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Summary

1. Research is currently underway to develop genetically engineered viruses that

can sterilize pest animals. The technique, known as viral-vectored immunocontra-

ception (VVIC), promises to control mammalian pests such as the European rabbit,

the house mouse and domestic cats.

2. Using host±parasite models we explored the degree of control of the host popu-

lation that can be attained when hosts that recover from infection become perma-

nently infertile. The models assume some demographic compensation for reduced

fertility in the host population, and are tailored to address issues raised by the use

of the myxoma virus as an agent to sterilize rabbits. A `pay-o�' function is devel-

oped, which de®nes the degree to which host density is suppressed by a sterilizing

agent.

3. The results show that sterilizing viruses can reduce host abundance, and that

hosts with low birth rates and moderate mortality rates are the best targets for

VVIC. High transmissibility increases the pay-o� from VVIC, but because virulent

parasites kill most of the hosts that they infect, the pay-o� is highest if benign

parasites are used as the vector of contraceptive antigens. We argue that appropri-

ate pay-o� functions should be developed as a basis for research and development

on genetically modi®ed organisms.

4. The host±parasite models are extended to include a competing strain of virus

that does not sterilize the host. We analysed these models using a general approach

to the analysis of competition, which has not often been applied to epidemiological

models. The extended model shows that host sterilization per se does not a�ect the

competitive ability of viruses, a result that applies to a broad class of models in

which the per capita growth rates of competing parasites are linear functions of

limiting competitive factors.

Key-words: host±parasite model, immunocontraception, mammal pests, myxomato-

sis.
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Introduction

Introduced vertebrates are serious threats to biodi-

versity in Australia (Myers et al. 1994; Williams

et al. 1995), New Zealand (Coleman 1993; Cowan &

Tyndale-Biscoe 1997) and on many islands (Atkin-

son 1989; Courchamp & Sugihara 1999). The Eur-

opean rabbit Oryctolagus cuniculus L., for example,

is a serious threat to biodiversity and agriculture in

Australia (Myers et al. 1994; Williams et al. 1995;

Cowan & Tyndale-Biscoe 1997), despite consider-

able success in reducing the abundance of the spe-

cies using myxomatosis (Fenner & Ross 1994) and,

more recently, the calicivirus responsible for rabbit

haemorrhagic disease (Cooke 1997). Research is

therefore underway to develop new techniques to

control rabbits and other vertebrate pests.

One research programme aims to develop recom-

binant sterilizing viruses (Tyndale-Biscoe 1991,
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1994; McCallum 1996; Chambers, Singleton &

Hood 1997) that, along with their normal comple-

ment of nucleic acids, will contain nucleotide

sequences encoding reproductive proteins of the

host (Holland & Jackson 1994; Muller, Warren &

Evans 1997). Following natural infection with these

`immunocontraceptive' viruses, the host will develop

antibodies against its own reproductive tissues,

hopefully rendering the host permanently infertile.

The process by which sterilizing antigens are deliv-

ered using viruses is known as viral-vectored immu-

nocontraception (VVIC).

Before regulatory approval is granted for the

release of immunocontraceptive viruses, their e�-

cacy and safety as biological control agents must be

established at several spatial scales. E�cacy, for

example, must be demonstrated at three broad

scales: at the scale of a single host the virus must be

capable of generating a sterilizing immune response

after natural infection; at the scale of a small popu-

lation, the virus must infect and sterilize a su�cient

number of hosts and must also be capable of persist-

ing within that population; at still larger scales, the

virus must generate enough secondary infections to

ensure that it spreads among populations.

Determining e�cacy in individuals is a laboratory

task, but at larger scales it is not possible to assess

e�cacy without some form of ®eld release. We have

therefore developed mathematical models to address

questions of the e�cacy and persistence of immuno-

contraceptive viruses at the scale of a small popula-

tion. A subsequent paper addresses issues raised at

still larger scales (G. M. Hood, unpublished data).

Host±parasite models have already been developed

to study VVIC in brush-tailed possums Trichosurus

vulpecula in New Zealand (Barlow 1994, 1997), and

domestic cats on islands (Courchamp & Sugihara

1999; Courchamp & Cornell 2000), and Anderson &

May (1981) have developed generic models to study

the e�ect of sterilization of insects by protozoan

parasites. In each case, however, the sterilizing agent

was assumed to cause sterility in hosts that remain

infectious for their lifetime. This is an appropriate

formulation for persistent infections of vertebrate

hosts, such as occurs in the herpesviridae (Roizman

1990). But for VVIC in rabbits, the proposed vector

of immunocontraceptive antigens is the myxoma

virus (Holland & Jackson 1994). Although this virus

causes disease that can last for several weeks (Fen-

ner & Ross 1994), the intention is that those rabbits

that recover from the infection will be sterilized.

Hence, the dynamics of the recovered portion of the

population must be considered in the analysis. The

models presented here assume a relatively brief per-

iod of infection followed by life-long immunity and

sterilization of recovered hosts. This is an appropri-

ate formulation for VVIC using the myxoma virus

or other viruses that provoke a strong immune

response after acute, or subacute, infections in their

mammalian host.

The ®rst model developed here is a conventional

host±parasite system with no age or stage structure.

Beginning with Anderson & May (1979), many simi-

lar models have been developed to study the interac-

tion of population dynamics and epidemiology

(Busenberg & Hadeler 1990; Mena-Lorca & Heth-

cote 1992; Zhou & Hethcote 1994; Zhou 1995;

Cooke & Vandendriessche 1996), and further devel-

opments have been made in understanding how

complications such as stage-structure (Briggs &

Godfray 1995) and seasonality (Briggs & Godfray

1996) a�ect interactions between host and parasite.

The ®rst model is developed to examine how the

interplay of demographic and epidemiological para-

meters a�ects establishment and persistence of the

virus, and the degree to which host density is sup-

pressed. We also consider how the degree of `host

suppression' changes if the host is sterilized immedi-

ately after infection.

The second model is an extension of the ®rst to

consider competition between sterilizing and non-

sterilizing virus strains. In the case of the myxoma

virus, this competition occurs between but not

within hosts, because rabbits mount a completely

cross-protective immunological response to the myx-

oma virus, meaning that after infection with one

strain, any rabbit that survives is immune from

infection with other myxoma viruses for life (Fenner

& Ross 1994). Competition between viruses is there-

fore examined here in an extension of the ®rst

model to include sterilizing and non-sterilizing virus

strains, which compete for susceptible hosts.

In each model a proportion of the hosts is ren-

dered infertile after infection with the sterilizing

virus. This proportion represents the probability of

success of VVIC in an individual infected host. For

biological control, however, success is measured at

the population level, and the purpose of the models

presented here is to assess how success at the level

of the individual translates to that of a population.

Model structure and assumptions: Model I

For host population dynamics, we will use a form of

logistic population growth with density-dependence

in the birth rate but not the death rate, as follows:

dx

dt
� bx 1 ÿ x

K0
� �

ÿ mx eqn 1

Here x is the number of susceptible hosts, b is the

maximum per capita birth rate, m is the density-

independent mortality rate, and K0 is the number of

hosts at which the birth rate is zero (if, for example,

the availability of breeding territories limits the

birth rate then K0 is the number of suitable terri-

tories). Although b is called the `birth' rate, it can
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also be viewed as a recruitment rate into the adult

population that factors in density-dependent mortal-

ity of juveniles. Equation 1, and all the equations

that follow, would then describe the dynamics of the

adult population only.

To simplify the algebra, we will describe the

dynamics of host density, where density is expressed

as a proportion of the population size at which repro-

duction stops, K0. Equation 1 can then be written:

dX

dt
� bx�1 ÿ X� ÿ mX eqn 2

where X� x/K0. Setting dX/dt� 0 shows that the

carrying capacity for this model is K� 1ÿm/b.

If disease is introduced into a well-mixed popula-

tion, new infections will arise at the rate bXY, where
Y is the density of infected hosts and b is a constant

representing the rate at which infectious contacts

occur. Assuming that all host types contribute

equally to competition, and that a proportion, g, of
the recovered hosts, Z, are sterile, the dynamics of

the susceptible population are:

dX

dt
� b�X � Y � Z�1 ÿ g���1ÿ �X � Y � Z��

ÿ�bY � m�X eqn 3

which is a modi®cation of the logistic dynamics of

equation 2. The ®rst term on the right-hand side of

this equation says that all host types (X�Y�Z)

contribute to density-dependence in the host growth

rate and that gZ of the recovered hosts do not

breed; the second term is the rate at which suscepti-

ble hosts are lost via new infections, bY, and natural

deaths, m. Although diseases like myxomatosis are

debilitating in mammalian hosts and can a�ect

reproduction in males (Poole 1960; Fountain et al.

1997), the model assumes that female fertility is

una�ected by infection or reduced male fertility.

If there is no latent period, and infected hosts

have additional mortality a and recover at rate v,

the rate of change in their density is:

dY

dt
� bXY ÿ �a � m � v�Y: eqn 4

We assume further that recovered hosts are per-

manently immune from further infection, and have

the same background mortality rate as susceptible

hosts. The rate of change in their density Z is then

given by the expression:

dZ

dt
� vY ÿ mZ: eqn 5

Together, equations 3±5 (Model I) specify a modi-

®cation of the disease±host models of Anderson &

May (1979) to include density-dependent growth of

the host and sterilization of some recovered hosts.

Preliminary analysis of the model

To understand the model, ®rst note that summing

equations 3±5 produces an expression for the total

rate of change of the host population:

dN

dt
� b�N ÿ gZ��1 ÿ N� ÿ aY ÿ mN; eqn 6

where N�X�Y�Z is the population density.

Comparison of this equation with equation 3 shows

that the e�ect of the virus on the host population is

twofold: the birth rate is reduced by a proportion

gZ/N because sterile recovered hosts do not breed;

and, if the virus is also virulent (i.e. a>0), the

death rate is increased by aY because of the addi-

tional mortality of infected hosts.

If a small number of infected hosts is introduced

to a fully susceptible population, solving equation 4

for dY/dt� 0 de®nes a threshold density of suscepti-

ble hosts, XT, beyond which the infection will grow,

and below which the infection will die out:

XT � a � m � v

b
: eqn 7

Persistence of parasites in simple epidemiological

models is governed by the basic reproductive rate,

R0, which is the number of secondary infections that

one infected host could generate if introduced into a

completely susceptible population (Anderson &

May 1991; Dietz 1995). The endemic state of the

virus can be attained only if R0>1, which means

that each infected host must infect (on average)

more than one new host before the currently

infected host dies. For this to be so, the carrying

capacity (the equilibrium achieved with no infection)

must be greater than the threshold density. To cal-

culate R0 we note from equation 4 that infectives

are lost through death or recovery at the rate a�m

� v, which means that the average duration of infec-

tion in an individual is 1/(a�m� v) units of time.

With the susceptibles at carrying capacity, an indivi-

dual infective produces bK new infectives per unit

time, which implies that we must have:

K >
a � m � v

b
; eqn 8

and:

R0 � b
a � m � v

: eqn 9

Condition 9 is a requirement for successful inva-

sion of the virus into the host population. A local

stability analysis presented in Hood (2000) and

simulations (e.g. Fig. 2) show that, when and only

when condition 8 is satis®ed and brm, there is a

unique, locally stable equilibrium between the virus

and host populations with the virus at positive den-

sity.
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Equating R0 to one in equation 9 gives a relation-

ship that divides the parameter space into regions

where the infection can and cannot persist: a� b(1
ÿm/b)ÿ (m� v). A plot of the relationship (Fig. 1)

con®rms the intuition that the virus can only persist

if the host birth rate is su�ciently high and the virus

does not kill hosts too quickly. Notice that a is lin-

ear in m and b, and so di�erent values of these para-

meters change the slope of the relationship between

a and b, as shown in the ®gure using di�erent values

of the transmissibility, b.
Within the region of persistence, equilibrium host

densities can be obtained by setting each of equa-

tions 3±5 to zero and solving the resulting set of

simultaneous equations. At equilibrium dX/dt� 0,

and therefore susceptible hosts are regulated to the

threshold density given by equation 7. Similarly,

equation 5 gives the equilibrium density of recov-

ered hosts as vY*/m, where Y* is the equilibrium

density of infectives. Unfortunately, the density of

infectives at the equilibrium is a solution to the fol-

lowing quadratic, which can be solved but is not

easily interpreted:

ÿ 1

m2
b�m � v��m � �1 ÿ g�v�Y�2

� fÿ d � 1

bm
b� ÿ 2md � bm ÿ vd

ÿ v�1 ÿ g��d ÿ b��gY�

� d

b2
� ÿ bd � b�b ÿ m�� � 0; eqn 10

where d� a�m� v. The total density of the host

population, N*�X*�Y*�Z*, is an equally com-

plicated function of the parameters, and therefore

the degree to which host density is suppressed is

explored in the following by graphical means.

Default parameter values

The e�ect of the parameters on host density was

explored by varying each parameter in turn with the

remaining parameters held at their default values

(Table 1). The default values were chosen to capture

the chief features of the rabbit±myxoma virus inter-

action (the main target of the VVIC programme in

Australia). Because the model is designed to address

qualitative, rather than quantitative, issues, the

parameter estimates need not be exact, but the rela-

tive time scales of demographic and infection pro-

cesses are important determinants of the behaviour

of host±parasite models (Onstad 1992), and so it is

important that parameters are within an appropriate

range. The default values are brie¯y justi®ed in this

section and the e�ect of variation around these

values is explored in the next section.

Rabbit demography varies greatly throughout

Australasia (Gilbert et al. 1987), and so it is di�cult

to set representative values for the demographic

parameters b and m. Assuming the survival prob-

Fig. 1. Model I: stability portrait as a function of the host

birth rate, b, and the disease-induced mortality rate, a, for
three di�erent values of the transmissibility, b. Each line

divides the parameter space into regions where the virus

can and cannot persist, according to equation 9 with R0�
1. Other parameters K0 � 1, m� 0�03, v� 0�067 and g� 0.

Default values of b and a are shown as a ®lled circle,

assumes b� 1.

Table 1. Default parameters of the non-spatial model. Rate parameters (a, v, b, b and m) are expressed in units of weekÿ1;
R0 and K are expressed as a proportion of the density at which the density-dependent birth rate goes to zero, K0

Parameter Default value Explanation

a 0�1 Rate of disease-induced deaths in infected hosts

v 0�067 Recovery rate of infected hosts

b 1 Transmission rate

g 0 Proportion of recovered hosts sterilized

b 0�1 Low-density birth rate

m 0�03 Mortality rate (independent of density)

R0 5�08 Dependent parameter±basic reproductive rate

K 0�7 Dependent parameter±carrying capacity
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ability, averaged over all age classes, is 0�2 yearÿ1,
the mortality rate is m� ±ln(0�2)/52 1 0�03weekÿ1,
which is at the higher end of the range for adult rab-

bits in Australia but lower than typical values for

kittens (Gilbert et al. 1987). It is also the same as

the estimate of Barlow & Kean (1998).

Birth rates of rabbits can be very high. Adult

females, for example, are capable of producing

seven litters per year, with each litter averaging

around ®ve to six kittens and each kitten capable of

breeding by 3±5 months of age (Mykytowycz &

Fullagar 1973). We assume b� 0�1weekÿ1, and m�
0�03, which yields an annual instantaneous growth

rate in the absence of density-dependence of r� 3�6.
This is larger than the values presented by Hone

(1999) and those assumed in other models of the

population dynamics of rabbits (Gilbert et al. 1987;

Smith & Trout 1994; Barlow & Kean 1998) but

similar to the maximum rate of increase estimated

by Pech & Hood (1998) of rmax � 3�44. Here, our

estimate excludes one of the major agents of mortal-

ity, myxomatosis, and it is therefore appropriate

that it is set near rmax. A population with this

growth rate would grow from a density of 0�01 to

about 0�23K0 within a year, and be close to the car-

rying capacity (K� 1ÿm/b� 0�7K0) within 2 years.

Epidemiological parameters are equally di�cult

to set because virulence and transmissibility of myx-

omatosis depend on the strain of virus and the

genetic resistance of rabbits. In wild rabbits, for

example, case-fatality rates can be as low as 30% or

as high as 100% (Fenner & Ross 1994; P. J. Kerr,

unpublished data), and the duration of the infec-

tious period ranges from less than 1 week to more

than 7 weeks (Parer et al. 1994; P. J. Kerr, unpub-

lished data). For the default parameter set, we

assume a relatively long infectious period of 6

weeks, and so 1/(a� v) 1 6 (ignoring natural mor-

tality, m). If 60% of infected hosts die, we have a/(a
� v)� 0�6, and v/(a� v)� 0�4, and hence a� 0�1 and

v 1 0�067.
There have been several attempts to estimate

transmission rates of myxomatosis (Saunders 1980;

Seymour 1992), but because insect vectors spread

the disease among rabbits, transmission rates

depend on seasonal changes in vector activity

(Edmonds, Shepherd & Nolan 1978; Parer & Korn

1989; Ross et al. 1989). In this simple model, we

assume that myxomatosis is spread by the European

rabbit ¯ea Spilopsyllus cuniculi (Dale), which often

produces epidemics that last several months (Kerr

et al. 1998). For a sensible model, the value of b
should be higher than the birth rate so that disease

transmission is more rapid than reproduction. We

chose b� 1, which is an order of magnitude larger

than the default birth rate. In a naive population at

the carrying capacity, this value of b generates an

epidemic that lasts for about 6 months, after which

there are oscillations lasting about 18months before

the population settles to equilibrium densities (Fig.

2).

E�ect of demographic and infection parameters
on equilibrium densities

For any virus used for biological control, there are

at least two important questions that must be

addressed: ®rst, can the virus persist in the host

population; and secondly, by how much is the host

population suppressed? If a sterilizing agent is to be

developed using an extant virus, a third question

arises: by how much is host density reduced in rela-

tion to current densities (i.e. those attained in the

presence of ®eld strains of the virus).

The ®rst question is easily answered: persistence

conditions for the virus are obtained by solving

equation 9 for R0� 1. Persistence is enhanced by

high birth rates and high transmissibility, but com-

promised by rapid loss of infected hosts (a� v) or

an excessive natural death rate. For any pair of

parameters it is simple to construct stability por-

traits like that shown as Fig. 1.

By inspection of equation 6, it is clear that in a

closed population, sterilization of the host compro-

mises the production of new susceptible hosts. How-

ever, the intuitive notion that this should jeopardize

the persistence of the virus is not realized, because

condition 8 says that persistence is independent of

the sterilization rate, g. This result occurs because

invasion and persistence of the virus depends on the

longevity of infected hosts (i.e. on a, m and v) but is

independent of any e�ect of the virus on host repro-

duction. Thus, the answer to the ®rst biological con-

trol question (can a sterilizing virus persist in the

host population?) is that the persistence conditions

for a sterilizing virus are precisely the same as those

of a non-sterilizing virus. Simply put, sterilization

Fig. 2. Model I: trajectory following introduction of

infected hosts (at density � 0�001) to a fully susceptible

population at the carrying capacity with the default para-

meter set.
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has a negligible e�ect on the availability of suscepti-

ble hosts while the number of infected hosts is small,

and therefore does not a�ect invasion and persis-

tence of the host. Sterilization only has an appreci-

able e�ect on host availability when the sterilizing

virus is abundant.

To determine the degree of host suppression by a

sterilizing virus, we follow Beddington, Free & Law-

ton (1978) in de®ning host suppression, q, as the

degree to which the host population is reduced

below the carrying capacity. That is q�N*/K,

where 0R qR 1 and N* is the equilibrium host den-

sity. For presentation of the results, it is useful to

de®ne the `pay-o�' realized by the introduction of a

virus as p� 1ÿN*/K. Furthermore, if an endemic

virus is engineered, we assume that the host popula-

tion is already regulated to some degree by ®eld

strains of the virus. The appropriate measure of the

pay-o� is then p0 � 1ÿN*g/N*0 , which is one minus

the host density realized in the presence of a steriliz-

ing virus divided by the density realized when a

non-sterilizing virus is present in the population.

Figure 3 shows the dependence of host densities

on the demographic parameters for non-sterilizing

(g� 0) and sterilizing (g 4 1) viruses. Notice that

the pay-o� is optimal when the host has a moderate

mortality rate. This result occurs because the steriliz-

ing virus reduces host density at moderate values of

m but dies out at extreme values. That is, as m 4 0

recovered hosts accumulate in the population and

both sterilizing and non-sterilizing viruses die out;

while as m 4 A natural deaths occur too quickly to

allow the infection to establish. The pay-o� is also

maximized at moderate birth rates, because as b 4

0 no new susceptible hosts are produced and so the

infection dies out; conversely, as b 4 A the rate at

which new hosts are produced outstrips the infection

rate, so that neither sterilizing nor non-sterilizing

viruses a�ect the equilibrium host density. Hence,

the pay-o� is greatest at moderate birth rates.

For non-sterilizing viruses, host density is mini-

mized when the virulence, a, is moderate (Fig. 4a),

mirroring the ®ndings of Anderson & May (1979,

1981). For a sterilizing virus, however, host density

increases with a, and the pay-o� therefore decreases.

The increase in host density with a occurs because

the infection dies out as a 4 A (because R0 4 0,

condition 9), while as a 4 0, a greater proportion of

Fig. 3. Relationship of equilibrium host densities in Model I to host demography. Fine lines shows the host density N* for

non-sterilizing (solid line) and sterilizing (dashed line). Thick lines show the pay-o�, p0 � 1ÿN*g/N*0. Other parameters set

to default values.

Fig. 4. Relationship of equilibrium host densities in Model I to epidemiological parameters. Fine lines shows the host den-

sity N* for non-sterilizing (solid line) and sterilizing (dashed line). Thick lines show the pay-o�, p0 � 1ÿN*g/N*0. Other

parameters set to default values.

919
G.M. Hood,

P. Chesson &

R.P. Pech

# 2000 British

Ecological Society

Journal of Applied

Ecology, 37,

914±925



the infected hosts are sterilized, and so host density

declines.

Because suppression of the host population by the

sterilizing virus depends on preventing reproduction

by recovered hosts, the pay-o� increases with the

recovery rate, v, but only to a point. As v 4 A the

infection can no longer be maintained (condition 9),

while as v 4 0 the sterilizing virus has no e�ect on

the host. Hence the pay-o� is maximized at inter-

mediate values of v (Fig. 4b).

An increase in transmissibility increases the pay-

o� (Fig. 4c), a result that occurs because high trans-

missibility can overcome the inhibition of the rate of

new infections that occurs in the presence of a steri-

lizing virus.

A more intuitive understanding of the role of the

epidemiological parameters in determining host

abundance can be obtained by analysing the pay-o�

in terms of case fatality rates and survival times, the

quantities most often measured in epidemiological

studies (Parer et al. 1994). Ignoring natural mortal-

ity (i.e. assuming m is small), we de®ne the case

fatality, CF� a/(a� n), as the proportion of the

infected hosts that die as a result of the infection.

The survival time (once again, ignoring natural mor-

tality) is d� 1/(a� v). Note that, if the case fatality

is high, few hosts recover and the proportion of

infected hosts that are sterilized will be low, regard-

less of the sterilization rate, g. We should therefore

expect that the pay-o� due to engineering a virulent

virus (CF 4 1) should be less than could be

expected with a benign virus (CF 4 0).

Figure 5a summarizes the pay-o� for a sterilizing

virus as a function of the case fatality and the dura-

tion of the infectious period. As predicted, the pay-

o� from VVIC is highest for benign sterilizing

viruses (vwa), but the maximum pay-o� is achieved

when the infectious period is of moderate duration.

The decline in the pay-o� when the infectious period

is prolonged (greater than 0 10weeks) occurs

because it takes a long time before infected hosts

recover and become sterile. In fact, for viruses with

long periods of infection, models such as those

developed by Barlow (1994) are more appropriate

than Model I, because the sterilizing response

depends on immunological events triggered well

before recovery from infection occurs. If the immu-

nocontraceptive response is instantaneous, equation

3 of Model I could be modi®ed as follows to allow

for sterilization of infected hosts:

dX

dt
� b�X � Y�1 ÿ g� � Z�1 ÿ g��

�1ÿ �X � Y � Z�� ÿ �bY � m�X eqn 11

With this modi®cation the equilibrium densities of

each host type can be calculated, but the resulting

expressions are not easily interpreted (Hood 1999).

The pay-o�, however, is easily calculated: it is every-

where higher than predicted by Model I (Fig. 5b)

and does not decline as the duration of infection

increases. Notice that both models predict similar

outcomes if the duration of the infectious period is

short.

We conclude from this analysis that benign

viruses (those with a long duration of infection and

a low case fatality) will generally be the best agents

for delivery of immunocontraceptive antigens. This

conclusion, however, ought to be tempered by con-

sideration of any relationship between virulence,

transmissibility and the duration of the infectious

period. In the case of the myxoma virus, the prob-

ability of transmission of the disease depends

directly on the density of virus in skin lesions that

are probed by mosquitoes and other insect vectors

(Fenner & Ratcli�e 1965). The development of

virus-laden skin lesions and the duration of infection

Fig. 5. The pay-o� from immunocontraception as a func-

tion of the duration of the infectious period and the case

fatality rate, (a) for Model I and (b) for the modi®ed

model which allows for sterilization of infected hosts (see

equation 11). The proportion of the recovered hosts steri-

lized by the sterilizing virus is g� 0�8.
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depend in turn on the virulence of the virus (Levin

& Pimental 1981; Anderson & May 1982; May &

Anderson 1983; Massad 1987; Dwyer, Levin & But-

tel 1990; Nowak & May 1994). These interactions

are beyond the scope of the current work, but their

implications for VVIC can be determined if the

functional relationship between transmissibility and

virulence is known. For example, we have also ana-

lysed a model with b� ka, where k is some constant.

Analysis of that model (not presented here) shows

that viruses of intermediate virulence yield the best

pay-o�.

Competition between sterilizing and non-
sterilizing parasites: Model II

In Model I, even though the density of infected

hosts declines with the sterilization rate, persistence

of the virus is una�ected by g. In the presence of

competing viruses, however, the sterilization rate

might be expected to a�ect the conditions for persis-

tence.

Some models of competition between parasites

(Levin & Pimental 1981; May & Nowak 1994;

Nowak & May 1994) assume that co-infection of

the host can occur, and that one parasite (or strain

of parasite) can competitively displace another para-

site within the host. However, the model presented

here ignores co-infection with multiple strains,

which is believed to be uncommon with myxomato-

sis (see the discussion in Dwyer, Levin & Buttel

1990, p. 429).

If co-infection does not occur, we can write the

following model:

dX

dt
� b�N ÿ gZs��1 ÿ N� ÿ

X
i

biYi � m

 !
X

eqn 12

dYi

dt
� biXYi ÿ �ai � m � vi�Yi eqn 13

dZi

dt
� vYi ÿ mZi: eqn 14

Here N � X � P
i�Yi � Zi� is the host popula-

tion density and i2 {s, f} where the indices denote

hosts infected with, or recovered from, the sterilizing

(s) and non-sterilizing ( f) strains.

Equations 12±14 constitute Model II. In brief,

equation 12 is a modi®cation of 3 to allow for infec-

tion of susceptible hosts by either virus strain; 13 is

an analogue of 4 describing the rate of change in

density of hosts infected with each virus; and 14 is

the rate of change in the density of recovered hosts

of each strain. Notice that new infections are estab-

lished only in susceptible hosts, and so we are

assuming that infection with one strain precludes

infection with the other strain.

One way to determine the outcome of competition

in Model II is to calculate R0 for each strain.

Assuming that the strain with the highest value of

R0 excludes all others (Anderson & May 1982; Bre-

merman & Thieme 1989), a condition for competi-

tive exclusion of the non-sterilizing strain is:

bsX
as � m � vs

>
bfX

af � m � vf
eqn 15

which depends neither on the sterilization rate nor

the abundance of susceptibles. To compete e�ec-

tively, an immunocontraceptive virus must be more

transmissible, bs> bf, and/or have a longer infec-

tious period (as� vs)< (af� vf), than non-sterilizing

strains, a result that has also been shown in other

studies of competition amongst sterilizing parasites

(Barlow 1994, 1997).

Maximization of R0 is a valid criterion for analys-

ing competition in simple epidemiological models,

but the approach can give misleading results in

structured models with non-linear dynamics (Nowak

& May 1994; Ferriere & Gatto 1995). We therefore

prefer a general approach to the analysis of competi-

tion developed by Chesson (1994; Chesson & Huntly

1997). This approach considers the change in rela-

tive abundance of one species with respect to

another. If this quantity has constant sign, then one

species must eventually exclude the other. Chesson

& Huntly (1997) de®ne the relative abundance, A1,2,

of competing species 1 and 2 (using our terminol-

ogy) as the scaled di�erence in log population sizes

at time t:

A1;2 � ln�Y1�t��
b1

ÿ ln�Y2�t��
b2

eqn 16

Here, the transmission rates bi appear as scaling

factors representing the magnitude of the response

of each parasite to the common competitive factor,

the density of susceptible hosts, X(t). Although this

seems an unusual measure of relative abundance,

Chesson & Huntly (1997) explain that it correctly

predicts competitive exclusion in the sense that if

A1,2 increases to in®nity, strain 1 excludes 2, and if

it decreases to minus in®nity, 2 excludes 1.

We can use equation 13 and the fact that the

change in log abundance is
1

Y
�dY
dt

to write an

expression for the rate of change in relative abun-

dance:

dAs;f

dt
� ÿ as � m � vs

bs
� af � m � vf

bf
eqn 17

which has constant sign at all host densities. We

have arrived at the same condition for persistence of

the sterilizing virus derived using R0, but the advan-

tage of this approach is that we can now see Model

921
G.M. Hood,

P. Chesson &

R.P. Pech

# 2000 British

Ecological Society

Journal of Applied

Ecology, 37,

914±925



II as a special case of a broad class of models in

which there is a single linear competitive factor.

That is the per capita growth rate of species i is of

the form:

1

Y
�dYi

dt
� biX � ai � m � vi: eqn 18

Coexistence cannot occur in a system in which

there is a single linear competitive factor (Chesson

& Huntly 1997). The sterilizing virus can only per-

sist if it satis®es inequality 15, in which case the

non-sterilizing form is competitively eliminated. The

general results of Chesson & Huntly (1997) show

that this conclusion remains true in a temporally

variable environment if the environment does not

a�ect bi, regardless of how much it a�ects the other

parameters of the model. However, temporal envir-

onmental variation a�ecting bi makes the model

non-additive in the sense of Chesson & Huntly

(1997) and gives the potential for coexistence of the

strains. Coexistence in a variable environmental is

also a possibility under some conditions if the linear

per capita growth rate (equation 18) is replaced by a

non-linear form. Various forms of spatial variation

also have the potential to permit coexistence of the

two strains (Chesson 1997) and is the subject of sub-

sequent work.

Discussion

In a generic sense, the pay-o� function developed

here is a fundamental quantity that ought to deter-

mine the allocation of resources to research and

development of genetically modi®ed organisms.

Analysis of the pay-o� function can reveal surpris-

ing results. For example, intuition suggests that an

agent that a�ects both survival and reproduction of

the host would be most e�ective for biological con-

trol. While this is almost certainly true if a sterilizing

agent is introduced into a naive population (for

which the appropriate measure of the pay-o� is p�
1ÿN*/K), our analysis shows that if the aim is to

engineer an endemic parasite (for which the pay-o�

is p0 � 1ÿN*g/N*0) we should choose agents that

are relatively benign, unless there are trade-o�s

between virulence and transmissibility.

Reduction of host density using VVIC depends

on immunosterilization of recovered hosts, and so in

a sense the more that recover the better the pay-o�.

It should be remembered here that our de®nition of

the pay-o�, p0, encapsulates additional bene®ts due

to engineering an extant parasite, and therefore fac-

tors out any bene®ts due to mortality of infected

hosts. One practical implication is that VVIC may

be a useful technique to rescue the e�cacy of a con-

ventional biological control agent that has lost

impact due to declining virulence, as has apparently

occurred with the myxoma virus. The expense of

development, though, might not be justi®able if

virulent parasites are used.

Although the pay-o� decreases for extremely

fecund species (Fig. 3b), the upper range of birth

rates depicted in the ®gure is too high for most ver-

tebrates, and so we concur with others (Stenseth

1981; Tyndale-Biscoe 1991, 1994; Hone 1992) who

have concluded that fecund species are the best tar-

gets for VVIC. Recently, Hone (1999) showed that

small-sized species, which are characterized by high

rates of increase, r, would be more di�cult to con-

trol than larger species, because a greater proportion

of the population must be sterilized to stop growth

of an increasing population. Hone's analysis,

though, is not designed to address epidemiological

issues, nor does it allow for density-dependent

responses of the host.

Because the pay-o� is small when host mortality

is very low (Fig. 3a), long-lived species are not good

targets for immunocontraception. This conclusion

mirrors earlier work (Stenseth 1981; Hone 1992;

Barlow, Kean & Briggs 1997) showing that popula-

tions with low turnover are not good targets for

control by sterilization. However, the result arises

here partly because of the inhibition of the force of

infection that occurs when most of the population

consists of recovered-immune hosts, which have a

high survival rate and do not sustain the infection.

If the force of infection is not closely related to den-

sity, as is likely with some vector-borne diseases, it

may still be possible to achieve good results in long-

lived species using immunocontraceptive agents.

Density-dependence in host demography also

a�ects the pay-o� from biological control with a

sterilizing parasite. The form of density-dependence

in Models I and II is motivated by studies in rabbits

(Mykytowycz 1961; Mykytowycz & Fullagar 1973),

showing that females respond to social pressures at

high population densities by reducing per capita

reproductive output. It also makes the models rela-

tively easy to analyse, because there are no density-

dependent terms in the equations describing the

rates of change of the infected and recovered parts

of the population. Recently, studies of surgically

sterilized rabbit populations (Williams & Twigg

1996; Twigg et al. 2000) have shown that survival of

kittens through their ®rst summer is inversely

related to the number of kittens produced in a

breeding season. As suggested earlier, however, den-

sity-dependent mortality of juveniles is factored into

Model I if the state variables represent adult densi-

ties: the birth rate, b, would then represent the

recruitment rather than births per se, and only the

adult mortality would be independent of density.

Hence, if controlling the adults is of primary inter-

est, Model I does not need adjustment to examine

the e�ects of density-dependent mortality unless the

virus a�ects recruitment to the host population, in
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which case an age-structured model must be devel-

oped.

A `hidden' assumption in the models is that per

capita reproductive e�ort declines instantly and line-

arly with density (equation 3). Other forms of den-

sity-dependence may lead to somewhat di�erent

conclusions, but need to be developed for speci®c

host±parasite systems and need to be carefully vali-

dated before quantitative predictions are made.

We have assumed that all of the processes leading

to new infections can be summarized in the inci-

dence function, bXY, an assumption called linear

transmission (Hethcote & van den Dreissche 1991).

But diseases like myxomatosis are transmitted by

insect vectors, and so the incidence function encap-

sulates many factors, the density of vectors, the

probability of being bitten by a vector, and so on,

that are important for transmission of the disease

but di�cult to quantify. Non-linear incidence func-

tions (that is, new infections arise at rate bXgYh

where g, h 6� 1) have also been discussed in the litera-

ture (Liu, Levin & Iwasa 1986; Liu, Hethcote &

Levin 1987). Non-linear incidence could occur in

sociable hosts that cluster together when their num-

bers are depleted, thereby maintaining high contact

rates at low density. Indeed, empirical evidence of

non-linear incidence has already been noted for the

myxoma virus (Saunders 1980). Such a response

might help to maintain the infection at low densities,

perhaps enhancing any reduction in host density

brought about by a sterilizing parasite.

Model I shows that, when there are no competi-

tors, sterilization of the host does not a�ect the

capacity of a sterilizing virus to invade and persist

in a well-mixed host population. Barlow (1994)

came to a similar conclusion in a model of VVIC in

New Zealand possums. Assuming that the sterilizing

virus was sexually transmitted and that there was no

recovered-and-immune stage (i.e. v 4 0), he con-

cluded that a sterilizing virus could become estab-

lished in the host population, but that the reduction

in host density would be slower than could be

expected for a lethal agent.

Both the competition criterion of Barlow (1994)

and that developed here show that persistence of an

immunocontraceptive vector in the face of competi-

tion is possible if transmissibility can be engineered

into the vector, or if changes in host behaviour as a

result of sterilization increase the rate of infectious

contacts (Ji, Clout & Sarre 2000). Neither scenario

seems likely in the rabbit±myxoma virus system, for

there are no plans to increase the inherent transmis-

sibility of the disease, and any behavioural changes

are unlikely to a�ect transmission of a disease that

is spread mechanically on the mouthparts of insects

(Fenner, Day & Woodroofe 1956). Consequently,

repeated releases will be required to establish and

maintain the virus in regions where myxomatosis is

already present. As epidemics of myxomatosis are

driven mainly by seasonal changes in the availability

of susceptible kittens and insect vectors (Wheeler &

King 1985; Parer & Korn 1989), a sterilizing myx-

oma virus could be released in populations prior to

the normal occurrence of the disease, thereby pre-

empting infection with ®eld viruses. A recent experi-

ment, in which a myxoma virus was strategically

released at four ®eld sites, suggests that it will be

feasible to introduce recombinant viruses into wild

rabbit populations (Robinson et al. 1997). More-

over, Model II shows that sterilization confers no

competitive disadvantage within a population, and

so a sterilizing virus might persist for a long time

following strategic release. This would at least allow

the possibility of control of rabbits by inundative

release of the sterilizing virus (sensu Ja�ee 1993) if

the classical biological control strategy fails.

We have assumed in this analysis that the para-

meters of non-sterilizing viruses are, in some sense,

the result of co-evolution of the host and virus, and

that there will be no evolutionary change in a steri-

lizing virus or the host. The pay-o� therefore repre-

sents the initial return on investment from VVIC; in

the longer term the pay-o� can only be predicted if

we can predict the outcome of co-evolutionary pro-

cesses.

A question that cannot be addressed in the model

presented here is how spread between populations

will a�ect the persistence of competing strains. Bar-

low (1994, 1997) alluded to the potential importance

of this process, and Sato, Matsuda & Sasaki (1994)

have shown that dispersal processes can a�ect popu-

lation dynamics in a model that includes sterilization

of infected hosts. These questions will be addressed

in subsequent work.
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