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CHAPTER 8

Making Sense of Spatial Models
in Ecology

Peter Chesson

Introduction

Spatial models in ecology are interesting and valuable primarily because they
show that inclusion of spatial detail often quantitatively and qualitatively
changes fundamental properties of population dynamics such as stability and
species coexistence.”® This phenomenon can also be expressed as a property
of spatial scale, called the scale transition:’ the rules for population dynamics
worked out for a local population (discounting migration) differ from the rules
that are observed at the larger spatial scale of the whole population,” which
incorporates migration between local populations,

The scale transition can be understood as an interaction between spatial
variation and nonlinear dynamics.** In this context, nonlinearities mean that
the contribution of an individual to future generations depends on intraspe-
cific or interspecific densities, or in other words single- or multi-species den-
sity dependence. Such density dependence arises from direct and indirect in-
teractions between individual organisms and has a spatial scale defined by the
scale within which such interactions occur, for some given span of time. In
spite of the fact that density dependence and spatial variation are often held in
opposition in spatial models™ the effects of spatial variation are critically
dependent on the nature and magnitude of density dependence.’

The spatial variation of relevance to the scale transition is spatial varia-
tion in the densities of organisms and spatial variation in the environment
when such environmental variation affects the interactions between organ-
isms.*®% In general, there is no reason to expect the spatial scales of variation
and the spatial scales of interactions between individuals to coincide, but as
we shall see below, the relative scales of these phenomena are important to the
scale transition. Also, spatial variation may be determined at least in part by
population dynamics," and therefore, it should not be too surprising that spa-
tial variation in population densities may depend on average population den-
sity. However, as we shall see below, the way spatial variation depends on the
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environment also affects the way spatial variation depends on average popula-
tion density, with important consequences for the scale transition.

These considerations lead to a way of understanding spatial models in
terms of three important components, which are the subject of this chapter: 1)
nonlinearities in population dynamics; 2) the relative spatial scales of varia-
tion and density-dependent processes; and 3) the dependence of spatial varia-
tion on population densities. A common alternative approach to understand-
ing the often perplexing results of spatial models is through approximation by
other models that are deemed better understood. For example, metapopulation
models often use presence or absence as state variables of local populations
and couch understanding in terms of extinction and recolonization dynam-
ics.' Although approximation of other spatial models by such metapopulation
models may indeed be an aid to understanding, the important role of
nonlinearities may be obscured’ in the process and presence-absence descrip-
tions of local populations permit expression of only the simplest kinds of non-
linear dynamics and spatial variation. Another approach” approximates dis-
crete spatial variation by continuous spatial variation, mainly as a
computational aid. However, the method provides a good example of the in-
teraction between nonlinear dynamics and variation on a small spatial scale.

I emphasize understanding over finding solutions to models. A realistic
spatial model can be enormously complicated with far more information in its
parameters and structure than one can hope to approach empirically. Without
an understanding of how spatial models work we cannot know which of this
information is important for a given purpose. Thus, I present here a theory of
the scale transition, illustrated with simple single-species models. Being struc-
tured around three critical components of the scale transition, this work is
intended to help systematize the study of spatial models. The three compo-
nents are each amenable to empirical study separately or in combination. Thus,
this way of understanding spatial models leads immediately to empirical ap-
proaches to assessing the importance of the spatial dimension.

The Role of Nonlineyities (N

For any given scale of temporal resolution, there is a spatial scale over
which direct and indirect interactions between organisms can occur. This spa-
tial scale of interaction may be specified in models by nonoverlapping areas of
space (“patches”) occupied by a local population within which interactions
occur.*** Other models use overlapping areas (“neighborhoods”) centered on
the individuals in the population, and are especially useful for plant popula-
tion studies.” Whichever of these two means are used to specify the organiza-
tion of interactions in space, the basic principles are the same and so I shall
explain them using the conceptually simpler local population approach. So-
called metapopulation models™ use the local population approach but refer to
the local populations as populations, and refer to the total of all local popula-
tions as the “metapopulation.” However, I follow the earlier terminology of ref,
11 which seems more natural,

The key to the scale transition begins with the simple observation® that
the density of a population is simply an average of the densities of its compo-
nent local populations. Thus, if Nj(¢) is the density at time ¢ of the ith local
population, the quantity
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is the density of the population as a whole. A change in scale from the local
population to the whole population thus involves an averaging process, but
such averaging interacts in a very important way with local population dy-
namics. How this occurs is most clearly seen when migration and local inter-
action and growth processes are separated in time. Thus, assume that within
each unit of time, ¢ to ¢+1 (for example, a year), migration takes place in the
subinterval t to t+h, and local population growth involving interactions be-
tween individuals occurs in the subinterval t+h to t+1. Local population den-
sity at the end of the growth and interaction period can then be written as:

N(t+1) = F(N(t+h)) 2)

where F is some function. For example, if the interactions can be described as
scramble competition, then the function F may take the Ricker form:

F(N;(t+h)) = RN;(t +h)e “Ni(+h) "

where R represents the multiple by which the population would increase in the
absence of density-dependent interactions and the fraction:

¢ i (t+h) 4)
represents a reduction in this amount due to density-dependent interactions.
These interactions mean that the function F specifies a nonlinear relationship.
I shall use this particular nonlinear relationship as an illustration throughout,
but the ideas presented are general.

The dynamics of the density of the whole population can now be found
by combining Equations 1 and 2 to obtain:

i“F(N,(Hh))
ﬁ(t+1)=i"~‘—-k_= F(N(t+h)) s)

an average of a nonlinear function of local population density. Now:

F(N(t+h)) # F(N(t+h) 6)

when the function Fis nonlinear. In other words, the average of the function is
not equal to the function of the average, and this means that the dynamics of
the whole population differ from the dynamics of the local populations over
the period t+h to t+1. Thus, a scale transition occurs as a result of averaging a
nonlinear function or “nonlinear averaging” for short.

The easiest way to understand such nonlinear averaging is by a simple
graphical technique® applied to a simplified spatial distribution in which local
populations are assumed to vary spatially over just two values of population
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density. Consider Figure 8.1 with points A and B representing two different
local populations with different local population densities at times t+h and
corresponding densities at time t+1. The thick curve on which these points lie
is the graph of F(N(t+h)). If half the local populations in the system are at
point A and the other half at point B, then the higher scale densities

N(t+ k) and N(z + 1), being averages of the local densities, are specified by the
point D on the midpoint of the line joining A and B. In the absence of spatial

variation, the point E specifies the whole-population densities N(t + /) and

N(t +1). Similarly, if the local populations were given by the points B and C,
the large-scale or whole-population densities would correspond to the point F
with the point G giving the corresponding situation with no spatial variation.

Although restricted numerically to simple spatial distributions, this
graphical technique nevertheless has several important lessons that are appli-
cable to general spatial distributions. Nonlinearity, and hence density depen-
dence, are essential for there to be any effect of spatial variation on large-scale
dynamics. For if the graph of F(N(t+h)) were a straight line, the points D and
F would coincide with the points E and G in Figure 8.1 giving no difference
between higher scale dynamics with and without lower scale spatial variation.
Second, the type of nonlinearity indicates the effect that spatial variation has.
If the nonlinearity is concave, i.e., F(N(t+h)) curves over as it does over the

range AB, then variation in local densities reduces N(¢+1) over the value it
would have without variation. Where the relationship curves up (is “convex,”

e.g., BC), N(t+1) is increased over that predicted without variation. Finally,
itis apparent from the figure that the effect of variation on population dynam-
ics at the larger spatial scale is very closely related to the magnitude of the
variation. To gain a better appreciation of this relationship, an approximate
quantitative approach is valuable.

For simplicity, we continue to make the assumption that there is no mor-
tality during dispersal, and then it is possible to show that, approximately*

N(@+1) = F(N@®) + co’ 7)

where o is the variance in local population density and the quantity ¢ may

depend on population density, N(#), but not on 0. Thus, we see that the effect
of spatial variation on large-scale population dynamics is approximately pro-
portional to the variance in local population densities. The quantity ¢ mea-
sures the nonlinearity of F and is given by the formula:

c=%F"(.’V(r)} 8)

i.e., half the second derivative of F evaluated at N (). This second derivative
will be negative wherever F is concave, e.g., at point E of Figure 8.1, and posi-
tive whenever the curve is convex, e.g., the point G of Figure 8.1, thus explain-
ing the effects of concave and convex nonlinearities observed in the figure.
The two approaches above are good for understanding the nature of the
interaction between variation and nonlinearity. To see the full effects of this
interaction on population dynamics, consider now a realistic spatial distribu-
tion, the negative binomial distribution® applied to the case where local dy-
namics follow the Ricker equation. If there is no mortality during dispersal,
population dynamics on the whole population scale satisfy the equation:
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Fig. 8.1, Averaging the Ricker curve in space as explained in the text.
Medified with permission from Chesson PL, In: Floyd, RB, Sheppard
AW, DeBarro PJ. Frontiers of Population Ecology. CSIRO Publishing
1996:353-368.
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where R' = Re™® and o' = 1-¢**** This relationship is shown as the dashed
curves in Figure 8.2, The solid curve is the Ricker relationship:

N@+1) = F(N@+h)=

N(t+1)= RN(£)e ™ 10)

which would apply if there were no spatial variation. The Ricker curve gives
population crashes from high densities, but the magnitude of population
crashes at the level of the total population is markedly reduced by spatial varia-
tion. Indeed, as spatial variation increases (i.e., as k decreases) the crash dis-
appears, and the dynamics of total population density appear instead like con-

test competition with no appreciable decline in N(z +1) for high values of N (?),
belying the presence of scramble competition within local populations, The
effect on population dynamics can be profound. The Ricker model gives fluc-
tuating and even chaotic dynamics of large amplitude for InR > 2 (Fig. 8.3a).In
contrast, all of the dashed curves depicted in Figure 8.2 yield stable population
dynamics with rapid convergence on an equilibrium (Fig. 8.3b).

These results were derived assuming that there is no mortality during
dispersal, but as shown in the Appendix to this chapter, such an assumption
does not alter these conclusions, which simply result from an interaction be-
tween spatial variation and the nonlinearity of population dynamics.
Nonlinearities can be understood in terms of the basic interactions between
organisms, There are many facets to variation, but the most immediate issues
for the study of the scale transition are the spatial scale on which variation
occurs and the relationship between spatial variation and the density of the
population.




1998. Pp 151-166 in J. Bascompte and R. Sole (eds) “Modelling
Spatiotemporal Dynamics in Ecology,” Academic Press.

156 Ve Modeling Spatiotemporal Dynamics in Ecology

80

NCt+1)

=TT

Eoci Y W
D T 4 L

0 ' ' 100
N(t)

Fig. 8.2. The Ricker curve Eq. 10 and the model given by Eq. g plotted
for k = 0.1 to 1 in an ascending order, with parametersInR =3and «
= 0.1. Modified with permission from Chesson PL. In: Floyd, RB,
Sheppard AW, DeBarro PJ. Frontiers of Population Ecology. CSIRO
Publishing 1996:353-368.

The Roles of Scales of Variation

In the development above, we have identified the local population as
defining the scale of interactions between individuals, which is therefore the
scale on which density dependence occurs. This scale may not be easy to de-
termine and indeed, there may be multiple scales of density dependence re-
lated to specific sorts of interactions, For example, aggressive encounters lead-
ing to interference competition may operate on a much smaller spatial scale
than the scale of depletion of resources, which is the scale of exploitative com-
petition. Variation in abundance is relatively much easier to determine, and
such variation is often seen to be multi-scaled in empirical studies.”** What
are the effects of the relative scales of density dependence and spatial varia-
tion? To approach this question, I shall assume just one scale of density depen-
dence, and continue to identify it with the “local population,”and I shall adopt
the model of nested scales of spatial variation in abundance that has been shown
to be so useful in empirical studies,***

First of all consider cases of variation on scales equal to and lower than
the scale of a local population. The standard analysis of variance approach
leads to the model:

N(t+h) = N@t+h) + € + §' + § +... 1)

where each e represents a deviation from the mean density in the population
that can be attributed to a particular scale. The superscripts are not powers
butrepresent the scale, with scale o being the scale of density dependence,and
scales -1,-2, and so on representing smaller scales such that a unit on any one
scale consists of more than one unit the next lower scale. The deviations for
scales lower than o (the local population scale) all have bars over them be-
cause they have the further structure:
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where &' refers to density deviation specific to the jth unit on the scale -1 in

the ith local population, and n, is the total number of such units in one unit on
the scale of local populations. Thus, we see that variation on lower scales ap-
pears as averaged values on higher scales, The effect of this averaging is that
lower scale variances contribute to higher scales essentially in inverse propor-
tion to the number of lower-scale units in one unit of the higher scale. To see
how this occurs we make the standard assumption that contributions to vari-
ance from different scales are uncorrelated. If we assume further that the dif-

ferent units on any given scale are also uncorrelated, then we find that:
P
ol = o, 290,92, 13)

n, n,

. . [H] O . -
where o7 is the variance of €] and 07, is the variance of Eﬁf.

Hierarchical analysis of variance commonly assumes a variance struc-
ture of this form, with one important difference. In analysis of variance, n, is
the number of samples from scale -I in a sampling unit on scale o. For this
formula to be accurate in the analysis of variance, samples need to be taken far
enough apart to achieve statistical independence on the appropriate scale. Here,
however, the 1 ;are the actual number of units present, not simply the number
sampled, and they may not be statistically independent. Therefore, some modi-
fications to the formula (Eq.13) will commonly be necessary.

One way of thinking about this is through a spatial correlation function:

p_ (k) = corr(e}, €,) 14)
where “corr” means the ordinary Pearson correlation. Statistical theory (e.g.,
ref, 26) shows that the contribution of scale -I to variance observable on the
the next scale up (-I+1) is:

2. m_; m_;
Sy Z 2 P, (k) 15)
—I' J=1 k=1

where m is the number of units on scale -/ in one unit on the scale -1+1. Now
o(j,k) may depend primarily on the distance apart and may converge to zero
as this distance apart increases. Indeed, it is in this situation where the nested
structure is most useful. Moreover, the quantity:

*2 30,60 16)

M= %=l
is then likely to converge to some constant 6 as m increases. In this case, for
large m , Eq.15 is then well approximated by:
0
of
—t
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Fig. 8.3. Panel (a} Simulation of large-scale dynamics with no spatial
variation, (Eq. 10) with parameters InR = 3 and a = 0.1, Panel (b)
Simulation of large-scale dynamics with negative binomial spatial
variation, Eq. 9 with k = 0.5, and R and « as in (a). Modified with
permission from Chesson PL. In: Floyd, RB, Sheppard AW, DeBarro PJ.
Frontiers of Population Ecology. CSIRO Publishing 1996:353-368.

If variation arising on the -I scale were statisically independent, then 8,
would simply equal 1, It follows that the ratic m /8 ;can be thought of as the
equivalent number of independent units among the total of m; on that scale,
This number of independent units is in essence the “degrees of freedom” on
that scale. To take account of spatial correlations on any given scale in equa-
tion 13 for 0% n, is replaced by n,,,m /8, to give the equivalent number of
uncorrelated units on the scale -I in one unit on the scale of density depen-
dence.

How does variation originating on higher scales than the scale of den-
sity dependence contribute to population dynamics on some yet larger scale?
At issue is the total amount of variation between units on the scale of density
dependence. If scales 1, 2,... are defined as larger than the scale of density de-
pendence (scale o), then:

N(t+h) = N(t+h) + el + e+ & +..+ §'+ §’ +... 18)
Note that in this case the scale of density dependence (scale o) is contained in
the other scales, and so variation from these other scales is not averaged over
units in contributing to variation observable across units on the scale of den-
sity dependence, and so the variance on the scale of density dependence is:

2 2
o' =0, + 6 +0) PO E WP S 19)
n, n,
Thus, variation on scales higher than the scale of density dependence contrib-
utes undiminished to the modification of the dynamics of the whole population,
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while variation attributable to scales lower than the scale of density depen-
dence contributes progressively less as the scale becomes smaller.

The Role of The Relationship Between
Variance and Density

Empirically it is known that variance in local density can change with
mean population size.”*** Thus, the effect of variance on the scale transition
(Eq. 7) depends on the density of the population, with potentially important
effects on population dynamics.” I shall illustrate these possibilities by exam-
ining various ways that organisms may be distributed in space, and the result-
ant dynamics of the population.

Random distribution of organisms in space is described by the Poisson
distribution, and the variance not only depends on the mean, but is actually
equal to it. The effect of such variation on population dynamics is easy to as-
sess in the Ricker model, for it implies the higher scale population dynamical
equation:’

N(t+1) = R'N(t)e* @ 20)

where R'= Re™ and o' = 1-¢* as defined above. Note first of all that Poisson
variation has not altered the form of the population dynamical equation. The
Ricker equation, reflecting scramble competition, still applies on the higher
scale, but with modified parameters. The effect of these modified parameters
is most clearly shown by examining the stability of the equilibrium in this
system. The equilibrium is stable if InR' < 2,'i.e., InR-a < 2, which compares
with the criterion InR < 2 when there is no variation in local density. As the
intraspecific competition coefficient a is positive, this means that Poisson varia-
tion does have some stabilizing effect on population dynamics in the Ricker,
as one would expect from the graphical analysis of this model in the previous
section, but this stabilising effect is not great unless the intraspecific competi-
tion coefficient is quite large. For example, if InR = 3, then a must exceed 1 for
stability to result from spatial variation. In the Ricker equation, the local equi-
librium population size is InR/« (de Jong'), i.e., this local equilibrium must be
less than 3 for Poisson variation to be sufficient to stabilize dynamics on the
larger scale.

Very small local population sizes are not absurd when it is considered
that the local population is defined in terms of the spatial scale of density de-
pendence. Thus, in some populations, for instance plant populations, the spa-
tial scale of density dependence may encompass just a few other individuals.
Nevertheless, these results show that situations under which Poisson variation
can have important effects on higher scale dynamics are restricted to small
local populations. This fact is reflected by the coefficient of variation, which is
generally regarded as a better indicator of the importance of variation than
the variance alone. In the Poisson case, the coefficient of variation is

1/ N(t + h), 1.e.,becomes very small as population densities increase, and for

this reason, we should not be too surprised that Poisson variation only has
large effects when average local population sizes are small.

In contrast, in the negative binomial, the variance increases as a qua-
dratic function of the mean:

VIN(t+h)=N+N"/k 21)
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where here N is short for N (t+h). The formula for the coefficient of variation

(Southwood®) is V1I/N +1/k, which can never be less than 1/+k . Thus, if the
clumping parameter, k, is small and constant, the effect of variation should
not greatly depend on population density. We have already seen the strong
effects that such negative binomial variation can have when local density de-
pendence is given by the Ricker model (Eq. 3).Indeed, the conversion of popu-
lation dynamics from scramble to contest form in Figure 8.2 is dependent on
the low sensitivity of the coefficient of variation to population density. The
stability criterion’ is:

(k+1)[1-(/RYVEI) < 2 22)

which is always satisfied for k < 1 and R' > 1. Thus, stability occurs indepen-
dently of the local equilibrium population size,

The above analysis treated k as a constant, as is commonly done in the
literature on population dynamics. However, k need not be fixed. It could de-
pend on the mean population density. For example, if k were proportional to
population density, N, say k = a N, then the relationship (Eq. 21) for the vari-
ance would become:

V(N(t+h)) = N (1+1/a) 23)

with coefficient of variation /(1/N)(1 + 1/a) . Like the Poisson case, this coef-
ficient of variation declines to zero as mean abundance increases, Substituting
k=aN in Eq.7 shows that:

N(@+1) = R"N(@)e*™" 24)
where:

R"=R[1 + (1-e%)/a] 25)
and:

o” = aln[1+(1-¢)/a] 26)

Thus, we see that with this form of the negative binomial, large scale popula-
tion dynamics remain in the Ricker form. The effect of spatial variation is not
to alter fundamentally the nature of population dynamics on the larger scale,
but to modify the parameters, as in the Poisson case.

The stability criterion for the Ricker model is here InR" < 2, which can
be expressed as:

InR - o - In[14+(1-e™)/a] < 2 27)

The left-hand side is less than with Poisson variation, and so we see that
this form of negative binomial variation does have a greater effect on stability
than Possion variation. However, its effect is not independent of local popula-
tion size, because for small & the reduction in the left-hand side of Eq. 27 due
to spatial variation is proportional to o and thus inversely proportional to equi-
librium local population density. Moreover, the parameter a must be small in
relation to a for the stability criterion to differ much from the case of Poisson
variation.

4
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These results raise a number of important issues, the first of which is the
meaning of the parameter a in the second form of the negative binomial dis-
tribution above. Related to this question, however, is the question of how these
different sorts of spatial variation arise, and whether there is some means of
predicting the change in variation as a function of mean density. The Poisson
distribution is the standard model of random spatial distributions, and may
not seem to need explanation, but there are so many reasons for spatial distri-
butions to be nonrandom that it is worthwhile identifying situations preserv-
ing the Poisson state, Poisson distributions can be maintained if individual
organisms disperse independently of one another and environmental features,
and if dispersal distances from places of birth are large compared with the
mean spacing of parent organisms or other organisms.”

The negative binomial distribution with constant k arises from hetero-
geneous Poisson sampling,***° which can be considered a model of the case
where organisms do migrate long distances as described above, independently
of each other, but not independently of environmental features. Within the
modelling framework considered here, this would mean that a given patch i
can be assigned an attractiveness value, U, such that the local population den-

sity N{t+h) is Poisson with mean U; N, given U, Variation in U, from patch to
patch means that the actual spatial distribution is a Poisson mixture distribu-
tion.” Application of the conditional variance formula®® shows that the vari-
ance of local population size satisfies (Eq. 21) above with 1/k equal to the vari-
ance of U, The distribution of local population size, however, is not exactly
negative binomial unless U, has a gamma distribution.” Nevertheless, the nega-
tive binomial with constant k is likely to be a good model whenever dispersing
organisms tend to concentrate in particular places because of peculiar fea-
tures of those places, not the other organisms there.

The negative binomial with k proportional to the mean population den-
sity arises from a different modification of the Poisson distribution. If organ-
isms disperse randomly in space and so are distributed according to a Poisson
distribution, but with each individual v giving rise independently to some vari-
able number, M,, of nondispersing offspring, then the total number of offspring
in a patch has a so-called generalized Poisson distribution.® Application of the
conditional variance formula shows that the variance is given by Eq. 23, where
a is the following function of the mean and variance of the distribution of
offspring over individuals:

a = {V(M,)/E[M,+E[M,)1}* 28)

Thus, for a to be small, the mean number in a clutch has to be large or the
variance to mean ratio has to be large. Note, however, that for the distribution
of offspring in a patch to be exactly negative binomial, M, must have the highly
skewed logarithmic distribution.”

These two different biological models for the negative binomial give dif-
ferent consequences for the scale transition, The negative binomial has large
and qualitative effects when it arises from a spatially variable environment,
but somewhat smaller and only quantitative effects when it arises from clumped
distributions of offspring. These models, however, are highly idealized dis-
persal scenarios. Clumped distributions in nature are bound to involve envi-
ronmental variation, limited dispersal, and the nature of local population
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dynamics. They quite likely depend not just on the current population density
in the system, but on previous population densities too. Thus, the dynamics of
spatial distributions have the potential to introduce timelags into population
dynamics, possibly of very long duration.®

Discussion

T have tried to show how the scale transition can be understood in terms
of an interaction between nonlinear dynamics and variation. Once the
nonlinearities and variation are known, the scale transition is determined very
simply by the nonlinear averaging process described above. However, as we
have seen, it is important to understand the scales of variation relative to the
scales of the interactions between individuals, as these are the scales on which
the nonlinearities apply.

Variation can be dynamic, and because variation is essential to the scale
transition, the dynamics of variation are important to population dynamics
on the larger spatial scale. The critical issue is how the variance, or more gen-
erally, the spatial frequency distribution of local population density, changes
over time, Given the dynamics of the variance (or the frequency distribution),
other detail (e.g., the degree synchrony of the populatien fluctuations in dif-
ferent patches) is irrelevant. We have seen above how the spatial variance may
be a function of the mean, which is the same as the large-scale or whole-popu-
lation density. In that case, Equation 7 and its more exact but less general coun-
terparts yield equations for large-scale population dynamics involving large-
scale population density alone, and the problem of determining large-scale
population dynamics is completely solved by these equations, In general, the
variance is not likely to be so simply related to the mean, and past as well as
present mean densities may be needed to predict the variance from the mean.
In such cases, difference equations of an order higher than one would be needed
to describe population dynamics on the larger spatial scale. In multispecies
settings, the dynamics of the correlations between the distributions of differ-
ent species are also an issue.”™

These ways of viewing the scale transition suggest programs of theoreti-
cal and empirical research into the nature of nonlinearities and the intricacies
of spatial variation. As explained above, nonlinearities arise from density de-
pendence considered broadly® within and between species,and have long been
objects of study in ecology. The nature of the nonlinearity has important ef-
fects on the scale transition. For example, convex and concave nonlinearities
have opposite effects on the scale transition transition, as shown above and in
ref. 34. The roles of various kinds of nonlinearities in the scale transition have
been studied implicitly or explicitly in neighborhood models of plants,”* host
parasitoid systems,”” and competitive systems.'+*** However, the most explicit
treatment of nonlinearities in relation to the scale transition can be found in
the study of temporal variation in competitive systems.?»*

Environmental effects on density dependence can also be considered to
be types of nonlinearities. In the treatment here, we have considered only the
effects of the environment on the spatial distributions of organisms, but the
parameter « expressing density dependence in the models above may vary in
space, and such variation can easily be seen to create a scale transition very
similar to that resulting from variation in local population densities. Such ef-
fects of spatially varying density dependence are well known in models of com-
petitive interactions® where the density dependence is multispecies.
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Little work has addressed the important question of the relative scales of
variation and density dependence. The scale of density dependence seems in
essence to be the spatial scale over which interactions between individual or-
ganisms occur during the relevant unit of time. This scale naturally arises in
empirical studies of neighborhood competition,” but to my knowledge there
have been no explicit attempts at a theory of spatial scales of density depen-
dence. However, consideration of the scale of resource utilization is an impor-
tant beginning.* Scales of spatial variation have received much more atten-
tion,***#*4 Models cover a large spectrum. Hassell et al’ and Solé et al** have
shown how local dynamics and migration can create or maintain variation
essential to the scale transition. In other models™** environmental variation
plays an important role contributing to variation in density or modifying den-
sity dependence on various scales.

Relationships between variance and average local population density are
well-studied empirically, at least with insects.” Substantial modeling effort has
been directed at understanding this relationship* but none has been devel-
oped in concert with dynamical models addressing large-scale population dy-
namics. Modern computing power means that investigating these relationships
and the scales of variation in spatial models are not difficult exercises. I have
tried to show how such information is a route to understanding spatial mod-
els, especially the important issue of the scale transition,

This way of viewing spatial models permits a close link between theo-
retical and empirical studies. The many parameters of a spatial model will
rarely be available empirically, yet the scales of variation and the relationships
between means and variances can be known empirically with relative ease.
Nonlinearities are a more difficult issue, but nevertheless, this approach rep-
resents an alternative to the common reductionist method, which requires the
estimation of very many parameters and may lead to potentially unfathom-
able complexity from the effects and interactions of these parameters, The
more holistic method advocated here promises a structured approach to un-
derstanding the role of space in the dynamics of populations in terms of mean-
ingful components.

Appendix

Mortality during dispersal may be high, but the above developments ig-
nore it completely. To see what this means, let s be the average individual sur-
vival rate of dispersing and nondispersing organisms from time t to t+h. The

equations above relating N(t+1) to N(¢) continue to apply but with sN(r)
substituting for N(#). To see that this often leads to no essential change in our
conclusions, let m(¢f) = s N(t) (“dispersal-mortality-corrected population den-
sity”), then the dynamics of m(¢) are given by the equations for N above with

m substituting for N and sR substituting for R (or more generally sF substitut-
ing for F) throughout. If s is a constant (e.g. if migration rates and dispersal

mortality rates are time- and density-independent), then m is just N in differ-
ent units, and the effect of mortality during dispersal is seen to be equivalent
to having a smaller value of R, or more generally, a smaller E Such smaller Rs
or Fs do affect population dynamics, but do not affect the conclusions above
about the interaction between spatial variability and nonlinearity. Mortality
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during density-dependent dispersal is more complicated because then s is den-
sity dependent, but similar arguments show that its effects are equivalent to
modifying the nonlinearity of F
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