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Abstract. Many organisms display patchiness in their distribution patterns over awide
range of spatial scales. Patchy distribution patterns can be caused by processes such as
growth, migration, reproduction, and mortality, which result in neighboring areas being
more likely to contain a species than distant areas, a phenomenon known as positive spatial
autocorrelation. When species are patchily distributed, the within-species spatial random-
ness assumptions of the standard statistical tests for detecting species associations are
seriously violated. Using these tests under such circumstances can lead to incorrect rejection
of the null hypothesis. To address this problem we introduce a new test for detecting species
associations—the random patterns test. This test takes into account spatial autocorrelation
by including the characteristics of the spatial pattern of each species into the null model.
A randomization procedure was used to generate the null distribution of the test statistic.
The random patterns test is illustrated with data collected from an herbaceous understory

community of a Eucalyptus forest near Canberra, Australia.
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INTRODUCTION

Interspecific associations arise when two or more
species co-occur either more or less frequently than
expected due to chance alone. Positive associations be-
tween two species can occur when both select the same
habitat or have the same environmental regquirements.
Conversely, negative associations can occur if the spe-
cies have differing ecological requirements (Dale
1977). Association, in either the positive or negative
direction, can also occur as a direct consequence of
biotic interactions such as mutualism, competition and
predation. Although it is not possible to unambiguously
infer the action of specific processes from the exami-
nation of patterns alone (Schluter 1984, Rejméanek and
LepS1996), association analyses remain avaluabletool
for ecologists. Such analyses can be used for generating
hypotheses about the factors responsible for the pat-
terns, and hence can be used for identifying particular
patterns that may be worthy of further study.

A number of statistical tests have been utilized for
detecting species associations. These include correla-
tion analysis (Greig-Smith 1983, O’ Connor and Aars-
sen 1987, Myster and Pickett 1992), analysis by con-
tingency table (Greig-Smith 1983, Dale et al. 1991),
variance tests (Schluter 1984, McCulloch 1985), and
the use of cross-variograms (Rossi et al. 1992). One
major limitation of these tests is that they assume, for
each species, within-species randomness of the spatial
distribution patterns. Throughout this paper we use the
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term ‘“‘within-species randomness’”’ to refer to the sit-
uation where the occurrence of a speciesin one quadrat
(or other sampling unit) is independent of the occur-
rence of the same species in other quadrats, regardless
of the relative spatial locations of the quadrats.

Because species are typically distributed nonran-
domly in space, the within-species randomness as-
sumption is often violated. For example, two of the
most common nonrandom distribution patterns are the
aggregation of a species into patches, and gradients.
Patchy distributions can result from processes such as
growth, migration, reproduction, mortality and natural
selection, and can also arise when suitable habitats are
distributed in a patchy manner. Gradients in abundance
are often associated with gradual environmental
changes, such as the change in environmental condi-
tions with increasing altitude (e.g., Whittaker and Nier-
ing 1975).

Patchy or clumped patterns, where an observation in
one areamakesit morelikely that the same observation
will also be made in neighboring areas, are said to
exhibit positive spatial autocorrelation. With traditional
tests of interspecific association the presence of posi-
tive spatial autocorrelation violates the assumption of
within-species randomness, and results in an elevated
Type | error rate, i.e., an increase in the risk of con-
cluding a test statistic significant, even when the spe-
cies are unassociated (Tavaré and Altham 1983, Dale
et al. 1991, Legendre 1993, Palmer and van der Maarel
1995). This feature of these tests is illustrated in the
next section.

Because the distribution patterns of most organisms
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are inherently nonrandom, then the problems caused
by spatial autocorrelation are very general indeed.
More specifically, traditional association analyses are
valid only if it can be confirmed that, for all species,
the within-species patterns are random. If this cannot
be demonstrated then any results derived from such
analyses must be treated with a great deal of caution.

The purpose of this paper is to describe a new sta-
tistical test for detecting species associations which is
valid even when the assumption of within-species spa-
tial randomness is violated. Our method uses a Monte
Carlo technique that generates null distribution patterns
that are spatially autocorrelated within species, but in-
dependent between species. The observed patterns can
then be compared with these null patterns for a true
assessment of the statistical significance of species as-
sociation, free of the assumption of within-speciesran-
domness.

THE PROBLEM OF SPATIAL AUTOCORRELATION

Fig. 1a shows the spatial patterns of two species,
Poa sieberiana and Lagenifera stipitata, within a 40-
cm square experimental plot taken from our larger field
experiment (see Application of the random patterns
test: Site description and sampling methods for further
details of the experiment). Both species show signifi-
cant positive spatial autocorrelation as measured by
Moran’s I, with neighbors defined as for the Queen’s
case (Goodchild 1986) (Poa: Moran's | = 0.694, P <
0.001; Lagenifera: Moran's | = 0.290, P < 0.001). At
this sampling scale, the patchiness exhibited by these
speciesis caused by acombination of the clonal growth
habit of these plants, and the fact that our smallest
sampling unit is less than the average size of an in-
dividual leaf (for Poa) or ramet (for Lagenifera).

To demonstrate how spatial autocorrelation invali-
dates traditional statistical techniques, the null hypoth-
esis that Poa and Lagenifera occur within this plot
independently of one another was tested through the
use of the standard 2 X 2 contingency table analysis
(Ludwig and Reynolds 1988). In Fig. la the species
were observed to co-occur in 77 out of 784 cells. The
expected number of cells to contain both species, cal-
culated under the assumption of independence between
species, is 63.25 (Table 1). Based on the standard con-
tingency table chi-squared test, which assumes ran-
domness within species as well as independence be-
tween species, this overlap is significantly (P = 0.003)
less than the observed value of 77 and the conclusion
is that Poa and Lagenifera are positively associated.

However, as the original data show spatial autocor-
relation for both species, the results of this test are
invalid. This is illustrated in Fig. 1b. Each of these
three plots contain the same number of cells of Poa
(506) and the same number of cells of Lagenifera (98)
as in the observed, however each species has been as-
signed to the 784 cells under the assumption of within-
species randomness. This assumption resultsin a prob-
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lem related to pseudo-replication (Hurlbert 1984). In
the test the individual cells are taken as independent
sampling units, whereas within-species patchiness
makes it clear that the cells are not independent. Sta-
tistically we can say there are fewer degrees of freedom
when the pattern is autocorrelated, because each new
record in a cell does not correspond to a new and in-
dependent piece of information. Theresult isa P value
that is too low leading to an inflated estimate of sig-
nificance of the association. It is also clear from the
patterns in Fig. 1b that the independent assignment of
species to cells destroys the original spatial pattern of
each species, with the result that the randomized pat-
ternsin Fig. 1b are biologically unredlistic, i.e., in na-
ture the spatial patterns of Poa and Lagenifera, at the
40-cm scale, are never observed to be as fragmented
as those depicted. A biologically sensible null model
would therefore take the spatial patterns of each species
into account before testing for a significant association.

ASSOCIATION ANALYSES BY RANDOMIZATION TEST

Before describing our solution to the spatial auto-
correlation problem, and to introduce the concept of
repeated sampling from a null model, the above sta-
tistical test can be repeated using the random maps in
Fig. 1b as the basis of a randomization test (Fig. 2).

To perform any sort of statistical test three steps are
required. Firstly, the null hypothesis should be stated.
Secondly, atest statistic should be chosen whichisable
to discriminate between the null and alternative hy-
potheses. Thirdly, a null model must be constructed
which is able to generate a probability distribution of
the test statistic under the assumption that the null hy-
pothesis is true (Noreen 1989).

For the test of interspecific association the null hy-
pothesis is that Poa and Lagenifera are distributed in-
dependently of each other. A possible test statistic is
the chi-squared, as defined in Table 1. However this
statistic is simply a function of the observed overlap,
and an equivalent but simpler method is to regard the
observed overlap, i.e., the number of cells containing
both species, as the test statistic. Recall from the ex-
ample pattern that the observed overlap was 77 cells
(Fig. 1a).

For the randomization test the P value is estimated
from repeated sampling from the null model. In this
case the null model is straightforward. Each speciesis
allocated independently and at random among the 784
(28 x 28) cells with a frequency equal to that in the
observed plot, as in Fig. 1b. The overlap (the test sta-
tistic) is calculated for each random rearrangement, and
this process is repeated for a large number of such
random permutations of the data to construct the null
probability distribution of the test statistic. Fig. 1b
shows three possible permutations. The P value is es-
timated by comparing the observed value of the test
statistic (77) with the probability distribution of the
test statistic derived from 1000 random permutations,
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(a) Observed Patterns

< 40cm >

Overlap = 77 cells.

b) Null patterns based on the assumption of within-species randomness.

T LY
Overlap = 65 cells. Overlap =

(c) Null patterns based-on the Random Patterns algorithm

Overlap = 62 cells.

Overlap = 84 cells.

Overlap = 57 cells.

Fic. 1. An example of the overlap between two species exhibiting positive spatial autocorrelation. (a) The observed
spatial patterns of Poa sieberiana and Lagenifera stipitata within a 40 cm square plot subdivided into a grid of 28 X 28
cells. (b) Three random (null) patterns generated under the chi-squared assumption of within-species spatial randomness.
Each species is assigned to the cells at an overall frequency equal to that in the observed plot, but independent of the presence
of the same species in neighboring cells. (c) Three random (null) patterns generated using the random patterns method.

and was found to be 0.002 (Table 2), which is very (0.003) you would get if you could perform an infinite
close to the P value estimate taken from chi-squared number of randomizations.

tables. Note that the estimates of the P values derived
from the randomization test and the chi-squared tables
are not exactly the same. This is because the random-
ization test was based on only 1000 randomizations, Before describing the random patterns test, a brief
which is an approximation to the analytical result survey of methods that have been previously proposed

PrEVIOUsS METHODS TO ADDRESS THE EFFECTS OF
SPATIAL AUTOCORRELATION
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TaBLE 1. Chi-squared test of association between Lageni-
fera stipitata and Poa sieberiana from the data in Fig. l1a.

Lagenifera
Present Absent
Poa Obs. Exp. Obs. Exp.
Present 77 63.25 429 442.75
Absent 21 34.75 257 243.25

Note: x2 = 9.634, for 1 df, P(x > x? = 0.003

to address the problems of spatial autocorrelation will
be given.

Adjustment methods

These methods do not alter the calculation of the test
statistic or the mechanics of the test, but rather the test
statistic is adjusted a posteriori, resulting in a new es-
timate which reflects the correct Type | error rate. For
the two-way contingency table analysis Tavaré and Al-
tham (1983) quantified the effect that various degrees
of serially dependent data, generated by Markov de-
pendent sequences, has on increasing the Type | error
rate. From this they derived deflation factors which
were then applied to the calculated test statistic. By
deflating the magnitude of the test statistic by the ap-
propriate amount, depending on the degree of nonran-
domness in the data, an estimate of the significance of
the test statistic in the presence of autocorrelation is
obtained. A limitation of Tavaré and Altham’s (1983)
method is that it is valid only when the within-species
spatial patterns meet Markovian assumptions (Dale et
al. 1991).

Dale et al. (1991) extended Tavaré and Altham’s
(1983) approach and suggested a Monte Carlo proce-
dure that can be applied to the analysis of multispecies
2k contingency tables, where k is the number of species.
Their method involves defining a null model which
includes information on the spatial patterns of each
species. This null model is used to generate a null dis-
tribution of the test statistic, in their example the G
statistic. This distribution is then used to calculate the
appropriate deflation factor to give the appropriate
Type | error rate. This deflation factor is then applied
to the observed G statistic, which is then compared
with the chi-squared distribution to calculate the final
P value.

However, the calculation of the deflation factor is an
unnecessary complication, as the significance of the
observed test statistic can be obtained by direct com-
parison with the distribution of G values derived from
the null model, i.e., by performing arandomization test.
If the observed test statistic is unusual, i.e., significant,
then it will be found in one of the extreme tails of the
distribution of values generated under the null model.
By determining the significance in this way allows a
wider choice of test statistics to be defined, thus elim-
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Compute the overlap for the observed data (= Qqgg).

v

o | For each species independently generate a distribution
o map under the null model.

v

Compute the overlap for the generated maps (= QnyiL)
and save this value.

Have 1000
values of
QNULL been
saved?

No

Count the number of times QyL = Qogs (= NGE)

v

Count the number of times Qup < Qogs (= NLE)

v

Compute the probability as
2 x Min(NGE, NLE) / 1000

Fic. 2. Generalized flow chart for a randomization test
used to detect pairwise interspecific association, based on n
= 1000 randomizations. NGE (NLE) is the number of test
statistics calculated from the random maps that were greater
than (less than) or equal to the test statistic calculated from
the observed data. The P value is calculated as the minimum
of (NGE, NLE) divided by n, then multiplied by 2 to effect
a two-tailed test.

inating the need to approximate to aknown distribution
such as the chi-square.

Algorithms for simulating spatial structure

The chi-squared test by randomization, described in
the previous section, generates null patterns for each
species independently, but with the added assumption
of randomness within species. It is this within-species
randomness assumption that results in fragmentation
of the observed spatial patterns, leading to a biased
Typel error rate. To overcomethese difficulties, several
algorithms exist that simulate spatial patterns by in-
corporating information on the observed within-species
spatial structure.

McElhany et al. (1995) suggested an algorithm called
the additive method, which is similar to the random
patterns approach we describe below. The additive
method builds up a pattern cell by cell, such that the
locations of new filled cells produce a pattern that ex-
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TABLE 2. Randomization test results. The expected values
are the average of the 1000 overlap values generated under
each null model. The ** Random assignment’’ column shows
the results for a randomization test equivalent to the chi-
squared test shown in Table 1. The ** Random patternstest”
column shows the results for a test using the random pat-
terns method applied to the same data.

Random Random
assignment patterns test
Observed overlap 7 7
Expected overlap 62.7 63.2
Number of random maps with
an overlap = observed 1 41
0.002 0.082

hibits the same degree of clumpiness asin the observed
data. Although capable of reproducing random spatial
patterns very similar to those in the observed data, this
method does have the disadvantage of being compu-
tationally inefficient when reconstructing large spatial
arrays (Real and McElhany 1996).

Watkins and Wilson’s (1992) patch model randomly
allocates species to cells, similar to that under the in-
dependence assumption in Fig. 1b, but only locally,
i.e., the decision on whether to assign a species to a
cell is based on the presence of that species in cells
that occur within a set distance from the target cell,
defined by the ‘““patch’ size. In the context of a two-
species association test, such local reallocation of the
species would control for within-plot variation in den-
sity, for example where high density patches within a
plot occur due to local dispersal, or clustering around
pockets of high resource concentration (the ‘‘water-
hole” effect, Pielou 1977).

It is important to recognize that the assumptions be-
hind the patch model are quite different from those of
the other methods discussed in this section. When in-
corporated into astatistical test, all of the other methods
are designed to detect any departure from randomness,
regardless of the underlying mechanism responsiblefor
the departure. Deviation from randomness can be
caused by either the species growing in different en-
vironments within the sampled area (beta-niche dif-
ferences), or as a result of biotic interactions such as
competition and mutualism (a pha-niche differences).
Once a nonrandom pattern is detected, then it is up to
the researcher to determine what possible mechanisms
could be responsible. In contrast, the patch model is
an attempt to reduce the chances of detecting associ-
ations that are due to beta-niche differentiation, leaving
as aresidual those associations which are the result of
interspecific interactions (Wilson 1995).

Palmer and van der Maarel’s (1995) rotation/reflec-
tion and random shifts methods construct spatial pat-
terns at random through transformations of the ob-
served spatial array. With the rotation/reflection meth-
od, the overall spatial pattern of each speciesisretained
as a fixed aspect of the null distribution. Species pat-
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terns in space are generated by having each species
independently undergo a rotation and reflection of the
whole plot. The rotated and/or reflected patterns are
then reassembled and the test statistic calculated. Al-
though this method does retain the observed spatial
characteristics of each species, an unfortunate result is
that the central quadrats for each species do not move,
and therefore are not adequately randomized, resulting
in aloss of statistical power (Manly 1991).

The random shifts method combines a rotation/re-
flection with a further transformation. With a raster
such as Fig. 1a this transformation is a random shift
in both the x- and y-axes. When the pattern is shifted
beyond the edge, it is automatically wrapped around
to the opposite side. The main disadvantage of this
method is the disruption to the overall spatial char-
acteristics of the pattern, the extent of the disruption
depending on the particular characteristics of the ob-
served spatial pattern (Palmer and van der Maarel
1995). This occurs particularly when sharp boundaries
at the edge of the sampled area appear in the center of
the plot following a random shift, creating an unfor-
tunate artifact. This aspect of the random shifts algo-
rithm is investigated in greater detail below. Note that
the rotation/reflection and random shifts tests, contrary
to Palmer and van der Maarel’s claim, are not alter-
natives to the patch model, as there is no attempt in
these tests to separate associations due to environmen-
tal heterogeneity from those due to interspecific inter-
actions (Wilson 1995).

Several other techniques also exist for generating
spatial patterns, although space does not permit a full
discussion of them all. For further information the read-
er isreferred to the geostatistical literature (e.g., Wack-
ernagel 1995, Cressie 1993, Journal and Huijbregts
1978); the review by Real and McElhany (1996) cov-
ering a range of methods, including the use of matrix
methods for generating spatial patterns; Mangel and
Adler's (1994) ““force to be full’’ method based on the
concept of ““structure functions”; and the method em-
ploying a fractal landscape generating algorithm de-
scribed by Palmer (1992).

THE RANDOM PATTERNS TEST

The random patterns test was devel oped to overcome
the difficulties associated with some of the above meth-
ods. In particular, the rotation/reflection and random
shifts methods both aim to generate null patterns in
which the within-species clumping is retained while
introducing statistical independence between species.
However, with the rotation/reflection method applied
to a test of association between two species there are
too few null patterns for atest with adequate statistical
power. With the random shifts method there are enough
null patterns to make atest, but unrealistic patterns can
occur.

The random patterns test uses a different method of
null pattern generation to overcome these difficulties.
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The basic assumption is that it should be possible to
adequately characterize the within-species patchiness
numerically, using ‘‘clumping”’ statistics. Any two
within-species patterns with the same values for these
statistics are presumed to be equally good represen-
tations of the outcome of whatever process generated
the within-species patterns. Thus, the random patterns
test has two important parts. First, derivation of clump-
ing statistics capable of characterizing the within-spe-
cies patterns. Second, amethod of randomly generating
within-species patterns with the same values of the
clumping statistics as the observed pattern. By inde-
pendent generation of such clumped patterns for the
different species, a null distribution of species overlap
can be obtained.

Satistical characterization of the observed patterns

Initial attempts to reconstruct the spatial patterns for
each species using classical spatial autocorrelation sta-
tistics such as Moran’s | and Geary’s c resulted in ran-
dom patterns which often did not resemble those ob-
served. For this reason we derived four alternative sta-
tistics on which to base the analysis, each of which
guantifies a particular aspect of the patterns. These
were the number of edge contacts (E), corner contacts
(C), open areas (0O), and solid areas (S). These statistics
are defined in the Appendix.

Generation of random patterns from the observed
statistics

To randomly generate patterns with the spatial char-
acteristics of the observed patterns we firstly assigned
the species to the cells under the assumption of within-
species randomness (Fig. 1b). To test agreement with
the observed within-species clumping we then calcu-
lated

b= Enuce — 1l + ChuL — 1l + OnuL -1
Eoes 0BS Oogs
i Swie -1
Soes

where Egs is the edge contacts (E) for the observed
pattern, and E,,, the edge contacts for the initial ran-
dom arrangement of cells, and so on. From this equa-
tion it can be seen that when the spatial pattern for the
randomized map is the same as that in the observed,
then the function ¢ is at its minimum of zero. To rep-
licate the observed spatial characteristics from the ini-
tial randomization therefore required minimizing the
function ¢. This was achieved by swapping two cells
at random (one occupied, and one not occupied) and
recalculating ¢. If ¢ decreased, i.e., the spatial pattern
in the randomized pattern became more similar to the
observed, then the swap was retained, otherwise the
two cells were returned to their original state, and an-
other pair selected. This process was repeated until ¢
reached a predetermined limit, «, which is set close to
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zero to ensure a close match between the random and
observed patterns. For the randomizations presented in
this paper « = 0.01, which was found to produce ran-
dom patterns very similar to those observed, while at
the same time significantly reducing the computing
time required (results not presented).

For any observed pattern with a reasonable number
of filled and empty cells there are an enormous number
of such randomly generated clumped patterns, thus
dealing with the power limitations of the rotation/re-
flection method. Additionally, the randomly generated
patterns all share the same within-species statistical
properties, addressing the problems associated with the
random shifts method.

Implementation of the random patterns test

The implementation of the random patterns test is
very similar to the randomization approach to the chi-
squared test, as summarized in Fig. 2. Firstly, a null
species distribution pattern is generated independently
for each species using the procedure described im-
mediately above. These patterns are then combined and
the between-species overlap (the test statistic) calcu-
lated. Thisrandomization procedureisrepeated ntimes
to create the null distribution of the test statistic. The
observed overlap value is then compared with this dis-
tribution, and the P value calculated as a two-tailed
test (Fig. 2). When conducting a randomization test,
the more randomizationsthat are performed, the greater
the accuracy of the estimated P value. We chose n =
1000 randomizations for all tests in this paper, as this
provides an acceptable level of statistical power (Ed-
gington 1995), whilst at the same time restricting com-
puting time to within manageable limits. Indeed, im-
plementing the random patterns procedure is extremely
computer intensive. In the Appendix are described the
methods used in the pattern generating algorithm to
increase computer efficiency.

Reanalysis of the test for association between Poa
and Lagenifera in Fig. la using the random patterns
test highlights the liberal nature of the standard con-
tingency table analysis. In contrast to the conclusions
from the contingency table analysis, which detected a
strong positive relationship between the two species (P
= 0.003, Table 1), the random patterns test suggests,
however, that these data contain no strong evidence of
an association between the two species (P = 0.082,
Table 2). Note that incorporating the spatial character-
istics of each species into the random patterns null
model produces patterns that are now ‘typical’ of those
observed in the actual community, which isin contrast
to the biologically unreasonable patterns produced un-
der the assumption of within-speciesrandomness (com-
pare Figs. 1b and 1c with 1a).

CONFIRMATION OF THE RANDOM PATTERNS TEST

Before applying the random patterns test to real data
it was first necessary to confirm that (a) the random
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patterns algorithm did indeed recreate the spatial char-
acteristics of the observed patterns, and (b) the random
patterns test was generating the correct type error rate.

Semivariogram analysis of randomly generated
patterns

Patterns generated by the random patterns algorithm
visually agreed well with the observed single species
patterns, but rather than rely on this subjective tech-
nigue we checked the patterns against another set of
statistics not used in the specification of the null model.
To achieve this we compared the characteristics of the
observed pattern with those generated under the ran-
dom patterns method, by comparing semivariograms
between the observed and randomized patterns (Bur-
rough 1987). Ten species distribution patterns were an-
alyzed, chosen to include arange of the spatial patterns
observed in our data. For each of the 10 patterns a
semivariogram was constructed for the observed data,
and this was compared to semivariograms derived from
50 patterns generated by the random patterns method,
and 50 patterns generated by Palmer and van der Maa-
rel’s (1995) random shifts method. The random shifts
method was included to investigate the degree to which
this test disrupts the overall spatial characteristics the
patterns. Note that the statistics used to quantify the
spatial patterns (E, C, O, and S) characterize only the
first order (distance = 1) nature of the patterns, hence
we would expect the semivariance of the variograms
at distance =1 to be very similar between the observed
and randomized patterns. However the semivariogram
approach additionally describes the higher order com-
ponents of the pattern (distances >1) not included in
the random patterns procedure, and hence provides a
valid method for comparison.

Semivariograms for a variety of spatial patterns for
Poa and Lagenifera, for both the random patterns and
random shifts tests, are displayed in Figs. 3 and 4.
Although the patterns tested were selected from only
two species, the distributions of Lagenifera are typical
of the range of spatial patterns characteristic of the
remaining species in this community. Note that a se-
mivariogram for a single clumped pattern necessarily
shows high fluctuations when the lag size (distance)
becomes large, about 1/2 the plot sizein our plots. This
does not reflect some genuine property of clumping,
but imprecision in estimation of the semivariogram at
large distances due to few data at these distances. This
is true of our randomly generated patterns too, but not

STEPHEN H. ROXBURGH AND PETER CHESSON

Ecology, Vol. 79, No. 6

of the average of the semivariograms of many inde-
pendently generated patterns, as one would expect. To
illustrate this feature, Figs. 3a and 4a show individual
semivariograms for 50 patterns generated by the ran-
dom patterns and random shifts algorithms from the
observed species maps shown in Figs. 3b and 4b, re-
spectively. However, to enable a direct comparison be-
tween the random patterns and random shifts methods,
Figs. 3b—f and 4b—f show only the mean of the 50
randomly generated patterns.

For the random patterns test, the semivariograms for
the observed Poa and Lagenifera distributions were
predominantly within the bounds of the 50 randomly
generated patterns, confirming that the test indeed gen-
erates ‘‘typical’’ spatial arrangements of the observed
patterns (Figs. 3 and 4). We are therefore confident that
the random patterns test is capable of producing ran-
domized distributions which accurately characterize
the overall spatial patterns of the species.

In contrast, inspection of the random Poa distribu-
tions generated using the random shifts method showed
evidence for systematic bias. All five random shifts
semivariograms show consistent over-estimation of the
semivariance at the smaller distances, as indicated by
the open circlesin Fig. 3b—f. This shows that, for areas
in close proximity, the spatial patterns generated by the
random shifts test are consistently less spatially auto-
correlated than in the observed patterns. Also, there
was consistent under-estimation of the semivariance at
the larger distances, dramatically so in the case of Fig.
3e. These features are a result of the fragmentation of
the large patches of Poa due to the ““wrap around”
effect of the random shifts procedure, resulting in dis-
tributions which are more random than reality when
viewed at the small distances, and less random at the
larger. As already noted, such deviations have the po-
tential to alter the Type | error rate of the test.

The random patterns and random shifts procedures
performed similarly well when recreating the spatial
patterns characterized by Lagenifera. This difference
between Poa and Lagenifera is not surprising, given
Lagenifera is characterized by much more fragmented
patterns with smaller individual patch sizes, i.e., wrap-
ping these patterns onto opposite sides of the area does
not result in asignificant alteration to the overall spatial
structure. This suggests that species patterns that are
characterized by ahighly fragmented mosaic of patches
are satisfactorily recreated by the random shifts test.
However if the spatial pattern is dominated by one or

Fig. 3.

—

(a) Fifty semivariograms generated by the random patterns and random shifts algorithms, based on the observed

distribution map in part (b). The fine lines are the semivariograms for the 50 randomly generated patterns, and the thick line
is the semivariogram for the observed pattern. Parts (b)—(f) show semivariograms for five observed distributions of Poa
sieberiana. The spatial pattern on which the observed semivariogram is based is in the bottom right-hand corner of each
graph. The symbols at each distance represent the average value over 50 randomly generated semivariograms. Open symbols
indicate distances where the observed semivariogram value did not fall within the range of the 50 values generated by the

respective randomization method.
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Fig. 4. Semivariograms for five observed distributions of Lagenifera stipitata. Format is as for Fig. 3.
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Fic. 5. Relative frequency histogram of the distribution
of P values generated under the random patterns null model.

a few large patches, then a procedure such as the ran-
dom patterns algorithm is the only way to ensure that
the spatial characteristics at the whole-plot level are
adequately recreated.

Despite the ability of the random patterns algorithm
to simulate a wide range of observed patterns, there
will always be some patterns with strong higher-order
structures that it will not be able to satisfactorily re-
create. For example, the random patterns semivario-
gram in Fig. 3c misses the dip at distances 10-15,
corresponding to the particular *“ concentric’’ pattern of
the patches evident in this map. One solution to this
problem could be to add extra terms to the pattern
generator that quantifies these higher-order structures.
However it is likely that different sorts of higher-order
structures would require different terms, e,g., gradients
vs. ‘‘patches within patches,” and the extra computa-
tional overhead may make computing time prohibitive.

Confirmation of the distribution of the test statistic
under the null model

Although the random patterns procedure produces a
very large number of distinct values of overlap, there
is nevertheless still a finite number of possible values.
|.e., the probability distribution of overlap is discrete.
Such discreteness can mean the distribution of P values
for the test departs from the desired rectangular dis-
tribution on [0, 1].

To check this, a procedure similar to Watkins and
Wilson (1992) was used. For a plot of 28 X 28 cells
(the dimensions of our experimental plots) two species
were placed in the cells at random, each with arandom
frequency from 1 to 783 (oneless than the total number
of cells). This was our pseudo-observed distribution
pattern which was subject to the random patterns test.
This was repeated for 1000 pseudo-observed distri-
butions to yield a probability distribution.

The frequency histogram of probability values ob-
tained from the random data showed an approximately
rectangular distribution, with some suggestion that the
random patterns test is slightly conservative (Fig. 5).
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TABLE 3. The eight speciesfrom the understorey community
used in the analyses. Cover is the number of cells (1.4 cm
X 1.4 cm) in which each species was recorded, divided by
the total number of cells sampled and expressed as a per-

centage (n = 56448). Nomenclature follows Harden
(1992).
Species Family Cover
Poa sieberiana Poaceae 42.7
Lagenifera stipitata Asteraceae 10.0
Microlaena stipoides Poaceae 4.4
Viola hederacea Violaceae 3.1
Geranium solanderi Geraniaceae 2.8
Clematis aristata Ranuncul aceae 2.0
Asperula scoparia Rubiaceae 15
Hydrocotyle peduncularis Apiaceae 15

This phenomenon has also been observed by other
workers (Watkins and Wilson 1992, Palmer and van
der Maarel 1995) and can be attributed to the fact that
with finite data there is a chance that the observed test
statistic is occasionally exactly the same as the ran-
domized. Because the probabilities from the random-
ization test are taken as the frequency of random test
statistics that are equal to or more extreme than the
observed, this method of calculation can result in an
increase in the probabilities in the two tails to >1,
resulting in a slightly conservative test. To correct for
this conservatism Lancaster’'s ‘‘median probability”
method could be used (Lancaster 1969). This method
calculates P as [the probability of observing a random
test statistic greater than that actually observed] + [0.5
X the probability of observing a random test statistic
equal to that observed] (cf. Fig. 2).

APPLICATION OF THE RANDOM PATTERNS TEST
Site description and sampling methods

The data used to illustrate the random patterns test
were taken from part of a larger experiment investi-
gating species coexistence in a community of herba-
ceous plants. The study site is located in the Brinda-
bella Ranges near Canberra, Australia, at an altitude of
~1060 m. The canopy is dominated by a mixture of
Eucalyptus viminalis and E. fastigata. The forest floor
is characterized by a community of clonal, herbaceous
plants. It isthese species that are the focus of our study.

The experimental site from where the data were col-
lected was 30 X 30 m square. Within this area are
positioned, in arandomized split-block design, 36 pairs
of plots. Each of these 72 plotsis 40 X 40 cm square.
Sampling was conducted in November 1994 and was
achieved by subdividing each plot into a 28 X 28 grid
of cells. Within each cell the shoot presence or absence
of all living aboveground plant species (bryophytes +
angiosperms) was recorded. It is this data which the
random patterns test was applied. Twenty-two species
were recorded overall, of which the eight most abun-
dant were included for analysis (Table 3). Together
these eight species comprised 94% of the total species
records.
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TaBLE 4. Results of the 28 pairwise association tests among the eight species using the random patterns test. The P values
are the probability of obtaining an overlap value as extreme as the one observed under the random patterns null model.
The numbers in parentheses are the number of plots (out of 72) on which each analysis is based, i.e., the number of plots
that contained both species. The sign indicates the direction of the association.

Asperula Clematis Geranium Microlaena Hydrocotyle Lagenifera Poa
Species scoparia aristata solanderi stipoides peduncularis stipitata sieberiana
Clematis 0.172 —
aristata (35)
Geranium 0.709 — 0.118 —
solanderi (32) (32)
Microlaena 0.126 — 0.623 + 0.312 +
stipoides (30) (38) (32)
Hydrocotyle 0.060 + 0.854 + 0.284 — 0.666 —
peduncularis (24) (25) (17) (23)
Lagenifera 0.213 — 0.078 — 0.023 — 0.812 — 0.106 —
stipitata (48) (56) (44) (47) (30)
Poa 0.527 + 0.370 + 0.722 — 0.014 — 0.542 + 0.000 +
sieberiana (43) (52) (41) (42) (25) (66)
Viola 0.148 + 0.342 — 0.502 — 0.034 + 0.054 + 0.298 — 0.062 +
hederacea (33) (38) (34) (33) (20) (52) (50)

Note that the example used to illustrate the random
patternstest (Fig. 1) was based on asingle 40 cm square
plot, with the test statistic being the overlap of the
species within this particular plot. However, for the
community analysis presented below the overall-plots
association was used as the test statistic. The value of
this statistic for the observed data was calculated as
the sum of the overlap values for each plot in which
both species occurred. The null distribution of this sta-
tistic was obtained by applying the random patterns
algorithm to each plot in turn, and summing the random
overlap values for each plot to obtain, for a single
randomization, an overall-plots overlap under the null
model. To generate the null distribution, n = 1000 ran-
domizations were performed. By pooling the infor-
mation from a number of plots in this way we ensured
that any deviations from randomness reflected consis-
tent trend across the whole sampling area, and not just
the particular characteristics of a single 40 cm square
plot.

Results and discussion

The results of applying the random patterns test to
all pairwise combinations of the eight species are pre-
sented in Table 4.

With 28 pairwise comparisons some tests would be
expected to be significant by chance alone, without any
genuine associ ations between species. To guard against
this possibility a Bonferroni correction can be applied,
in which case an individual P value would be judged
significant at the 5% level if it is <0.05/x, where x is
the number of tests performed. Applying thiscorrection
to our results means that for any individual test to be
significant it must have probability value of <0.05/28
= 0.0018. Under this criterion there was only one as-
sociation out of the 28 comparisons that was statisti-
caly significant, a positive association between Poa

and Lagenifera (P < 0.000). From this result we can
be confident that associations between species do exist
based on our results, and that at least Poa and Lagen-
ifera are significantly associated. However, this pro-
cedure is highly conservative, and it is a reasonable
expectation that some of the other species are genuinely
associated as well, for example, Poa and Microlaena,
and Lagenifera and Geranium, have low P values,
which are suggestive of significance but are not judged
significant by the Bonferroni criterion.

It has been pointed out by a number of authors that
observing asignificant association between two species
does not logically imply any specific ecological process
(e.g., Schluter 1984). Analyses such as those presented
in Table 4 should therefore be used in relation to other
information, to be followed by experimentation. This
is the approach we have taken in our study, where a
number of experiments have been established to enable
us to investigate in greater detail the association be-
tween Poa Lagenifera.

A further criticism of the multiple pairwise approach
is that the degree of association might depend on what
other species are present. For example, species 1 and
2 might be negatively associated, but only when species
3 is present. To overcome such problems a multi-spe-
cies contingency table analysis can be used (Dale et al.
1991). We argue that such criticisms do not necessarily
invalidate the use of pairwise association tests, but
rather reflect two different ways of analyzing and in-
terpreting patterns of association. The first considers
all other species in the community to be constant, and
concentrates only on the pairwise association at hand.
The second recognizes that the species are embedded
within a multi-species community, and therefore can
be used to investigate multi-species association. When
used together, and providing the above caveats are kept
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in mind, then the two methods can be considered com-
plimentary, and hence have the potential to provide us
with more information than if either method were used
alone.

In this paper we have concentrated only on the pair-
wise association analyses. The reasons for doing so
were twofold. First, we are currently implementing the
random patterns test as part of a larger study investi-
gating the multi-species association patterns at a range
of both spatial and temporal scales (S. H. Roxburgh
and P. Chesson, unpublished data). Second, the main
aim of this paper is to introduce the random patterns
test, and the less complex pairwise association analysis
facilitated a clearer description and demonstration of
the method.

Comparison with the chi-squared test of association

To further highlight the dangers of applying tradi-
tional statistical techniques when the data are spatially
autocorrelated, the results of the standard contingency
table analysis were applied to the same 28 pairs of
species. These analyses detected nine significant as-
sociations (results not presented), compared with the
single significant association detected with the random
patterns test. Clearly, indiscriminate use of the tradi-
tional techniques, without first confirming within-spe-
cies randomness, has the potential to seriously mislead.

CONCLUSIONS

The underlying assumption of the random patterns test
is that the spatial patterns are a reflection of the growth
process of each species (or migration etc.), and by in-
cluding the characteristics of the spatial pattern into the
null model we are mimicking, in the randomizations, the
growth processes of the species within each plot. This
ensures that the patterns constructed under the null model
are biologicaly sensible, while at the same time taking
into account the detrimental effects of spatial autocor-
relation.

The random patterns method was applied in the context
of atest for pairwise association, however its utility is
potentially far broader. For example, tests of multi-species
association are similarly affected by spatial autocorrela-
tion, and the random patterns method is easily extended
to include these (Roxburgh and Chesson, unpublished
data). More generally, the random patterns approach can
be used to test a wide range of hypotheses involving the
analysis of spatial data. For example, tests for niche lim-
itation (Watkins and Wilson 1992, Palmer and van der
Maarel 1995), and guild proportionality (Wilson and Rox-
burgh 1994) are also potentially affected by spatial au-
tocorrelation, and both are amenable to the random pat-
terns approach.
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Fic. A1l. The Edge (E) and Corner (C) definitions used
to quantify the within-species spatial patterns for the random
patterns algorithm. There are three possible positions within
the map: (a) the map-corner position, (b) the map-interior
position, (c) the map-edge position. The number of adjoining
cells for each statistic depends upon the position of the target
cell within the map. E.g., map-interior target cells have four
possible edge cells and four possible corner cells, and map-
edge target cells have three possible edge cells and two corner
cells.

Satistics used to quantify the within-species
spatial patterns

Within-species spatial patterns were quantified using four
statistics: edge (E) and corner (C) contacts, and open (O) and
solid (S) areas. These statistics are defined as follows.

Edge contacts (E): The edge cells are defined relative to
the rook moves in chess (Fig. A1). For each target cell that
is occupied by a species, the total number of adjacent edge
cells that are also occupied by the same species are counted
and the result expressed as a proportion of the total possible
edge contacts for that cell. The total number of possible edge
cells depends on the location of the target cell within the
overall map (see Fig. Al). For all occupied cells these scores
are summed, and for convenience the average of these values
can be calculated. For example the value 0.83 for Poain Fig.
laindicates that where a cell contains Poa, on average 83%
of the surrounding edge cells also contain Poa.

Corner contacts (C): This is a statistic similar to the edge
contacts, but calculated as for the equivalent bishop moves
in chess (see Fig. Al).

Open areas (O): This is the total number of times a target
cell without the species is totally surrounded by empty cells.
It gives a measure of how open the bare patches are in the
pattern. The cells at the corner and at the edges of the pattern

were treated similarly to the calculation of the edge (E) and
corner (C) contacts.

Solid areas (S): This is the converse to the open areas
measure and gives a measure of how extensive the solid
patches are in the pattern. That is, in target cells where the
species is present, Sis the total number of times all possible
surrounding cells are also occupied by that species.

Techniques to increase the performance of the random
patterns algorithm

Implementing the random patterns procedure as we have
described them is extremely computer intensive. For example,
Fig. la shows 506 cells occupied by Poa. To recreate the
patterns for Poa in Fig. 1c from initial random assignments
such as thosein Fig. 1b requires ~5500 individual cell swap-
ping events. To increase the efficiency of the algorithm the
randomization procedurewas given a‘‘ head start’” asfollows.
Instead of the initial randomization allocating all of the in-
dividual cells independently as in Fig. 1b, the overall area
was divided into blocks, and these blocks were randomly
shuffled. For the maps in Fig. 1 the area was divided into a
4 X 4 grid of blocks, each with dimensions 7 X 7 cells. For
a given pattern, the exact dimensions of the blocks and their
total number will be afunction of the dimensions of the plots
being analyzed. Each block was then subject to a random
rotation/reflection, and then these 16 blocks were assigned to
random positions within the plot. From this initial ‘“‘block”
randomization the random patterns procedure was then im-
plemented, shuffling the 7 X 7 blocks of cells about.

This procedure is repeated until the fit between the ob-
served and randomized pattern falls below «, or does not
improve after 100 swapping attempts. |f 100 swapping at-
tempts are attained without a satisfactory fit, further ‘‘fine-
tuning”’ of the random pattern is required. This is achieved
by fixing the 16 blocks in position, and then shuffling the
single cellsuntil the desired function value of « was achieved.
That is, the randomization procedure comprised two stages,
firstly blocks at the scale of 7 X 7 cells, followed by individual
cells. Performing this two-stage procedure has two main ad-
vantages. Firstly, the algorithm runs much faster because the
initial randomization based on the shuffling of blocksrequires
less “‘re-shuffling’’ to create a spatial pattern with the same
characteristics as the original. For example the number of
individual cell-swapping events required to recreate the Poa
distribution using this modified method reduced from 5500
to ~950 events. Note that splitting the area into 16 blocks
still ensures adequate randomi zation over the plot, thusavoid-
ing the problems inherent with the rotation/refl ection method.
Secondly, we found that starting from a completely random
pattern occasionally failed to converge to a satisfactory so-
lution for observed patterns which had e.g., a small number
of discrete patches. By retaining a certain amount of spatial
structure after the initial randomization prevented this prob-
lem of nonconvergence.



