the pre-
vious dominant goes extinct. Further increases in harshness from this point
would hasten the extinction of the original dominant. Thus, though competitive
exclusion may be slowed, it is never eliminated; eventually one species domi-
nates.

Why Reduced Competition Need Not Delay Competitive Exclusion

Harshness that lowers the average environmental response does lead to re-
duced competition on average. We can see this from the fact that a persisting
dominant must have a long-term average growth rate close to zero, that is, 7, =
0 for large 7. Because r is just the difference between £ and C, we must have,
in the long run,

E, = C,. (13)

As a consequence, a lowering of the average environmental response must be
accompanied by a lowering of the average competitive response. Since C, =
b, F, equation (13) means that

E, = b F (14)
or
F~E/b =~ uwlb,. (15)
As C, = b,F, we see that
C, = W (b;/b)). (16)

Thus, how much reduction in competitive response a nondominant species gains
from lowered environmental responses depends on its sensitivity to competition
relative to the dominant. When these sensitivities are the same, a nondominant
species experiences exactly the same reduction in competitive response as does
the dominant. If, in addition, the nondominant species’ environmental response
is reduced identically to that of the dominant, there is no net change in long-
term growth rates of any species. Competitive exclusion occurs at the same
rates, and the order of dominance is unchanged.

When sensitivities to environment and competition differ between species, a
species may experience a net gain or a net cost from harshness, according to the
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details discussed above, but such gains or costs cannot be predicted from the
reduction in competition alone. The effect of a lowered environmental response
is a reduction in the ratio W/b (tolerance to competition). Thus, although there
may be a benefit from harshness in terms of reduced competition, a species is
made less tolerant of competition by that same harshness. Whether a species
gains a net benefit from harshness depends on how its tolerance to competition
changes relative to that of the dominant species.

Physiological Stress: Slow-Growth Harshness
and the Question of Temporal Scale

Until now we have assumed that harshness had its effect on the environmental
response, E;(f), alone. However, physiological stress, for example, because of
cold temperatures in plants and ectothermic animals, would slow down growth
processes generally and thus lead to a reduction in | and b by the same factor.
Although the growth rates, r;(f), would be smaller in magnitude, the ratio (/b
would not be affected regardless of the extent to which different species were
affected by the stress. Hence, the dynamics of the relative abundance measure,
R, would not change. A change would occur in the absolute rate of competitive
exclusion, as given by expression (10), which would be slower simply as a re-
flection of the slower dynamics of the species. In effect, the timescale would be
stretched without altering the events that occur.

Resource Harshness: Unproductive Environments
and the Question of Spatial Scale

Finally, consider resource harshness. Resource harshness is defined as a low
rate of replenishment of depleted resources. Resource harshness may be caused
by uniformly low replenishment in time and space or by patchy resource supply.
In arid environments, water resources may be temporally patchy because rain is
sporadic. Resources may also be supplied patchily in space, which may lead to
a patchy distribution of a community in space.

Although resource harshness derives from the environment in which organ-
isms live, it does not alter 1L because it does not have a direct effect on the spe-
cies. The effect, instead, is indirect through the resources. The results of the
analysis above do not involve the dynamics of resources. Rather, they are
wholly dependent on the mean direct environmental response, [L, and the sensi-
tivity to competition, b. Neither of these quantities is affected by resource harsh-
ness, and therefore, it appears that the rank order of competitive dominance, the
extinction of all but the dominant species, and the rates at which extinction is
approached are all unaffected by resource harshness. How can this be?

First of all, note that availability of resources need not be low in the presence
of resource harshness, because availability represents the net result of supply
and consumption over time. Resource harshness is low supply, but this low sup-
ply is compensated by low total consumption if population densities are low.
Low consumption as a result of low population densities can lead to high re-
source availabilities. As the competitive factor represents a measure of resource
shortage, resource harshness does not automatically lead to high values of the
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competitive factor. For the dominant to persist, resource shortage must not, on
average, be higher than [ ,/b,, the tolerance of the dominant species. This aver-
age value is implied by the persistence of the dominant and is achieved by nega-
tive feedback. If resource shortage should remain higher than u,/b, for any pe-
riod of time, the growth rate of the dominant would tend to be negative, and the
dominant would tend to decline in density. This outcome would reduce resource
consumption and lessen resource shortage.

Conversely, values of resource shortage lower than |,/b; lead in the long run
to higher densities of the dominant, hence higher resource consumption and
higher resource shortage. In essence, long-term matching of average values of
resource shortage with |,/b, depends on population densities of the dominant
and the resource renewal rate. With resource harshness, lower densities of the
dominant achieve the same levels of resource shortage. There is no reason for
the relationships between the dominant and other species to change as the spe-
cies are ranked on the basis of tolerance of resource shortage. Thus, the only
change in the system is a lower density of the dominant species. We may think
of resource harshness as a stretching of the spatial scale: nothing would look any
different if the system were simply viewed from further away.

THE ROLE OF FLUCTUATIONS

In the analysis of harshness above, the environment was considered to be
fluctuating, but fluctuations played no role in the conclusions. The role of fluc-
tuations in the linear-additive modeling framework is necessarily quite small.
The rate of divergence of relative abundances given by equation (7) depends just
on the averages, E,/b and E,/bl,», and not on fluctuations about these average val-
ues. The only issue is whether the ratios settle down to constant values (u/b)
with time (converge) and differ between species. Above, we used the prelimi-
nary assumption that the environment was some arbitrary mixture of random and
regular variation to justify convergence (settling down). More generally, conver-
gence occurs with stationary time series (Wei 1990). To say that a time series is
stationary is to say that its probabilistic properties (frequencies with which vari-
ous states and sequences of states are predicted to be found) do not change with
time. Stationary time series cover a wide range of the various kinds of ‘‘noise’’
(red, white, and blue) commonly encountered in ecological discussions of envi-
ronmental variation (Nisbet and Gurney 1982). Thus, the analysis above remains
valid in all these cases, the critical issue being only that the final values of the
E/b (u/b, say at T = o) differ between species. In reality, this will always be
so, as there are bound to be quantitative differences in species’ properties, but
these differences could be small, in which case the differences between the E/b
will be dominated by random variation.

Even in the case where the dynamics are dominated by random variation,
most of the conclusions above about harshness are preserved (app. B). The
abundances of different species still move apart. The presence of any ran-
domness over time in the differences of the E/b values guarantees this. When
the /b values do not differ appreciably between species, equation (7) express-
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ing the change in relative abundance between times 0 and 7 still applies, but,
because its values are dominated by random variation, we must examine its
standard deviation to understand the fate of the community. The standard devia-
tion describes the rate at which abundances move apart by a process of random
walk, an accumulation of steps that by chance alone favors one species over oth-
ers. The conclusions in this case differ in detail but not in main thrust from the
conclusions when the /b differ appreciably between species (app. B). The im-
portant differences are as follows. First, the surviving dominant species is not
predictable on the basis of greater tolerance of competition a priori but is the
one better able to tolerate competition given the actual sequences of environ-
mental states occurring over time. Second, the trend to extinction is not linear
in time but linear in the square root of time—a slower rate of approach to ex-
tinction but nevertheless an inevitable approach to extinction. Finally, fluctua-
tions still do not slow competitive exclusion; instead, they hasten it.

In general, the rate of approach to extinction consists of the sum of a linear
rate, coming from the difference between /b values, and a square root rate,
coming from the stochastic element of fluctuations in E/b values. The linear rate
just depends on average effects and dominates when it is present (unless species
differences are slight or populations are very small), while the square root rate
depends entirely on unpredictability of the fluctuations in the environmental re-
sponses and leads to slower extinction with less predictability. Regular fluctua-
tions in the environment do not contribute to the square root rate of extinction,
as they quickly average out. See appendix B for details.

The above arguments all depend on an environment that can be approximated
as a stationary time series. What if the environment is not approximately station-
ary, for example, if the environment follows some of the more exotic noise pro-
cesses that some believe realistic in ecological settings (Halley 1996)? In such
cases, the most likely scenario is that divergence of relative abundances is faster
than linear. With a nonstationary environment, the differences in E;/b; — E;/b,
may show directional change with time. Thus, T(E,/b;, — E;/b;) will change rap-
idly, signaling rapid extinction.

Fluctuations in competition have played no role in the development above be-
cause the competitive factor plays no role in the dynamics of relative abundance,
as revealed by equation (6). Species diverge based on differences between their
values of E/b, and these differences are unrelated to competition. The average
level of competition and fluctuations in competition are affected in a major way
by the actual, as opposed to relative, values of the E/b, especially those of the
dominant species (see, e.g., eq. [13]). Fluctuations in competition can indeed be
a major cause of population fluctuations, but they have no role in relative fluc-
tuations while species are affected linearly by a common competitive factor.
They neither slow nor speed competitive exclusion. Rather, they limit the com-
munity as a whole, not any species in relation to others.

In conclusion, however, we look at this linear-additive model, with a single
competitive factor, the system must ultimately be dominated by a single species.
Fluctuations in the system do not weaken this conclusion. In fact, they may
strengthen it.
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CONTRARY PERSPECTIVES

Hutchinson’s Hypothesis: When Do Environmental
Fluctuations Promote Coexistence?

Our analysis of linear-additive models sheds light on an influential hypothesis
put forward by Hutchinson (1961). He assumes that environmental fluctuations
alter the rank order of competitive superiority. Without introducing any features
that take him beyond the general model analyzed above, he concludes that spe-
cies coexistence is possible if the timescale for competitive exclusion in a fixed
environmental state is comparable to the timescale of environmental change.
Under conditions where the environment changes much faster or much slower,
he concludes that competitive exclusion must still occur.

If the dynamics of such a system are described by the Lotka-Volterra equa-
tions or any other additive linear model, then Hutchinson’s conclusions are in
error. Both on the short and the intermediate timescales of environmental change
that he discusses, exclusion will take place at rates given by average favorabili-
ties of the environment for the species, as determined by average environmental
responses. Fluctuations in the system are irrelevant. There is no a priori reason
to expect that the average environmental responses of different species should
lead to similar tolerances to competition. and so linear rates of approach to com-
petitive exclusion are to be expected. Average environmental responses would
lead to a system closer to neutrality, with slower competitive exclusion, than if
the environmental responses were fixed in a particular environmental state fa-
voring one species over others. There is no reason, however, to invoke fluctua-
tions to arrive at these conclusions.

Deviations from the modeling framework that we have assumed here, though
not part of Hutchinson’s arguments, are critical for environmental variability to
have a role in diversity maintenance, as we shall see below. Although it has
been claimed that Hutchinson’s hypothesis is obviously true (Huston 1979), we
have shown that in detail it is wrong; missing from his arguments are the most
important premises capable of leading to the conclusion that diversity can be
maintained by fluctuations. We discuss these important premises in a later sec-
tion (‘‘Alternative models’’).

Huston’s Model: When Does Disturbance Promote Coexistence?

Using Lotka-Volterra competition models, Huston (1979) concludes that an
intermediate frequency of disturbance is favorable to species coexistence pro-
vided the various species have similar values of their intrinsic rates of increase.
He does not predict indefinite coexistence but slow competitive exclusion. The
imposed disturbances are pulses of mortality recurring at regular intervals of
time and, hence, harshness from high average mortality rates (low average envi-
ronmental responses). Slowing of competitive exclusion occurs in Huston’s
model by lowering all species’ tolerances to competition to near zero, taking
them all to the edge of existence (app. A). Similar intrinsic rates of increase are
essential for indiscriminate mortality to have this effect. Long-term population
dynamics are very slow as the E’s and C’s are very small in magnitude. Short-
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F1G. 3.—Simulation of a three-species equal-carrying-capacity Lotka-Volterra model in a
random environment. In the absence of environmental fluctuation, the system has neutral sta-
bility, and species relative abundances remain constant. If environmental fluctuations have
random components that do not affect the species identically, random drift must take all but
one species to extinction, as depicted. The simulation is based on equation (A1) of appendix
A with o, = 0.01, ¥ = 1, and the €, independent white noise processes with variance per
unit time of 0.04.

term dynamics are not slow, however: large increases are followed by large de-
terministic declines. As shown above, because the model is linear and additive,
these highly varying deterministic dynamics on the short timescale are irrelevant
to the long-term outcome. Because the mortality fluctuations are regular, the
identical result would be achieved by constant mortality with the same average
value.

One can ask why the assumption of similar intrinsic rates of increase should
be satisfied by the different members of a natural community; this situation
seems unlikely. A system so highly dynamic on short-term scales also seems un-
likely to be wholly deterministic. Thus, even accepting the assumptions of simi-
lar intrinsic rates of increase and average mortality rates, which would slow de-
terministic dynamics and delay competitive exclusion, one must face the reality
that in nature mortality fluctuations are at least partly stochastic and such sto-
chasticity is likely to dominate the long-term dynamics of the system (fig. 3),
especially given the low tolerance of competition resu]tmg from Huston’s as-
sumptions. Thus, the delay in competitive exclusion that is possible from Hus-
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ton’s mechanism is limited. Indeed, Huston’s model does not seem to provide a
realistic mechanism of species coexistence. More plausible explanations of dis-
turbance as a coexistence mechanism are discussed below in the section on the
successional mosaic hypothesis.

The Ideas of Grime: Harshness and the Importance of Competition

Grime (1979) suggested that stress (defined as reduction of biomass accrual)
and disturbance (defined as removal of biomass) are major factors affecting the
organization of communities. He suggests that competition is important primar-
ily in low stress, low disturbance conditions and, thus, that the importance of
competition is reduced by either stress or disturbance. Although Grime used the
word competition to refer to purely resource consumption, whereas we have
adopted the more conventional population biologists’ usage, our definitions of
harshness cover Grime’s definitions of stress and disturbance. Thus, our analysis
shows that Grime’s scheme does not show that population interactions, such as
competition, are made less important in stressful environments or in those sub-
ject to disturbance.

Hubbell’s Model: The Role and Likelihood of Competitive Equivalence

Slow rates of competitive exclusion have often been regarded as a sufficient
explanation of high diversity and of the impotence of competition in shaping di-
versity patterns (Hubbell 1979; Huston 1979; Shmida and Ellner 1984; van der
Maarel and Sykes 1993). Our objection to this conclusion has two parts. First,
the conditions necessary for slow competitive exclusion are not robust. Second,
slow decay of species diversity does not explain high diversity in the absence of
a satisfactory mechanism for its origin. To the contrary, the situations implying
slow decay of diversity seem to preclude a satisfactory mechanism for the origin
of high diversity.

Huston’s model, discussed above, is one proposal for achieving slow competi-
tive displacement, but we have argued that it is implausible and not robust to
stochastic fluctuations. A less extreme scenario for slow competitive displace-
ment is even matching of competitive abilities of species (competitive equiva-
lence; Hubbell 1979; Shmida and Ellner 1984) or, in our terminology, similar
tolerance of competition. In the Lotka-Volterra model, this corresponds to spe-
cies having similar carrying capacities, which in some instances can be achieved
by the addition of harshness to a system (app. A). As shown in appendix A,
however, the conditions necessary for this are quite restricted. In all cases, these
systems exhibit nearly neutral stability, meaning that perturbations from a given
state are neither reduced nor enlarged by the dynamic rules of the system. Such
neutral stability is quite fragile. It can easily be turned around by something
omitted from the model, even if that omitted factor is weak (Lewontin 1969).
Discussion of Hubbell’s (1979) rain forest model is instructive. Although Hub-
bell’s model cannot be expressed in the form of our general model (eq. [2]), it
is a prominent model in the discussion of slow competitive displacement.

Hubbell’s (1979) model assumes space is the sole limiting resource, which
means that, in our terminology, there is a single competitive factor, which is the
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inverse of space availability. In this model community, a single niche is occu-
pied by all species. Briefly, the model works as follows.

Species have identical demographic parameters, death occurs at a constant
rate, and recolonization of sites vacated by death occurs by a random draw from
the species pool with the probability of recolonization by a particular species
equal to its relative abundance. This is a special case of the lottery model (Ches-
son and Warner 1981), with the main special feature being the absence of envi-
ronmental fluctuations.

As the species have identical demographic parameters, the model is neutrally
stable and leads to a slow random walk to extinction because of demographic
stochasticity. The suggestion that migration from outside the system (i.e, from
“‘regional species pools’’; Hubbell 1984; Ricklefs and Schluter 1993) will main-
tain diversity indefinitely can only be the case if diversity is maintained in the
areas from which the migrants originate. If there are truly no niche differences
anywhere, there can be no greater expectation that diversity is maintained in ar-
eas outside the system than within it.

The assumption of equal demographic parameters seems very unlikely, even
if differences between them are not discernable when the species are studied on
a small spatial scale. Enlarging the spatial scale may reveal differences between
species as changes in relative abundances on a regional scale. This observation
is perfectly consistent with the hypothesis of subtle variation over space in the
relative values of the demographic parameters of different species, which consti-
tutes broadly overlapping but different spatial niches. Such subtle differences
between niches can be sufficient for stable species coexistence when species
have similar average adaptedness to the region, that is, when they have similar
average demographic parameters (Chesson 1991; Tilman and Pacala 1993), as
opposed to identical demographic parameters everywhere. In this scenario, local
diversity is a product of regional diversity, but variation in space is critical to
the maintenance of regional diversity. The system may look neutrally stable in
that the differences between species are subtle and drift in local relative abun-
dances occurs, but regionally it is not neutral. The subtle differences between
species stabilize regional diversity.

If one accepted Hubbell’s hypothesis that slow species extinction explains the
persistence of highly diverse systems, difficulties would still remain. Slow rates
of decay can only explain the slow loss of diversity, not the actual species diver-
sity. In a model of community dynamics with slow decay of species diversity,
the diversity observed at any time depends on the initial diversity, the rate of
decay, and the amount of time elapsed. The initial diversity is of major impor-
tance, but natural communities do not just appear with some value of diversity,
independent of the properties of the system. The closest one might come is the
hypothesized spread of tropical forests from Pleistocene refugia at the beginning
of the Holocene, where an initial diversity derived from those refugia might be
reasonable (Flenley 1993). More commonly, we should not expect to be able to
identify an initial diversity, and species are best regarded as arriving at the com-
munity continuously over time. The actual diversity achieved might then be
thought of as some balance between arrival and extinction rates, as in the theory
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of island biogeography (MacArthur and Wilson 1967; Hubbell and Foster
1986a).

Speciation and establishment of new species within a neutrally stable system
seem unlikely. If the species have not experienced selection pressures that would
differentiate them ecologically, the conditions for a species split are greatly re-
stricted. Chance mutation (e.g., polyploidy, translocations, etc.) that might lead
to instant reproductive isolation (Tilman and Pacala 1993) is possible, but such
reproductively isolated mutants have little hope of persistence unless they are at
some advantage under some conditions, and such ecological differentiation
would destroy neutrality. Thus, the chances for sympatric speciation consistent
with neutral stability are slim, implausibly restricting the rate of speciation and
the likelihood of highly diverse neutrally stable systems.

In summary, the hypothesis that diverse systems are neutrally stable seems
highly implausible. Although tropical forests were the motivation of Hubbell’s
(1979) neutrally stable model, we note that empirical research in these systems
has steadily revealed a variety of potential stabilizing mechanisms, including
species-specific density-dependent seed and seedling mortality (Clark and Clark
1984; Connell et al. 1984; Hubbell and Foster 1990; Gilbert et al. 1994), spatial
niches of various sorts (Hubbell and Foster 1983, 1986b), and recruitment fluc-
tuations that may lead to the storage effect (Runkle 1989; Iwasa et al. 1993) as
discussed below.

ALTERNATIVE MODELS

The linear-additive models that we have studied so far reveal the limitations
of the common logic on the consequences of harsh and fluctuating conditions
for community dynamics and diversity. These models emphasize the fact that
the positive and negative effects of harshness and fluctuations may cancel out
and have no net overall effect. When they do not cancel out in systems with
linear and additive dynamics, they lead at best to neutral stability or at worst to
more rapid competitive exclusion. Without invoking the effects of deviations
from this logical framework, stronger conclusions about the role of harsh or
fluctuating conditions are not valid.

It is clear that nature is much more complex than the linear-additive frame-
work permits, and we shall see below that deviations from this framework do
have major effects. However, the standard arguments that harshness and fluctu-
ations allow maintenance of diverse communities do not simply become valid
with more realistic assumptions. There are two reasons for this: the nature of the
effects of harsh and fluctuating conditions depends on the specific deviation
from the linear-additive, few competitive factors framework, and the magnitude
of any such effect depends on the magnitude of the deviation. We now consider
three examples of the kinds of ecological scenarios that permit major effects of
harshness or fluctuations.

Harshness and Resource Partitioning

First we consider deviations from a few competitive factors. Multiple compet-
itive factors can permit stable coexistence, but they do not have to: they are
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merely necessary for equilibrium coexistence in the standard competition mod-
els. Harshness can enable the potential coexistence arising from many competi-
tive factors. This seems likely to be a common situation in nature, which we
explore by means of MacArthur’s (1970) mechanistic model of Lotka-Volterra
competition based on competition for many resources.

Two important requirements must be satisfied for species coexistence in Mac-
Arthur’s model. First, species must depend on different resources to different
degrees, that is, they must have nonproportional resource use (Chesson 1990b).
This is necessary so that the resources cannot be reduced to a single composite
competitive factor. Second, and most significant for our discussion here, species
cannot be too unequal in their potential for population growth or a species may
monopolize all resources including those that are the mainstay of other species.
The details of these phenomena for a system of two consumer species are devel-
oped elsewhere (Chesson 1990b) and are modified to address the issues of this
article in appendix D.

Three important quantities determine coexistence: proportionality of resource
use, p, maximum resource harvest rate, 7/, and the maintenance requirement,
m;. The quantity p ranges from O to 1, with 0 meaning no overlap in resource
use and a value of 1 meaning exactly proportional resource use. The value of
m; represents the amount of resource that needs to be harvested per capita for
zero population growth. The difference between the maximum harvesting rate
and the maintenance requirement, #; — m/, is the net maximum harvesting rate.
Like tolerance to competition, discussed above, both A/ and m; are measured in
units that facilitate comparisons between species and reduce complex formulas
to simple ones (app. D). In terms of these quantities, a stable coexistence occurs
if the following inequality is satisfied:

p < (hi — m)Ith) — mj) < 1/p. a7

As p lies between O and 1, this represents a range of values for the ratio of net
maximum harvesting rates (h* — m’) centered on the value I. Thus, if the two
species have equal net harvesting rates, a stable coexistence is guaranteed, pro-
vided only that p < 1, that is, that 1esource dependence is nonproportional. Co-
existence will not occur if the ratio of the net maximum harvesting rates lies
outside this range. Thus, species j will dominate and drive species i extinct if
hi — mj is too large compared with A} — m/, that is, if (h] — m))/(h] — m]) <
p. Harshness can alter the outcome by increasing resource maintenance require-
ments.

Predation or harsh physical conditions selectively increasing mortality rates of
the dominant species (Paine 1966; Lubchenco 1978) will increase m; because
the increased mortality increases the amount of resource that must be harvested
for zero population growth. Thus, the ratio of the net maximum harvesting rates
of the two species could increase above p, enabling coexistence. If mortality on
species j is too high, however, this ratio will exceed 1/p, in which case species
j will be driven extinct by the combined effects of competition and harshness.
Unlike the case of a single competitive factor, here selective mortality can con-
vert competitive exclusion into stable coexistence. The critical feature is the ex-
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istence of differences in resource use as indicated by a value of p < 1. With p
different from 0, coexistence is not guaranteed because each species still has the
capacity to reduce the resources available to the other species. If species j gath-
ers too much of a resource on which species / depends, even if species j does
not depend greatly on such a resource, species j can drive species / extinct.
Note, however, that nonselective mortality, such as might occur with distur-
bance, need not have equal effects on the scaled maximum net harvesting rates
(app. D). For example, there will be more effect on a species with a low intrin-
sic rate of increase than on a species with a high intrinsic rate of increase (cf.
Lotka-Volterra section above and Lubchenco 1978).

The important stabilizing mechanisms in this example come from the differ-
ent niches that the species have. This niche difference means that when a species
is at low density it experiences reduced competition because intraspecific com-
petition is reduced without interspecific competition increasing in compensation.
In the absence of niche differences, increased interspecific competition would elim-
inate the advantage of reduced intraspecific competition. Density-independent
mortality that results from predation or harsh physical conditions merely adjusts
the existing stabilizing mechanisms rather than being a stabilizing mechanism.
By reducing the density of the dominant, mortality reduces competition experi-
enced by the subordinate, allowing it to have a positive growth rate when its
own density is low and so persist in the system. A similar adjustment of stabili-
zation by resource partitioning has been explored by Holt (1985), but Holt’s pro-
posal differs in an important respect: dependence of per capita growth rates on
competitive factors is nonlinear, with different species having different nonlinear
responses to the same factors (the species densities). Thus, in Holt’s model non-
selective predation can affect species’ coexistence, making it more likely with
some nonlinearities and less likely with others.

Predators as a Niche Dimension

In the above examples, density-independent mortality does not add any stabi-
lizing effect in its own right as it does not cause population growth rate to in-
crease as density falls. It simply allows the higher growth rate at low density to
be positive. Density-dependent mortality, however, can directly stabilize coexis-
tence, providing all or part of the stabilizing mechanism. For example, in a
three-species system, two species may be limited mostly by specific resources
on which they depend, and a third species may be limited by a predator im-
posing density-dependent mortality on that particular species. These species
have distinct niches defined by how they are affected by the various density-
dependent agents in the system, be they resources or predators.

A variation on this situation occurs where all species are limited by density-
dependent predators. This situation may lead to coexistence by predator parti-
tioning, in analogy with resource partitioning, as anticipated by MacArthur
(1970) and as suggested for tropical forests by Janzen (1970) and Connell
(1971). In addition, a single predator species can act as several limiting factors
(Murdoch 1969; Levin 1970; Murdoch and Bence 1987) because predators may
behave differently toward their prey species depending on the densities of other
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prey species. In particular, predation may be frequency dependent, leading to re-
duced predation on a species when it declines in relative abundance. In this way
predation promotes recovery to higher densities, stabilizing diversity.

Predation can also stabilize diversity when it is coupled with spatio-temporal
variation, as discussed below (‘‘“The successional mosaic hypothesis’’ section).
It is important to recognize, however, that the simple addition of mortality to a
system is not sufficient for coexistence without the existence of separate niches
for the various species (Chesson 1991). In particular, limitation of the total den-
sity of all species by predation is not sufficient to explain maintenance of spe-
cies diversity.

Nonadditivity: The Storage Effect

We have seen that if the dynamics of a community are additive and linear,
fluctuations in environmental and competitive responses are of minor impor-
tance. When competitive responses (C;) are nonlinear functions of the underly-
ing competitive factors, however, the average environmental responses (E;) of
persisting species no longer determine the average competitive responses of
other species (Chesson 1994). Fluctuations in the competitive factors affect the
average values of the competitive responses and may favor species coexistence
(Chesson 1994) according to a mechanism worked out by Levins (1979) and
Armstrong and McGehee (1980). Removal of the assumption of additivity also
allows fluctuations to maintain diversity. Then the average value of r; is no
longer determined by the average of the environmental response minus the aver-
age of the competitive response. Such nonadditivity may promote coexistence
strongly and is the focus of our discussion below.

To see how nonadditivity together with fluctuations may affect species coex-
istence, we consider the following approximate formula

ri(t) = E(t) — Ci(t) + YE(H)Ci(1), (18)

which applies to nonadditive models generally (Chesson 1994). The constant 7y
specifies the magnitude and type of nonadditivity. A negative value of 7y indi-
cates less than additive combined effects of environmental and competitive re-
sponses, which seems to be the most likely situation in nature (Chesson and
Huntly 1988). It is expected when organisms have bet-hedging life-history strat-
egies or have adaptations that allow them to avoid investment in situations
where they are unlikely to do well. A negative 7y arises naturally in a variety of
ways, most obviously from population structure. For instance, the division of a
population into juveniles and adults, which are sensitive to different degrees to
the effects of environmental factors and competition (Chesson and Huntly 1988;
Chesson 1990a) can lead to nonadditive population dynamics that buffer popula-
tion growth against the harmful effects of competition and a poor environment
but still permit strong population growth with a favorable environment and re-
duced competition.

To understand the ultimate fate of a population, we again look at its average
growth rate over time, which is given here as
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}_",‘ = F,‘ ’_ E/ + 'YE,E‘, (19)

Thus, long-term population growth is determined by the average of three terms.
But if long-term growth depends only on averages, how can fluctuations have
an effect? The answer is that the average E;C; depends on fluctuations in £, and
C; because it is the average of the product of E;(r) and C,(¢) over time, that is,

1
EC =) EWCO. (20)

Statistical theory (e.g., Hogg and Craig 1978) shows that the average of the
product differs from the product of the averages (£, - C;), according to the for-
mula

E‘Ei = Cov(E, C)) + Ei : 617 (21

where Cov(E;, C)) is the covariance between E;(f) and C,(t), measuring the mag-
nitude and sign of joint fluctuations in E,(r) and C,(t). (The covariance is equal
to the correlation between E;(¢) and C;(¢) times the product of their standard de-
viations.) Fluctuations affect the average growth rate through this covariance.
Thus, 7; is affected by the standard deviations of each of E;(¢) and C;(f) and the
correlation between them. If E;(f) and C(¢) are positively correlated (positive
covariance between environment and competition), then fluctuations increase the
average of the products, and because we assume a negative value for v, fluctua-
tions decrease 7. In contrast, if E;(r) and C;(f) are negatively correlated (negative
covariance between environment and competition), then the product is decreased
by fluctuations and 7; is increased.

Importantly, the covariance between environment and competition depends on
the absolute and relative densities of the species. It is assumed that when the
environmental response of a species increases, the species places more demand
on resources. When a species is abundant relative to other species, it is the main
consumer of resources and so fluctuations in its environmental response lead to
positively covarying fluctuations in competition. As a species becomes less
common relative to other species, there is no reason for a close correlation be-
tween its environmental response and competition, as other species contribute
more to competition. Asynchrony in the environmental responses of the different
species (temporal environmental niches) means that the environmental response
of a species at low density may show little or even negative covariance with
competition (Chesson and Huntly 1988). With negative vy, such changes in the
covariance between environment and competition mean that a species at low
density gains an average growth advantage over species at high density, promot-
ing coexistence.

A particular nonadditive model that illustrates these findings is the lottery
model (Chesson and Warner 1981). Although commonly considered with popu-
lation sizes as a continuous variable, the results discussed here remain valid for
populations of discrete size, provided the population is large (Chesson 1982).
This is of particular importance as the forest model of Hubbell (1979), discussed
above, is a special case of the lottery model with discrete population sizes
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(Chesson 1982). Hubbell’s version of the lottery model does not have temporal
variation in the environment and so describes slow species loss. With temporal
environmental variation, stable coexistence of any number of species is possible.
Indeed, that such variation may maintain diversity in tropical forests is now one
of several serious alternatives for the maintenance of tropical diversity (Runkle
1989; Iwasa et al. 1993). In the lottery model, nonadditivity comes from the di-
vision of the life cycle into juveniles and adults with different sensitivities to
environment and competition. The adult survival parameter, s, is assumed insen-
sitive to environmental factors and competition, but recruitment of juveniles to
the adult phase is highly sensitive to both.

In the lottery model, the net benefit that a low density species has in competi-
tion with other species is

ol —
s ( P)’ 22)
l—s n-—1
where v = —s/(1 — ), and 6*(1 — p)/(n — 1) is the difference between the

environment-competition covariance for the low density species and the average
of that of its competitors (Chesson 1994). The covariance difference is made up
of the variance in the environmental response G°, the correlation p between the
environmental responses of different species, and n, the number of species. The
parameter p measures synchrony between species in their responses to the envi-
ronment. A value of p = 1 means that the species environmental responses are
perfectly synchronous and linearly related. Thus, the quantity 1 — p measures
differences in the way species respond to the environment. Note that the benefit
to a species at low density given by expression (22) increases in an unlimited
way with the variance of the environmental response and therefore potentially
permits stable coexistence of many species.

Although Hutchinson (1961) was correct in his expectation that environmen-
tal fluctuations have a role in maintaining species diversity, his discussion omits
the critical roles of nonadditivity and covariance between environment and com-
petition. It is not possible to conclude from Hutchinson’s arguments that coexis-
tence will be stable in the sense that species at low density have positive average
growth rates when environmental conditions vary and favor different species at
different times. Deviations from additivity, as discussed here, or of weaker ef-
fect (Chesson 1994), deviations from linearity, are needed for stable coexistence
to arise.

The Successional Mosaic Hypothesis

Spatial variation can have an important role in coexistence (Horn 1971), and
when disturbance creates spatial variation it has great potential as a coexistence-
promoting mechanism (Paine 1979; Sousa 1979; Tilman 1982). Discussions of
disturbance by Caswell (1978), Connell (1979), and Hastings (1980) all assume
that disturbance is patchy in space and that disturbance begins a successional
sequence at any locality. Because disturbance is asynchronous in space, different
localities are at different successional stages at any one time. Thus, on a regional
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scale, diversity can be high because species characteristic of a variety of succes-
sional stages are present. The magnitude and frequency of disturbance then de-
termine the relative abundances of different species.

Competition may drive succession, and although this is not an essential re-
quirement for succession to occur, such competition-driven successions do seem
to be associated with the coexistence-promoting effect of intermediate distur-
bance (see app. E). Under this scenario, resources initially are abundant after
disturbance (space and/or nutrients have been released), there is little competi-
tion (Tilman 1990), and species that are poor competitors but good colonizers
are favored. Over time, late-successional species become more abundant by be-
ing better competitors for scarce resources or better holders of space in the face
of competition. The successional process, trade-offs that cause species to do best
at different stages of succession, and spatial asynchrony of disturbance all play
important roles in this diversity-maintaining mechanism. Thus, rather than the
intermediate disturbance hypothesis, which is not informative about the real
mechanism, we shall refer to this idea as the successional mosaic hypothesis.

This successional mosaic hypothesis involves species differing fundamentally
in their biology in order to occupy different successional stages. Disturbance
does not simply lessen competition, preventing the most competitive species
from dominating. For example, in appendix E we show that diversity is not
maintained with inhibitional succession (Connell and Slatyer 1977), in which in-
dividuals are not displaced by competition from superior competitors, but hold
space until death from other causes. The successional mosaic model deviates
markedly from the general additive linear model and has nonadditive elements
analogous to those found with the storage effect (P. Chesson, unpublished
manuscript). In this case, there are spatial as well as temporal storage effects.

DISCUSSION

Our analysis of the general linear-additive model reveals serious etrors in the
argument that harshness promotes species diversity by lessening competition. A
species is excluded from a system when its long-term population growth rate is
negative. Harshness has a direct negative effect on that growth rate and lowers
a species’ tolerance of competition. Thus, the positive indirect effect of lowered
competition may not be sufficient to make any difference to a species’ persis-
tence. Indeed, these indirect benefits may fall short of the direct negative effects,
and harshness may hasten competitive exclusion.

We distinguish fluctuations from harsh conditions unless they are associated
with average conditions that have direct negative effects on population growth
rates. The linear-additive model gives no reason for expecting fluctuations to
have particularly favorable or unfavorable effects on species coexistence or to
lessen the importance of competition

Our results show that harshness can slow competitive exclusion in some cir-
cumstances, especially when the species show an r-K trade-off. However, this
slowing of competitive exclusion has been overstated in the literature, for com-
mon models do not allow for effects of realistic environmental fluctuations.
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Moreover, this slowing of competitive exclusion does not reflect stabilizing
mechanisms but, rather, near-neutral stability. Near-neutral stability does not ex-
plain diversity, for near-neutral systems lack mechanisms for building diversity;
although the diversity of a near-neutral system may decay slowly, the origin of
its diversity is unexplained. In addition, neutral stability seems quite unlikely in
nature, as it can easily be overridden by factors that allow differential advantage
to a species: we should expect evolution of species differences that destroy near-
neutral dynamics.

Although harshness and fluctuations alone cannot stabilize coexistence, they
can affect coexistence by their interaction with or generation of other mecha-
nisms. These other mechanisms involve the critical elements of niche differenti-
ation. Where harshness makes species more equal in demographic rates, stable
coexistence may result more easily from classical resource partitioning or from
species-specific responses to spatial patches. In these cases, harshness does not
itself provide a stabilizing mechanism but merely adjusts the parameters of
a system, potentially facilitating or broadening the effects of other diversity-
stabilizing mechanisms. Temporal fluctuations also may form part of a stabiliz-
ing mechanism when species use ecological conditions that occur through time
in ways that are nonadditive or nonlinear. The nonadditive or nonlinear re-
sponses of species generate the potential for costs and benefits realized at differ-
ent times to combine in ways that do not cancel each other; net benefits promote
coexistence and diversity.

Our results do not suggest a diminished role of competition in the presence
of harshness or fluctuations, for we have seen that the direct effect of harshness
makes a population less tolerant of competition. In other words a population
subject to harsh environmental conditions can have a negative growth rate and
become extinct at lower levels of competition. Even though the strength of com-
petition may be reduced, the ability of competition to shape a community need
not be diminished. Harshness may allow the effects of resource partitioning to
be large enough to be an effective mechanism of coexistence. Competition
shapes such a community, because only those species differing sufficiently in
resource use can coexist. Moreover, in allowing coexistence, harshness creates
the potential for coevolutionary adjustments, such as character displacement,
among the coexisting species.

Similar considerations apply to the role of fluctuations, which we have exam-
ined specifically in relation to the storage effect and the successional mosaic hy-
pothesis. The storage effect allows coexistence of species differing sufficiently
in their responses to environmental conditions. Without this sufficient degree of
difference, some species are excluded by interspecific competition. Again, the
balance between interspecific and intraspecific competition among the coexisting
species should lead to coevolutionary adjustment of the degree of specialization
on environmental conditions.

In addition, competition is but one form of density-dependent limitation that
can affect the relationships between species. The conclusions we have derived
for competition apply also to predation apd other forms of density-dependent
limitation. For example, we can consider nonlinearity and nonadditivity in re-
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sponse to predators and the environment. Density-dependent limitation is inevi-
table. Differentiation in relation to density-dependent factors, either directly or
indirectly via factors such as environmental fluctuations that interact with the
density-dependent factors, is a critical component of all mechanisms of stable
coexistence.
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APPENDIX A
LOTKA-VOLTERRA MODELS

A common formulation of the Lotka-Volterra competition model in a variable environ-

ment is
| dN, d
—— = ) — . +
N ar ;,(1 E ;N €,, (Al)

\ j=1

where k is the number of species, o,; is the coefficient of competition for the effect of spe-
cies j on species i, €; is an environmental perturbation to the per capita growth rate, and r
is the intrinsic rate of increase, that is, the per capita growth rate in the absence of competi-
tion and environmental perturbations. If this equation is integrated over the unit of time
from ¢ to t + 1, we obtain equation (2) of the text:

r(t) = Et) — Ci(1), (A2)
where here
Tt dN(w)
r(t) = . du = In Ni(r + 1) — In N(¢), (A3)
 Nj(u) du
t+]
E(t) =r"+ J e,()du, (A4)
and
k -1
@ =1 Z (xL,J N (u)du . (AS)

=1
The competitive response C,(#) can be seen to be further structured as

Ciy = > bFi), (A6)

=1
with

1+1
F, = j N,(u)du (A7)
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and
by = V?(Xi/- (A)

In the special case where a species has proportional effects on other species, o; can be ex-
pressed as a product, o,;f3;. Then we can define the common competitive factor as

m +1
F= Z B,J Ny(u)du, (A9)
=1 !

and sensitivity to the competitive factor F can be defined as
b, = rlo,. (A10)

Equation (4) of the text applies to this special form of the Lotka-Volterra model.

Assuming that the average of €; over time is zero, tolerance of competition in this special
form of the Lotka-Volterra model is equal to 1/a;. This quantity is the carrying capacity of
the environment for species i, where population densities are measured in the common units
of the competitive factor—that is, rather than in numbers of organisms per unit area, the
density of species i is measured in terms of the total competitive effect that it has.

The commonly assumed trade-off between r and K means here that a species with a low
value of ¥ should have a large value of 1/a, and therefore a small value of b; = %o, (sen-
sitivity to competition). Thus, a high tolerance of competition may correspond to low sensi-
tivity to competition.

The above discussion assumed that € had a zero average over time. A nonzero average
value over time is equivalent to changes in " and o;. For example, if the average of € over
time is —9, then

1 dN, :
=0l > o e, (A1)
N, dt =

where now €/ = €; — 8, which does have a time average equal to zero, (+°) = % — §, and
aj = rfo/(r! = 3). Thus, having nonzero average environmental perturbation is equivalent
to a Lotka-Volterra model with different parameters and zero time average for the environ-
mental perturbation. In particular, average environmental harshness (8 > 0) is equivalent to
a lower #* and a lower carrying capacity, K = 1/a,;, with no average environmental harsh-
ness. Note that # determines the overall rate of population dynamics for species i and so
lower 1 means slower population dynamics. More on this topic can be found in earlier work
(Chesson 1994).

Huston (1979) emphasizes slowing of competitive exclusion in the case where the r%’s
are similar in value and competition leads to a common reduction for all species. This
means that as the average mortality rate is increased, the dynamics of the system are uni-
formly slowed on a timescale equal to or greater than the intervals between disturbances,
and accompanying this slowing is a reduction in carrying capacity to near-zero values.

Slowing of competitive exclusion without reduction of carrying capacities to zero is pos-
sible in the Lotka-Volterra model when tolerances to competition, and hence the carrying
capacity, are made very similar by disturbance. Such a result occurs for just a very precise
relationship between the parameters of the various species and the average mortality re-
sulting from disturbance. To see how this occurs in the single factor form of the Lotka-Vol-
terra model (i.e., where o; = o;3,), we first rank species in order of their values of o, (in
inverse order of carrying capacity). Then for a given average value of disturbance 8, the
following formula for #° defines the situation permitting a neutrally stable persistence of the
community:

W= i ) (A12)
[1 =1 = 3aro/o,]
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This formula embodies an »-K trade-off as larger values of o; (smaller values of K; with-
out disturbance) correspond to larger values of Y. Note that this neutrality does not require
the species to have zero values of (+7)" (or equivalently E;). In contrast to Huston (1979),
this means of achieving neutral long-term community dynamics has the properties that car-
rying capacities need not be near zero and the weighted density of the whole community
(the competitive factor F) is stable: perturbations above or below the equilibrium value of
F are followed by return to this value. Relative abundances, however, remain at the values
they have after perturbation.

APPENDIX B
GENERAL LINEAR-ADDITIVE MODELS

In the text it is shown that relative abundances change according to the following for-
mula:

Ryt + 1) = Ry(1) = E(n)/b, — E(t)/b;. (B1)

Summing this formula for t = 0 to t = T — 1, and canceling terms on the left-hand side
leads to the equation

Ry(T) — Ry(0)

T-1
Z E(D/b, — E(0)]b, (B2)
=0

T-(E/b; — E/b), (B3)

where E, and E; are respectively the averages of E(f) and E;(t) over the time period 1 = 0
tor =T — 1.

To understand divergence of relative abundances, we need to examine both the mean and
the variance of R;(T). If E,(t) is a stationary time series, it has a theoretical mean W,, and E,
converges on this value with probability 1 as 7 — ec. (In the case of nonergodic stationary
processes [Breiman 1968], we can take W; as a mean conditional on the invariant sigma
field.) The deviation of E, from W; has asymptotic variance proportional to 7 or more (Brei-
man 1968). Thus, as a conservative statement, the divergence in relative abundance can be
written as

RyT) = Ry(0) = T - (W/b; — wib,) + NT - Wy(T), (B4)

where W;(T') is a random variable with mean 0 and bounded variance. Equation (B4) con-
sists of a deterministic linear rate in 7" given by w,/b; — W;/b; and a square root rate in T
with a random and changing direction and magnitude. The deterministic linear rate will
dominate whenever W;/b, — W;/b; is of appreciable magnitude. However, in the circum-
stances where species have nearly identical tolerances to competition, the stochastic square
root rate becomes important and ensures that relative abundances diverge even though spe-
cies have identical tolerances to competition.

In Huston’s (1979) model, disturbance is regular in occurrence, and therefore only the
linear rate of approach to extinction is found in the long run—the asymptotic variance of
W;(T) is zero. Thus, when the linear rate is made nearly equal to O, there is no possibility
of the stochastic square root rate taking over and causing competitive exclusion. Indeed, the
regular rate of disturbance in Huston’s model gives the unrealistic impression of stabiliza-
tion of densities by disturbance.

APPENDIX C
MULTIPLE DENSITY-DEPENDENT FACTORS

If there are several competitive or, more generally, density-dependent factors but, never-
theless, still fewer density-dependent factors than species, the matrix b, must have rank less
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than k, the number of species. It follows that there must be a nonzero vector a = (a,, a,,
.., a), such that
k

Za,-b,, =0, 1)

1=1

for each i. Moreover, as each species must have some dependence on the limiting factors

(by assumption) the vector a must also have at least two nonzero components. Defining
k

R(t) = Z a; In N1, (C2)

=1

we see that

R(t+ 1) — R4) = Z aED), (C3)

J

which depends just on the environment. As in the case of R; for a single competitive factor
in a stationary environment (app. B), this quantity will grow with time according to the sum
of a deterministic linear rate and a stochastic square root rate:

k
R(T) = R(0) = T Z ai; + NT - W(T). (C4)
=1

Except in the unlikely event that
k

> am =0, (C5)

i=]

R(T) must converge to plus or minus infinity. If, however, equation (C5) is satisfied, then
the stochastic square root rate nevertheless ensures that R becomes arbitrarily large in mag-
nitude in all realistic scenarios of environmental fluctuation. As no species can approach in-
finity, this can only mean that some species approaches zero (has log abundance approach
minus infinity)—in other words, becomes extinct. Only when the number of species is re-
duced to the number of density-dependent limiting factors can this conclusion be avoided.

Equation (C3) can be rearranged to reveal the rate of approach to extinction. Suppose
species i does not persist in the system, but the other species do; then in analogy with equa-
tion (10) of the text we obtain the expression

7o~ Z (@la)y,. (C6)
J

Thus, when equation (C5) above is not satisfied, a linear rate of approach to extinction ap-
plies.

APPENDIX D
A CONSUMER-RESOURCE MODEL WITH ADDED MORTALITY

An earlier study (Chesson 1990b) gives the following condition for two species coexis-
tence from which equation (17) in the text is derived:

6p < (h; — m))/(h; — m,) < 0/p, (DI)

where p is as defined in the text, and h; and m, have the same meanings as the primed quan-
tities in the text but are measured in different units. The quantity 6 given here accounts for
the difference in units and is defined as

6 = \/(l,','/a/’j, (Dz)
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where the a; are defined in an earlier work (Chesson 1990b) as quadratic forms in resource
consumption rates. Thus, 0 represents an overall measure of the relative resource consump-
tion rates of the two species and can be regarded as measuring a_relative timescale of the
dynamics of the two species. Dividing the quantities /, and m; by Va; adjusts for this overall
consumption rate difference, which then yields k] and m;, and the coexistence condition
(17) of the text.

How does density-independent mortality affect m;? To understand this, we first note that
in the notation of that earlier work (Chesson 1990b),

r? = b,(z C,'/WIK/ - m,'), (D3)

!

where w; is the value of one unit of resource /, K, is the carrying capacity of resource /, ¢
is the per capita rate of consumption of resource / by species i, and b, is the number of units
of species i resulting from the net consumption of one unit of resource value. The addition
of an average mortality rate of & to this system leads to a reduction of m; by the amount
8/b;, and therefore a reduction in m] by the amount &/(b; Va,). Other than m,, the parame-
ters of this system that change with the species are b; and c¢;. Now Va; scales proportion-
ately to c;. Hence except for m,; those factors that vary r? between species, vary
3/ (b, \/a,-,-) inversely. Hence, a smaller value of r? because of smaller b; or ¢, corresponds to
a larger effect of common mortality on m;.

APPENDIX E
A DISTURBANCE MODEL

In the standard metapopulation formulation of community dynamics (e.g., Hastings
1980), species presence at a site is the only information that is considered, and these data
are summarized for the entire collection of localities in terms of proportional occupancy. In
Hastings’s (1980) disturbance model, only one species can occupy a site at a time; species
are ranked in competitive ability with higher-ranked species able to invade sites occupied
by lower-ranked species but not vice versa. This process leads to a succession at a site
driven by competitive ability as successively higher-ranked species occupy a site until a dis-
turbance vacates the site and allows the process to begin again. With an inverse ranking of
competitive ability and colonizing ability, this process allows a stable coexistence of a di-
verse assemblage of species in the system as a whole.

To understand more fully the implications of a competitive hierarchy, we shall compare
it with a null model in which we assume that rather than be displaced from a site by compe-
tition, species go extinct independently of each other and at random on individual sites at
the species-specific rate €. This model makes most sense when a site can be occupied by
at most one mature individual of any species so that ‘‘extinction’’ at a site is simple death
of a mature individual. We retain local extinction by disturbance and assume that this oper-
ates independently of species and may occur simultaneously for sites that are spatially con-
tiguous, at the rate € per unit time. Competition for space still occurs in the model as pre-
emptive competition, for an occupied site cannot be colonized by another species. Writing
€, = € + €/, we obtain the equation

dp; .
— = —p; t bip;)| 1 — ZP;‘ > (E1)
dt
=1

where p; is the proportion of habitat occupied by species 7 and b, is the rate of colonization
of empty space per unit time per unit species i.

This system will become dominated over time by the species with the largest ratio of col-
onization to extinction (b;/€;); for example, defining
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A
F= Z P, (E2)
=1

and recognizing that
dlInp,
= —* (E3)
dt

is the appropriate definition of the population growth rate in a metapopulation model, we
find that

r(t) = —€ + b, — b;F. (E4)

From the theory in the text, we see that this is an additive model and that the system will
ultimately be dominated by the species with the largest value of (b, — €,)/b, or, equivalently,
the largest value of b,/e;. Thus, we see that when succession is not driven by competitive
rankings, regional diversity is not preserved by disturbance. This model does imply that suc-
cession takes place at disturbed sites, however, as we now explain.

The succession at a site has a highly stochastic quality but does qualify as a succession
in the sense that when a large number of sites are disturbed together a directional change in
species composition with time will be seen for these sites as a whole. To understand this,
note that immediately following disturbance, sites are recolonized at the rate ¢;p; for species
i, and so it follows that the fraction of sites with first colonist equal to species i is equal to

P,
—_. (ES)

Z CiPj

j=1
Before the next disturbance, with mortality unrelated to disturbance and continued coloniza-
tion from the regional pool, the long-run fraction of occupied sites that contain species i is

cipile!
- (E6)

Z cipile;

=1

Note that the mean longevity of an individual of species i in the absence of disturbance
is equal to 1/€¢;, and so we see a shift in species composition following disturbance from
domination by those species favored by colonization rate (high ¢,;p;) to those species having
a high ratio of colonization to death rate (high ¢,p;/e;) or, equivalently, those species having
a high product of colonization rate and mean longevity. A succession of this sort corre-
sponds to the inhibition model of succession of Connell and Slatyer (1977) as it represents
accumulation in the system of longer-lived species for no other reason than their longevity.
In such circumstances there is no reason to expect disturbance to be favorable to the mainte-
nance of species diversity. It simply alters which species are favored.
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