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Abstract

The lottery model of competition between species in a variable environmental has been influential in understanding how

coexistence may result from interactions between fluctuating environmental and competitive factors. Of most importance, it has led

to the concept of the storage effect as a mechanism of species coexistence. Interactions between environment and competition in the

lottery model stem from the life-history assumption that environmental variation and competition affect recruitment to the adult

population, but not adult survival. The strong role of life-history attributes in this coexistence mechanism implies that its robustness

should be checked for a variety of life-history scenarios. Here, age structure is added to the adult population, and the results are

compared with the original lottery model. This investigation uses recently developed shape characteristics for mortality and

fecundity schedules to quantify the effects of age structure on the long-term low-density growth rate of a species in competition with

its competitor when applying the standard invasibility coexistence criterion. Coexistence conditions are found to be affected to a

small degree by the presence of age structure in the adult population: Type III mortality broadens coexistence conditions, and type I

mortality makes them narrower. The rates of recovery from low density for coexisting species, and the rates of competitive exclusion

in other cases, are modified to a greater degree by age structure. The absolute rates of recovery or decline of a species from low

density are increased by type I mortality or early peak reproduction, but reduced by type III mortality or late peak reproduction.

Analytical approximations show how the most important effects can be considered as simple modifications of the long-term low-

density growth rates for the original lottery model.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In the study of species coexistence in a variable
environment, the lottery model (Chesson and Warner,
1981) has had a pivotal role. In particular, it has shown
that species coexistence results from interactions be-
tween the direct responses of species to environmental
variation and their responses to competition. Life-
history characteristics have an important role in creating
such interactions (Chesson, 1989, 1994). For example, in
the lottery model, iteroparity of at least some of the
interacting species is essential to coexistence. It is
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important also that environmental variation affect
reproduction more strongly than adult survival (Ches-
son, 1990). In different models, different life-history
characteristics may be key, but the roles displayed by the
life-history characteristics of the lottery model are
retained (Chesson, 1990). Synthesis of the key features
of coexistence in the lottery and related models led to
the concept of the storage effect (Warner and Chesson,
1985) as a general mechanism of species coexistence that
results from interactions between responses to environ-
ment and competition. These interactions are created by
life-history traits that allow population increases but
minimize population losses. For example, persistent
stages in the life cycle, such as dormant seeds or long-
lived adults, may increase in numbers during favorable
periods, but have low mortality rates under most
conditions, ensuring that gains during favorable times
are not lost immediately unfavorable times return.
However, in spite of the important role of life histories
in species coexistence, the original lottery model allows
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only very simply life histories to be represented because
the only population structure that it recognizes is the
distinction between juveniles and adults. The adult
population has no structure, and for that reason, we
refer to the original model as the nonstructured lottery
model, or NLM. In this manuscript, we introduce the
structured lottery model, or SLM, in which we
investigate the effects on species coexistence of age
structure in the adult population.
In order to characterize age structure, in Dewi and

Chesson (2003) we introduced shape characteristics, that
we term D-measures, as tools for summarising mortality
and fecundity schedules. These measures prove espe-
cially useful here. In order to compare the NLM and
SLM, several constraints must be imposed to ensure
that any differences in the behavior of the two models
are due to inherent characteristics of the models. It is
useful to remember that the SLM is the general case,
and the NLM is a special case of the SLM where
mortality and fecundity are independent of age.
The behavior of the NLM is determined by two life-

history characteristics: (i) the expected lifetime (¼ 1=*d;
where *d is the age-independent death rate), and (ii) a
temporally fluctuating but age-independent birth rate
(Chesson, 1989, 1994). In our investigation of the SLM,
the values of life-history parameters will be constrained
to achieve an expected lifetime and fluctuating age-
dependent birth rate equivalent to those in the NLM
while allowing mortality and fecundity rates to be age-
dependent.
To study species coexistence, we use invasibility

analysis (Chesson and Ellner, 1989; Ellner, 1989), and
thus focus on the long-term population growth rate of
one species (the invader), which is held at low density, in
competition with another species (the resident) that has
achieved its stationary distribution of fluctuations over
time. In studying species coexistence in the SLM, we are
particularly concerned with identifying the sorts of
situations where age structure can be ignored, or when
some simple summary of the nature of age structure
suffices to characterize its important effects. In general,
having to account for age structure greatly complicates
theoretical and empirical investigations in ecology.
Thus, it is important to be able delineate the kinds of
situations where accounting for age structure is essen-
tial, and to account for it economically in those
situations where it cannot be ignored.
2. The model

To generalize the NLM to the age-structured case, we
assume that the probability of survival of an individual
of species i from age x to age x þ 1 is dix; and that the
number of offspring produced by an individual of
species i and age x in the time interval t to t þ 1 is
biðtÞkix; i.e. the product of a quantity biðtÞ that varies
with time, and a quantity kix that varies with age. Both
of these quantities are species-specific also. This model
of reproduction assumes that all age classes respond
similarly to variation in their common temporally
varying environment, but that different ages do have
different average reproductive outputs. We refer to the
quantity kix as the age-specific modulation of reproduc-
tion, and subject it to the constraint

P
N

x¼1kixlxP
N

x¼1lx
¼ 1; ð1Þ

where lx has the usual meaning as the probability of
surviving to age x; and is determined by the dix:
Constraint 1 is necessary to prevent overparameteriza-
tion of the model. In effect, it restricts the average of the
kix weighted by the probability of surviving to age x:
This constraint relates to the stationary age structure of
the population, i.e. the age structure that it would have
when its total population size is constant, and its age
structure has stabililized. As the stationary age distribu-
tion is proportional to lx; the weighted average (1) is an
average over the stationary age distribution of the
population. Note that the denominator in (1) is equal to
the expected adult longevity, and that its reciprocal,
which we denote by *d; is the value of dix that would
apply in an age-independent population with the same
longevity. We refer to it here as the age-independent
death rate.
The total density of offspring for a given species i

produced in one unit of time is the sum over all adult age
classes x of PixbiðtÞkix; where Pix is defined as the
fraction of the total space in the system occupied by
species i; age x: In the SLM, the offspring of any species
are assumed to compete with the offspring of all species
for settling sites that are given up by adult deaths. The
total density of these sites is the sum over species and
adult age classes of Pixdix: Competition for these sites is
assumed to be by lottery: the probability that a given
species gains a site is simply proportional to the density
of its offspring in the system.
Defining Pi:ðtÞ to be the total density of species i in the

system, i.e. the sum over all age classes of Pix; the
various elements of the model lead to the following
equation for species i in competition with just one other
species, j:

Pi:ðt þ 1Þ ¼
XN
x¼1

ð1� dixÞPixðtÞ
 !

þ
XN
x¼1

dixPixðtÞ þ djxPjxðtÞ
 !

� biðtÞ
P

N

x¼1kixPixðtÞ
biðtÞ

P
N

x¼1kixPixðtÞ þ bjðtÞ
P

N

x¼1kjxPjxðtÞ

� �
: ð2Þ
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The first part of this equation is simply adult survival,
and the second part is the product of the density of
space becoming available by adult death and the
proportion of this space that is allocated to species i

according to its representation of offspring in the total
offspring pool.
3. Analysis

For invasibility analysis, in a two-species setting, we
first of all need to understand the dynamics of a single-
species resident ð jÞ; and then the dynamics of an invader
ðiÞ; whose density is effectively zero, in competition with
this resident. Because all space becomes filled at the end
of each reproductive cycle, a single-species resident
simply has Pj: ¼ 1; for all t; and therefore has a growth
rate of zero. This single-species resident simply captures
all available space and the total number of new recruits
(new individuals entering the adult population) equals
the total number of adult deaths in one unit of time, viz
the sum over x of Pixdix: Thus, the age-structured
dynamics of the resident population can be represented
by the following Lefkovitch matrix model:
Pj1

Pj2

Pj3

^

Pjs

0
BBBBBB@

1
CCCCCCA
ðt þ 1Þ ¼

dj1 dj2 dj3 ? djs

ð1� dj1Þ 0 0 ? 0

0 ð1� dj2Þ 0 ? 0

^ ^ & ? ^

0 0 ? ð1� dj;s�1Þ ð1� djsÞ

0
BBBBBB@

1
CCCCCCA

Pj1

Pj2

Pj3

^

Pjs

0
BBBBBB@

1
CCCCCCA
ðtÞ: ð3Þ
The first row of this matrix has a novel interpretation.
Rather than representing the fecundity of an age class, it
is mortality because each age class contributes to
recruitment by making space available through death.
In spite of fluctuations in birth rates modeled by the
temporally varying quantity bjðtÞ; recruitment does not
fluctuate because birth rate fluctuations are countered
by equivalent fluctuations in competition (a reflection of
covariance between environment and competition, dis-
cussed in Chesson, 1989, 1994). Thus, in spite of the fact
that underlying Eq. (3) are stochastic nonlinear pro-
cesses, the dynamics of age structure are linear and
deterministic. The novel interpretation of the first row of
the matrix, however, is a reflection of these underlying
nonlinear processes.
The above matrix model satisfies the condition for

convergence to a stable age distribution according to the
Perron–Frobenius theorem (see, e.g., Caswell, 2001).
Therefore, the resident converges on its stable age
distribution for which the ratio Pjx=Pj: ¼ ujx does not
fluctuate over time. Moreover, as the resident’s growth
rate is zero, the stable age distribution is the stationary
age distribution given by the equation

ujx ¼ ljxP
N

x¼1ljx
:

As a consequence of convergence on the stationary age
distribution, the average of the death rate over all
individuals in the resident population, #djðtÞ; does not
fluctuate over time and is equal to the age-independent
death rate corresponding to its mortality schedule, and
is given by the equation

#dj ¼
XN
x¼1

djxujx ¼
P

N

x¼1djxljxP
N

x¼1ljx

¼ 1P
N

x¼1ljx

¼ *dj; ð4Þ

where the last equation defines *dj: Note: the derivation
uses the identity

P
N

x¼1djxljx ¼ 1; which is true because
djxljx is the probability distribution for any given
individual’s age of death.
As a consequence also of the stationary age dis-

tribution, the average modulation of reproduction
of the resident is given by the equation

k̂j ¼
XN
x¼1

kjxujx

¼
P

N

x¼1kjxljxP
N

x¼1ljx

¼ k̃j: ð5Þ

However, applying constraint (1), which eliminates
parameter redundancy, we see that modulation of
reproduction for the resident reduces to

k̂j ¼ k̃j ¼ 1:

For the invader, the key dynamical equation (2) can be
written as

Pi:ðt þ 1Þ ¼Pi:ðtÞ
XN
x¼1

ð1� dixuixðtÞÞ
(

þ
XN
x¼1

djxujx

biðtÞ
P

N

x¼1kixuixðtÞ
bjðtÞ

P
N

x¼1kjxujxðtÞ

)
; ð6Þ
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where uixðtÞ ¼ PixðtÞ=Pi:ðtÞ and ujxðtÞ ¼ PjxðtÞ=Pj:ðtÞ;
the age structures of invader and resident.
By substituting Eqs. (4) and (5) into Eq. (6), we obtain

Pi:ðt þ 1Þ ¼Pi:ðtÞ
XN
x¼1

ð1� dixuixðtÞÞ
(

þ *dj

biðtÞ
P

N

x¼1kixuixðtÞ
bjðtÞ

)
: ð7Þ

From Eq. (7), we see that the mortality schedule of
the resident does not affect population dynamics of the
invader at all. It is only the age-independent death rate
of the resident ð*djÞ that matters. Since Eq. (7) does not
involve density of the resident in any form, we can
express Eq. (7) in matrix form as
Fig. 1. Mortality schedules of type I (short dashes) with Dm ¼
0:2025 ðþÞ; Dm ¼ 0:4086 ðBÞ; of type II ðDm ¼ 0Þ (solid, W) and of
type III (long dashes) with Dm ¼ �4:1589 ð3Þ; Dm ¼ �1:9485 ð&Þ:

Pi1

Pi2

Pi3

^

Pis

0
BBBBBB@

1
CCCCCCA
ðt þ 1Þ ¼

*djki1rðtÞ *djki2rðtÞ *djki3rðtÞ ? *djkisrðtÞ
ð1� di1Þ 0 0 ? 0

0 ð1� di2Þ 0 ? 0

^ ^ & ? ^

0 0 ? ð1� di;s�1Þ ð1� disÞ

0
BBBBBB@

1
CCCCCCA

Pi1

Pi2

Pi3

^

Pis

0
BBBBBB@

1
CCCCCCA
ðtÞ; ð8Þ
where rðtÞ ¼ biðtÞ=bjðtÞ:
The dynamics of the invader represented by the

equation above follow a Lefkovitch matrix with
temporally variable recruitment rates, and techniques
for such matrices can be used. Since the interest is in
determining conditions for coexistence, we can use an
approach developed recently for considering the effects
of age structure for average values of the population
growth rate near zero (Dewi and Chesson, 2003). We
briefly summarize this approach below.

3.1. Overview of D-measures, NLM and the storage

effect

3.1.1. D-measures

Statistical characteristics of age-specific mortality and
fecundity schedules, which we term D-measures, are
introduced in Dewi and Chesson (2003), and used to
study density-independent population growth. We
provide here a minimal summary needed for the analysis
of the SLM.
Given any mortality, dx; and fecundity schedules, bx;

where x ranges from 1 to N; we define

Dð1Þ
m ¼

XN
x¼1

xlxðdx � *dÞ; ð9Þ
Dð1Þ
f ¼

XN
x¼1

x*dlxðkx � 1Þ; ð10Þ

where *d ¼ 1=
P

xlx is the age-independent death rate.
The quantities Dm and Df measure departure of the

given mortality and fecundity schedules from the
corresponding age-independent mortality and fecundity
schedules. Given the usual three way classification of
mortality into types I–III (Roff, 1992), Dm; has the
following property:

Dm

40 for type I: mortality increases with age;

¼ 0 for type II: age-independent mortality;
o0 for type III: mortality decreases with age:

8><
>:

ð11Þ
This measure thus gives a signed quantification of
departure from type II or age-independent mortality.
These different mortality-schedule types are illustrated
in Fig. 1 in piecewise linear forms, which we use in our
simulations.
Similar to Dm; Df gives a signed quantification of

departure from age-independent reproduction. Funda-
mentally, Df is positive if higher age-specific reproduc-
tive rates occur at younger ages, negative if these rates
are higher at older ages, and zero if reproduction does
not vary with age. In terms of the classification of
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Fig. 2. Age-dependent modulation of reproduction ðkxÞ for early peak
reproduction (long dashes) with Df ¼ �1:2545 ð3Þ; age-independent
reproduction ð&Þ; and delayed peak reproduction (dashes) with
Df ¼ 1 ðWÞ; Df ¼ 3:1594 ðþÞ; Df ¼ 5 ðBÞ; and Df ¼ 7:1594 ðXÞ;
when combined with a type II mortality schedule.
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Roff (1992), we have

Df

40 for delayed peak reproduction;

¼ 0 for age-independent reproduction;
o0 for early peak reproduction:

8><
>: ð12Þ

In the numerical and simulation studies reported here,
piecewise linear fecundity schedules are used, as
illustrated in Fig. 2 plotting not bx but the modulation
of fecundity kx: These curves have the following
characteristics:

* Age-independent reproduction with kx ¼ 1 for all x:
* Uniform fecundity, i.e., a juvenile period, with zero
fecundity, followed by age-independent reproduction
after maturity: kx ¼ 0 for xom; and kx ¼ km for
xXm; where m is age of maturity.

* Asymptotic fecundity, i.e., an increasing kx after the
age of maturity and constant kx after a maximum
value is reached.

* Triangular fecundity, which is similar to the asymp-
totic schedule except that after the maximum value is
attained, kx declines until a certain age, after which it
remains constant. Semelparity is a special case of the
triangular schedule in which the peak is reached at
the age of maturity and kx is zero in all subsequent
age classes. However, since our matrix approach for
calculating the population growth rate as the real
dominant eigenvalue requires primitivity for the
Perron–Frobenius theorem to apply (see for example
Caswell, 2001) we do not use semelparous fecundity
schedules in our study of the SLM. Nevertheless,
semelparity does help illustrate the behavior of Df :

Being single numbers, Dm and Df cannot hope to fully
characterize departure from age independence. They are
first order measures useful for first-order approximation
of age dependence, which we use here. Higher-order
measures, which jointly fully characterize mortality and
fecundity schedules, and which might be used with
higher order approximation, are given in Dewi and
Chesson (2003).
These measures allow approximation of the long-term

growth rate for a density-independent age-structured
population. If the total population size is NðtÞ at time t;
the long-term growth rate, %r; is defined as follows:

%r ¼ lim
T-N

lnNðTÞ � lnNð0Þ
T

: ð13Þ

Now assume that the mortality schedule for this
population is dx and that age-dependent fecundity is of
the form b̃ðtÞkx; as defined for each individual species in
the SLM. However, here there is only one species and
reproduction is not followed by competition because we
assume density independence. The temporal component
of birth rate variation b̃ðtÞ is assumed to fluctuate over
time with E½ln b̃ðtÞ	 � ln *d ¼ m and Varðln b̃ðtÞÞ ¼ s2:
Different times are assumed statistically independent.
Then, assuming that m ¼ Oðs2Þ; i.e. that the mean ln
birth rate is same order as the temporal variance of the
ln birth rate, and that the average mortality rate, *d; is
small, the long-term growth rate, %r; is shown in Dewi
and Chesson (2003) to be

%r ¼
*dmþ 1

2
*dð1� *dÞs2

1þ *dðDf � DmÞ
þ oðs2Þ: ð14Þ

The assumption that m ¼ Oðs2Þ ensures that the mean
trend in growth does not swamp the variance. If the
mean were of larger order, it would dominate, and the
variance would not be of much importance. Thus, this
order assumption for the mean restricts the analysis to
situations where the variance will be of significance to
the results. As the growth rate of the invader in the two-
species SLM is mathematically equivalent to this
age-structured density-independent model, this approx-
imation (14) can be used to analyze the SLM.

3.1.2. Nonstructured lottery model (NLM) and

storage effect

The nonstructured lottery model (NLM), which was
originally developed to model coral reef fish commu-
nities (Chesson and Warner, 1981), has been studied and
used for various purposes in a number of modified
forms.
For the purpose of understanding the more general

theoretical concept, the storage effect (Chesson, 1989,
1994; Chesson and Huntly, 1997), the NLM has served
well because of its simplicity. Coexistence by the storage
effect involves interactions between the response of
population growth to competition, and the response to
the varying environment. As we shall see below, this
interaction can be measured by a single quantity g; and
this quantity can arise from differences in the sensitiv-
ities of different stages in the life cycle to environmental
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and competitive factors (Chesson, 1990). In both
the NLM and SLM, sensitivities to environment and
competition differ between the juvenile and adult
stages. Production of juveniles is sensitive to the
environment, and their survival to adulthood is sensitive
to competition. In contrast, adult survival is assumed
insensitive to both environmental and competitive
factors.
The effect of a varying environment is represented in

the lottery model by the varying birth rates, biðtÞ: The
environmental response EiðtÞ is defined as the natural
log of biðtÞ; i.e. EiðtÞ ¼ ln biðtÞ; and is simply a more
useful way of parameterizing the lottery model to
determine the effect of environmental fluctuations. The
magnitude of competition can be quantified as the
number of juveniles competing relative to the amount of
space that they are competiting for. In the resident-
invader scenario developed above, residents are solely
responsible for competition, and the density of space
they give up is *dj: The density of juveniles competing for
this space is simply bjðtÞ: Thus, the magnitude of
competition is bjðtÞ= *dj: Taking logs of this, gives the
competitive response C ¼ ln bjðtÞ= *dj: With these defini-
tions, the growth rate of the resident species j takes the
form

rjðtÞ ¼ lnfð1� *djÞ þ eEj�Cg:

The growth rate of the invader is slightly more
complicated, because the age structure of the invader
does fluctuate over time. Nevertheless, the invader
growth rate becomes

riðtÞ ¼ lnfð1� #diðtÞÞ þ k̂iðtÞeEi�Cg

differing only from the NLM in the presence of k̂i and
the deviation of #diðtÞ from *di:
To analyze the model, we introduce the quantity m

which characterizes the dynamics of the system under
constant environmental conditions:

m ¼ E ln
biðtÞ
*di

� E ln
bjðtÞ
*dj

: ð15Þ

If the environment does not fluctuate over time and with
the quantities EiðtÞ and EjðtÞ fixed at their expected
values, the sign of m determines which species will
ultimately dominate the system. If m is positive, species i

will eliminate species j from the system. This fact has
long been known for the NLM (Chesson and Warner,
1981), and is not difficult to verify also for the SLM. In a
variable environment, with species having the same
mortality schedules and the same variances for Ei and
Ej; the long-term growth rate of the invader can be
approximated as

%ri ¼ *dmþ DI ; ð16Þ

(Chesson, 1989, 1994) where the quantity DI is a
term called the storage effect, which results from an
interaction between fluctuations in the environment,
competition and species. When positive, it can
outweigh the effects of m on the growth of the invader,
permitting %ri to be positive for both species when
invader, and allowing coexistence by the invasibility
criterion.
In the nonstructured case with *dj ¼ *di; the storage

effect satisfies the following formula:

DI ¼ gi CovðEi;CÞ � gj CovðEj;CÞ:

The quantity gi is equal to the cross partial derivative of
ri with respect to Ei and C; which here reduces to
� *dið1� *diÞ: This quantity is a measure of the non-
additivity of ri as a function of Ei and C: Under the
assumptions that we have made here (equal adult death
rates *d for the two species, and equal variances,
VarðEiÞ ¼ VarðEjÞ), the storage effect reduces to the
particularly simple form

*dð1� *dÞs2; ð17Þ

where s2 ¼ 1
2
VarðEi � EjÞ; i.e. half the variance of the

difference in the ln b values of the two species. In this
situation, formula (16) for %ri implies that both species
have positive long-term growth rates as invaders, and
hence coexist, when

s24
jmj

ð1� *diÞ
; ð18Þ

for i ¼ 1; 2: This approximation applies generally
to the NLM for small variances of the Ei and Ej:
The variances do not need to be equal, Ei and Ej can
be correlated arbitrarily, and the *ds may differ
between species. However, when *ds do differ between
species, Eq. (16) has an additional term DN (Chesson,
1994), which, however, still reduces to the same
condition (18) when combined with DI in the NLM
(Chesson, 1989).
In the SLM, the resident species j has an identical

equation for rjðtÞ as the NLM, and so its nonadditivity,
g; and covariance are unchanged. The invading species,
however, differs in that #diðtÞ and k̂i fluctuate over time,
but CovðEi;CÞ is unaffected. Thus, there are some
deviations of the results of the SLM from the simple
formulae above, which we now investigate using the D
measures.

3.2. The SLM with structured mortality only

First, let us consider only the addition of structured
mortality to the model. Thus, kix ¼ kjx ¼ 1 for all x; and
Eq. (7) for the invader becomes

Pi:ðt þ 1Þ ¼ Pi:ðtÞ 1�
XN
x¼1

dixuixðtÞ þ *dj

biðtÞ
bjðtÞ

( )
: ð19Þ
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The long-term population growth rate of the invader is

%ri ¼E ln
Pi:ðt þ 1Þ

Pi:ðtÞ

� �� �

¼E ln 1�
XN
x¼1

dixuixðtÞ þ *dj

biðtÞ
bjðtÞ

( )" #

¼E ln 1� #diðtÞ þ *dj

biðtÞ
bjðtÞ

� �� �
; ð20Þ

where the average death rate of the invader over age
classes, which now is time dependent due to temporal
fluctuations in the age distribution, is

#diðtÞ ¼
XN
x¼1

dixuixðtÞ: ð21Þ

By assuming that fluctuations in the age distribution are
not important (justified in the cases where species are
long-lived) and assuming that %r is small, Dewi and
Chesson (2003) show that the average over age classes of
the death rate of the invader ð#diðtÞÞ can be expressed as
#diðtÞE*dið1� %riDmÞ; ð22Þ

where

Dm ¼
XN
x¼1

xlixðdix � *diÞ: ð23Þ

All three types of mortality schedule will be investi-
gated for the simple case where we make a distinction
only between old and young adults, with constant death
rates within these two groups. This situation leads to
simple algebra while still exhibiting important effects of
age-dependence of death rates. For the type II mortality
schedule, the death rate ðdxÞ is the same for all ages, and
equal to *d: For a type I mortality schedule

dx ¼ d1o*d if xos;

d24*d otherwise;

(

where s is the age at which the death rate changes from
the early mortality rate ðd1Þ to the late mortality rate
ðd2Þ: A type III mortality schedule is opposite to a type I
mortality schedule in that mortality is higher in the
younger age classes.
In comparing the performance of the NLM and the

SLM, we fix the age-independent death rate ð*dÞ: This
fixes the expected lifetime ð1=*dÞ; and focuses attention
on the shape of the mortality schedule rather than the
overall mortality level or longevity. Given the early
mortality rate ðd1Þ; and the age, s; at which the death
rate changes from the early rate to the late mortality, the
mortality schedule can be expressed as

dx ¼
d1 if xos;

ð1� d1Þs�1d1
ðd1=*dÞ � 1þ ð1� d1Þs�1 otherwise:

8><
>:
We then use Dm as defined by (23) to quantify the
deviation of this mortality schedule from type II, and see
how this deviation affects the behavior of the SLM in
the sections below.

3.3. The SLM with structured mortality and fecundity

Now we include structured fecundity in our examina-
tion of the SLM. Modulation of reproduction (k
function) will take the most common shapes: uniform,
asymptotic, and triangular (see Fig. 2 and Roff, 1992),
as discussed above.
Eq. (7) implies that the long-term population growth

rate of the invader is

%ri ¼E ln 1�
XN
x¼1

dixuixðtÞ þ *dj

biðtÞ
bjðtÞ

XN
x¼1

kixuixðtÞ
( )" #

¼E ln 1� #diðtÞ þ *dj
biðtÞk̂iðtÞ

bjðtÞ

( )" #
; ð24Þ

where #diðtÞ is as in Eq. (21), and the average modulation
of reproduction of the invader over age classes is

k̂iðtÞ ¼
XN
x¼1

kixuixðtÞ: ð25Þ

By applying Df ; again in the case where high longevity
permits fluctuations in age structure to be ignored
(Dewi and Chesson, 2003), we can express the average
modulation of reproduction over age classes as

k̂iðtÞE k̃iðtÞð1þ %riDf Þ
¼ 1þ %riDf ; ð26Þ

where

Df ¼ *d
XN
x¼1

xlixðkix � 1Þ: ð27Þ

The relationship of Df to the different types of fecundity
schedules was given by (12). These fecundity schedules
are classified in terms of the age at which the majority of
offspring are produced, rather than the age at which
reproduction begins.

3.3.1. The long-term population growth rate of the

invader and the storage effect

We will now examine the long-term population
growth rate of the invader with structured mortality
and fecundity, given in Eq. (24), by considering the
equation for the long-term population growth rate of
the invader in the SLM as a special case of the
population growth rate of the stochastic demographic
model from Dewi and Chesson (2003) discussed above
in the section on D-measures. The birth rate b̃ðtÞ used
there corresponds by Eqs. (7) and (8) to *djbiðtÞ=bjðtÞ: It
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follows that the corresponding definition of m here is

m ¼ E ln
biðtÞ
*di

� E ln
bjðtÞ
*dj

;

which agrees with the definition of m for the NLM,
Eq. (15).
To obtain an expression for the long-term growth

rate, we note that we assumed above that Var½ln biðtÞ	 ¼
Var½ln bjðtÞ	 ¼ s2; and that biðtÞ and bjðtÞ are indepen-
dent. These are merely assumptions for convenience of
the simulations because the dynamics of the system
depend only on Var½ln biðtÞ � ln bjðtÞ	; which equals 2s2
under the assumptions in force here. Moreover, here s2

is equivalent to 1
2
s2 in the demographic model in Dewi

and Chesson (2003) summarized in the subsection on
D-measures above. Applying result (14), above, noting
this difference in the definition of s2; we obtain

%ri ¼
*di½mþ ð1� *diÞs2	
1þ *diðDf � DmÞ

þ oðs2Þ: ð28Þ

For coexistence, this value must be positive for each
species as an invader, which means that coexistence
occurs when

s24
jmj

ð1� *diÞ
;

for each species (i.e. i ¼ 1; 2) which agrees with the
coexistence criterion for the NLM (expression (18)).
According to this formula, the details of the mortality
and fecundity schedules do not affect species coex-
istence.
The component of Eq. (28) that reflects fluctuations,

i.e. the storage effect component, is

*dið1� *diÞs2

1þ *diðDf � DmÞ
;

which reduces, as it should, to the storage effect in the
NLM (expression (17)) when Dm ¼ 0 and Df ¼ 0:When
the mortality schedule is of type I, or the fecundity
schedule is early peak reproduction, the strength of the
storage effect is increased. Indeed, all components of %ri

are increased in these situations, and are decreased when
mortality is of type III or fecundity is delayed peak.
Thus, the effects of age structure are approximately to
speed or slow the long-term growth of an invader
uniformly, but not to affect its sign or interact
appreciably with the coexistence mechanism here, the
storage effect.
4. Simulation results

The expressions for %ri above are approximate, and
have some restrictions whose effects are not fully
understood. Here we present results from simulations
exploring the long-term population growth rate of the
invader, and mean values of #di and k̂i from Eqs. (21) and
(25), respectively. For the simulations, we consider only
the symmetric case where the two species have the same
mortality schedules and the same modulation of
fecundity by age. We assume throughout that the
expected lifetime is equal to 9; and impose the usual
constraint (Eq. (1)) that the population average of kx for
a stationary population is equal to 1. In the invasibility
analyses, the invader species is chosen to be the species
with lower mean birth rate, and is denoted by the
subscript i: The resident species, denoted by the
subscript j; is always at its stationary distribution. A
species with higher mean birth rate than the resident (or
more generally, a higher value of m) will always be able
to invade, given that all other parameters are equal.
Thus, disadvantaged invaders are our focus, since if a
disadvantaged species can invade, it will coexist with its
competitor.
Some of the mortality and fecundity schedules to be

used in the simulations are presented in Figs. 1 and 2. It
can be seen from Fig. 1 that the larger the magnitude of
jDmj; the more the mortality schedule departs from a
type II schedule. The larger the magnitude of jDf j; the
more the fecundity schedule deviates from age-indepen-
dent reproduction, even though the classification of
fecundity schedules is less distinct than that of mortality
schedules. Age-independent reproduction means that
the age of mean reproduction is equal to the expected
lifetime (i.e., equal to 9 in our case). Fig. 2 shows that,
with early peak reproduction, more than half of the area
under the fecundity modulation curve lies before x ¼ 9;
meaning that the majority of offspring are produced
early in life. With the delayed peak reproduction, less
than half of the area lies before x ¼ 9; meaning that the
majority of offspring are produced later in life, given
survival to old age. Fig. 2 also shows that the case of
delayed peak reproduction, the fecundity curve with the
highest Df value, viz. Df ¼ 7:1594; has the smallest area
under the fecundity curve before age x ¼ 9:
When structured mortality and fecundity are com-

bined, the mean age of reproduction is shifted according
to the mortality schedule (Fig. 3). A type I mortality
schedule will shifts the age of mean reproduction for
age-independent reproduction to the right (later age).
The opposite shift occurs with a type III mortality
schedule.
Differences between the mean of ln birth rates for the

invader and the resident ðmÞ in simulations range from
�0:4 to �0:1: Variances of ln birth rates for the invader
and the resident are kept equal, and the common
variances ðs2Þ range from 0 to 0:5:

4.1. The long-term population growth rate of the invader

First, let us compare the simulation results for the
long-term population growth rate of the invader when
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(a)

(b)

�

�

Fig. 4. Long-term population growth rate of the invader ð%riÞ
calculated using simulations with mortality schedules of type II

(solid lines) and type I with Dm ¼ 0:4086 (dashes) (a), and type III
with Dm ¼ �1:9485 (dashes) (b). s2 equals 0 ð3Þ; 0:125 ð&Þ;
0:25 ðWÞ; 0:375 ðþÞ; and 0:5 ðBÞ:

(a)

(b)

Fig. 3. A type I mortality schedule with Dm ¼ 0:4086; with age-
independent reproduction ð3Þ; and delayed peak reproduction,

with Df ¼ 0:5399 ð&Þ; Df ¼ 1:6264 ðWÞ; Df ¼ 2:7015 ðþÞ; Df ¼
3:5373 ðBÞ; and Df ¼ 4:5645 ðXÞ(a). A type III mortality schedule
with Dm ¼ �1:9485; early peak reproduction, with Df ¼ �12:2130 ð3Þ;
age-independent reproduction ð&Þ; and delayed peak reproduction,
with Df ¼ 3:1922 ðWÞ; Df ¼ 9:9659 ðþÞ; Df ¼ 15:1978 ðBÞ; and

Df ¼ 20:5213 ðXÞ (b).
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mortality and/or fecundity are structured (the SLM),
with these when mortality is of type II and reproduction
is independent of age (the NLM) (Figs. 4, 6, and 7).
We will first consider the SLM with structured

mortality only (Fig. 4). When the invader population
is decreasing, the long-term population growth rate of
the invader is lower with a type I mortality schedule
than with a type II mortality schedule. When the
population is increasing, the long-term population
growth rate is higher with a type I than a type II
mortality schedule (Fig. 4(a)). In other words, when an
invader is recovering from low density, an invader with
a type I mortality schedule will recover faster than an
invader with a type II mortality schedule. However,
when the population is declining, a type I invader will
decline faster than a type II invader. With a type III
mortality schedule (Fig. 4(b)), the recovery rate of a type
III invader is lower than that of type II invader (and
therefore, a type I invader), and the extinction rate is
also lower than that of types I and II invaders. Although
the simulations were done with residents having the
same mortality schedule as the invader, the age-structure
of the resident is stationary, and so the shape of its
mortality schedule has no effect on the invader growth
rate. Thus, this comparison of the effects of invader
mortality schedules is independent of the mortality
schedules of the residents with which they compete.
The fecundity schedules behave similarly to the

mortality schedules (Fig. 6) in their effects on the
recovery rate of the invader. Early peak reproduction
behaves like a type I mortality schedule, i.e., increases
j%rij; and delayed peak reproduction behaves like a type
III mortality schedule, i.e., decreases j%rij:
Now let us look at how mortality and fecundity

schedules affect the coexistence criterion, i.e., the
magnitude of s2 required for the invader to have a zero
long-term population growth rate. Looking closely at
the horizontal line ð%ri ¼ 0Þ in Figs. 4(a) and (b), the
intersection of type I is to the right of that of type II
which is to the right of that of type III. This pattern is
less obvious with smaller s2: The pattern shows that, in
order to persist, a type I invader requires larger s2 than
a type II invader, which requires larger s2 than a type III
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(b)

(a) �

�

Fig. 6. Long-term population growth rate of the invader ð%riÞ;
calculated using simulations, with mortality schedule of type II and

age-independent reproduction (solid lines), and with an early peak

reproduction with Df ¼ �1:2545 (short dashes) (a), and with a delayed
peak reproduction with Df ¼ 5 (long dashes) (b). s2 equals

0 ð3Þ; 0:125 ð&Þ; 0:25 ðWÞ; 0:375 ðþÞ; and 0:5 ðBÞ:

(a)

(b)

Fig. 5. The ln of ratio of mean value of #diðtÞ from equation (21),

calculated using simulation, and age-independent death rate ð*dÞ ð3Þ;
and the ln of ratio of #di; from equation (22), and age-independent

death rate ð*dÞ ðWÞ; with a type I mortality schedule with Dm ¼ 0:2025
(a) and a type III mortality schedule with Dm ¼ �1:9485 (b).
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invader with the same level of inferiority ðmÞ; even
though little quantitative difference between the three
can be seen in the figures.
The small quantitative effect of structured mortality

on coexistence is consistent with the assumption used in
deriving approximation (22) that stochastic fluctuations
in age distribution have negligible effect on the overall
adult mortality rate of the invading population.
According to Eq. (22), the average death rate of the
invader over age classes ð#diðtÞÞ should be approximately
equal to *di when %ri ¼ 0: However, Fig. 5 shows that
there are some small discrepancies between the mean
values of #di from Eq. (21), calculated using simulation,
and *d: With a type I mortality schedule (Fig. 5(a)), the
mean value of the average death rate of the invader over
age classes ð#diÞ calculated using simulation is slightly
larger than the age-independent death rate ð*dÞ when the
long-term population growth rate of the invader ð%riÞ is
equal to zero. The opposite pattern occurs with a type
III mortality schedule, i.e., the mean of #di calculated
using simulation is slightly smaller than *d when %ri ¼ 0:
This nonzero lnf#diðtÞ=*dig when %ri ¼ 0 appears to be
responsible for the small quantitative effect of structured
mortality on coexistence.
In Figs. 6 and 7 there are no apparent differences in
the location of the intercept %ri ¼ 0 between age-
dependent and age-independent fecundity schedules.
Thus, it appears that coexistence is not appreciably
affected by fecundity schedules. The mean value of the
average modulation of reproduction of the invader over
age classes ðk̂iðtÞÞ from Eq. (25), calculated using
simulation, is very close to one (Fig. 8), when the
long-term population growth rate of the invader ð%riÞ is
zero. This explains why there is no appreciable effect of
structured fecundity on coexistence.
The invader with early peak reproduction has the

mean value of k̂i less than 1 when the population is
decreasing, and greater than 1 when the population is
increasing. The opposite pattern occurs for delayed peak
reproduction. This qualitative pattern of the mean
values of k̂i is found to be consistent throughout all
combinations of fecundity schedules and mortality
schedules in the parameter set.
Approximation of the long-term population growth

rate of the invader, given by Eq. (28), works well, both
qualitatively and quantitatively in all cases: (i) with
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(b)

(a)

Fig. 8. The ln of mean value of k̂iðtÞ from equation (25), calculated
using simulation ð3Þ; and ln k̂i from equation (26) ðWÞ; with an early
peak reproduction with Df ¼ �1:2545 (a), and a delayed peak

reproduction with Df ¼ 5 (b).

(b)

(a)

�

�

Fig. 7. Long-term population growth rate of the invader ð%riÞ;
calculated using simulations, with mortality schedule of type III with

Dm ¼ �4:1589 and age-independent reproduction (solid lines), and
with an early peak reproduction with Df ¼ �22:6039 short dashes) (a),
and with a delayed peak reproduction with Df ¼ 25:3683 (long dashes)
(b). s2 equals 0 ð3Þ; 0:125 ð&Þ; 0:25 ðWÞ; 0:375 ðþÞ; and 0:5 ðBÞ:
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structured mortality (Fig. 9(a)), (ii) with structured
fecundity (Fig. 9(b)), and (iii) with structured mortality
and structured fecundity (Fig. 10(b)).
5. Discussion

We have extended the non-structured lottery model
(NLM) to an age-structured lottery model (SLM) with
age-dependent mortality and fecundity in the adult
stage. Competition for space occurs only in the juvenile
stage in both models. The life-history parameters
defining the NLM (Chesson and Warner, 1981; Hatfield
and Chesson, 1989; Chesson, 1990, 1994) are the adult
mortality rates and the birth rates for each species. In
general, both mortality rates and birth rates can
fluctuate over time, but we consider here only fluctuat-
ing birth rates, as only their fluctuations promote
coexistence. Note that the expected lifetime is just the
reciprocal of the adult mortality rate.
To compare the NLM and SLM intrinsically, we

imposed the natural constraints of fixing the expected
lifetime, while varying the age-specific mortality rates in
the SLM, and by varying the age-specific birth rates in
such a way that the population-level birth rate (the
number of births divided by the number of individuals),
at its stationary age structure, remains the same. Note
that this population-level birth rate at the stationary age
structure is simply equal to the net reproductive rate of
demographic theory (Caswell, 2001) divided by the
expected lifetime. Thus, the SLM and NLM are being
compared for equal expected lifetimes and equal net
reproductive rates. The population level, effects of age
structure, however, are captured in the quantities ð#dÞ
and ðbk̂Þ which are defined as the death rates and birth
rates at the population level, given the actual age-
structure found at that time. These quantities may
deviate from the values *d and b in the comparable NLM
whenever the age structure differs from the stationary
age structure, and these deviations cause the NLM and
SLM to differ in their dynamics and long-term low-
density growth rates. In an resident-invader situation,
however, the resident is always at its stationary age
structure in the SLM. The invader is nonstationary in
general, and so the population-level mortality rates and
birth rates differ from their stationary values. These
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(b)

(a)

Fig. 10. Long-term population growth rate of the invader ð%riÞ with
various fecundity schedules and a type I mortality schedule with Dm ¼
0:4086; calculated using simulations (solid), and equation (28) (dashes)

(a). Long-term population growth rate of the invader ð%riÞ with various
fecundity schedules and a type III mortality schedule with Dm ¼
�1:9485 calculated using simulations (solid), and equation (28)

(dashes) (b). s2 equals 0 ð3Þ; 0:125 ð&Þ; 0:25 ðWÞ; 0:375 ðþÞ; and
0:5 ðBÞ: m ¼ �0:2:

(b)

(a) ∆m

∆f

Fig. 9. Long-term population growth rate of the invader ð%riÞ with
various mortality schedules and age-independent reproduction, calcu-

lated using simulation (solid), and equation (28) (dashes) (a). Long-

term population growth rate of the invader ð%riÞ with various fecundity
schedules and a type II mortality schedule, calculated using simula-

tions (solid), and equation (28) (dashes) (b). s2 equals 0 ð3Þ;
0:125 ð&Þ; 0:25 ðWÞ; 0:375 ðþÞ; and 0:5 ðBÞ: m ¼ �0:2:
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effects on the invader, but not on the resident, in the
SLM, explain the effects of mortality and fecundity
schedules on the long-term population growth rate of
the invader.
A type III mortality schedule results in lower

population average mortality rates in declining popula-
tions, and higher population average mortality rates in
increasing populations. A type I mortality schedule
results in higher population average mortality rates in
declining populations, and lower population average
mortality rates in increasing populations. Delayed peak
reproduction has the same effect on the population
average birth rates as does a type III mortality schedule,
i.e., it results in higher population average birth rates
when populations are decreasing, and lower population
average birth rates when populations are increasing.
Early peak reproduction behaves in the same way as a
type I mortality schedule. These effects are responsible
for changes in the long-term low-density growth rate of
the invader as mortality and fecundity schedules are
varied.
The conditions for coexistence, as determined by
simulation, do change with changes in mortality
schedules, but quantitatively the changes in the coex-
istence conditions are small. These changes can only be
due to fluctuations in the population age structure of the
invader over time, because the coexistence boundary is
defined by a zero long-term low-density growth rate,
which implies that the age structure is the stationary
age-structure, in agreement with the NLM, unless age-
structure fluctuates over time. We found here that a type
III mortality schedule always results in a less restrictive
coexistence criterion than a type I mortality schedule.
These changes may potentially be significant if for some
reason the age structure of the invader fluctuates greatly
over time.
It is unnecessary to perform simulation experiments

using asymmetrical mortality and fecundity schedules
for the two species because the resident is always at its
stationary age structure and so the details of its
mortality and fecundity schedules are unimportant.
Thus, the effects of asymmetry between species in
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mortality and fecundity schedules can be deduced from
the symmetrical simulations performed here.
Our analytical approximations for the long-term

population growth rate of the invader reproduce the
qualitative results of the simulation study, with the
exception of the small effect of age structure on
the coexistence region, because these approximations
do not take into account the effects of fluctuating age
structure. These approximations show how this long-
term population growth rate and the storage effect
depend on structured fecundity and mortality via the D-
measures quantifying the shapes of mortality and
fecundity schedules. These results imply that the NLM
and SLM behave similarly, with the primary effect of
age-specific mortality and fecundity being to speed or
slow growth from low density, without much effect on
the sign of the growth rate, and hence on the conditions
for coexistence. Evaluated at the stationary age-struc-
ture, the important components of the storage effect, viz
covariance between environment and competition, and
subadditivity, do not differ between the NLM and the
SLM. These results suggest that use of the NLM is
adequate for most theoretical purposes even though
age-dependence might suggest use of the SLM. The
approximations using the D-measures indicate the kinds
of situations where accounting for age-structure might
be useful, and when these suggest large effects, simula-
tion might be considered for more accurate results.
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