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Abstract

General measures summarizing the shapes of mortality and fecundity schedules are proposed. These measures are derived from

moments of probability distributions related to mortality and fecundity schedules. Like moments, these measures form infinite

sequences, but the first terms of these sequences are of particular value in approximating the long-term growth rate of an age-

structured population that is growing slowly. Higher order terms are needed for approximating faster growing populations. These

approximations offer a general nonparametric approach to the study of life-history evolution in both constant and variable

environments. These techniques provide simple quantitative representations of the classical findings that, with fixed expected lifetime

and net reproductive rate, type I mortality and early peak reproduction increase the absolute magnitude of the population growth

rate, while type III mortality and delayed peak reproduction reduce this absolute magnitude.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The study of age-structured population growth has a
long history in population biology. The most common
formulation in the present day assumes discrete times
and ages. Population growth is then modeled using a
population projection matrix, which can be built from a
life table (Leslie, 1945, 1948; Bernadelli, 1941). Applica-
tion of such models has been extensive, facilitated by the
ease of numerical computation and the well-developed
body of theory on nonnegative matrices. Continuous
formulations, however, can achieve the same ends
(Caswell, 2001; Charlesworth, 1994), but are not as
widely used.
Most commonly, population projection matrices are

applied with constant mortality and fecundity rates
(vital rates), which means that population growth is
density independent (or alternatively, the population is
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at equilibrium), and is not affected by environmental
variability. The dominant eigenvalue of the projection
matrix is then equal to the finite rate of increase
(in essence the long-run growth rate), which also serves
as a fitness measure. In the study of life-history
evolution, some authors have alternatively proposed
using expected lifetime reproduction as a fitness measure.
However, this measure requires that the population
under study is at equilibrium (Kozlowski, 1993).
With constant vital rates, a population reaches a

stable age distribution and grows exponentially. This
simply means that the population will become very
large, if the growth rate is positive, and will become
extinct, if the growth rate is negative. Although such
exponential growth would not be expected to be
sustained for long in nature, such situations are never-
theless highly important in understanding life-history
evolution and also in understanding species coexistence.
For example, the ESS approach to density-dependent
life-history evolution relies critically on analyzing the
long-term growth rates of variant types at low density in
competition with other types. The growth of a low-
density variant can be appropriately analyzed as
independent of its own density. Moreover, of most
interest is the boundary in parameter space between
population increase and decrease, and so it is useful to
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have techniques that are valid when population growth
rates are low. A similar situation arises in the study of
species coexistence. There, the invasibility approach,
which in different circumstances is applicable to estab-
lishing stochastically bounded coexistence (Chesson and
Ellner, 1989; Ellner, 1989) or permanent coexistence
(Law and Morton, 1996), also analyzes populations
growing from low density. Density-dependent feedback
within the population is minor, and again of most
interest are boundaries in parameter space separating
increasing and decreasing populations.
The vital rates of most organisms have some degree of

age structure, i.e. the age-specific mortality and fecundity
rates do in fact depend on age. The critical feature of the
standard population projection matrix approach is that
it allows this age specificity to be taken into account
simply and naturally. The challenge, however, is to
obtain general information on the effects of such age
dependence on population growth. One approach has
been to use sensitivity analysis. The effects of changing
any particular vital rate by a small amount can then be
assessed (Caswell, 1978). Using such approaches, evolu-
tion of senescence, optimum age of maturity, benefits of
being annual, biennial, or perennial, and other similar
questions have been explored (Stearns, 1992; Roff, 1992;
Charlesworth, 1994; Oli and Dobson, 2003).
Questions like those above are indicative of the fact

that general features of life histories are more likely to be
determined genetically and subject to natural selection
than the individual vital rates for particular age classes.
Ideally, life-history evolution theory should connect such
features to a fitness measure. However, in the absence of
a quantitative measure to summarize the details of vital
rates in different age classes, the theory cannot proceed
in this way directly. Nevertheless, in some cases a trait
that is subject to strong selection can be specified by a
single parameter. Age at maturity is one example. To
date multidimensional traits, such as mortality and
fecundity schedules, have not been quantified in such a
way that the selection pressure on them can be assessed
in a general way. Instead, sensitivity analysis is
commonly applied to a single vital rate, such as the
death rate of a particular age class, and hence does not
lead to general conclusions about the mortality schedule.
The question we address is how one investigates

general properties of a vital-rate schedule, such as its
shape. For example, mortality schedules are often
classified into three general shapes (types I–III) depend-
ing on whether the plot of the log fraction surviving to a
particular age is a straightline against age, or is a
concave or convex function of age. One response to the
question of the effects of the shape of a vital-rate
schedule on population growth is to use macropara-
meter analysis. In macroparameter analysis, vital-rate
schedules are given by parametric formulae and the
effects of changing the parameters of these formulae are
examined (Caswell, 1982). Here we take a more direct
nonparametric approach that therefore does not depend
on specifying vital-rate schedules by particular formu-
lae. We ask, given an arbitrary mortality or fecundity
schedule, can we find general measures of shape that
characterize the effects of shape on population growth?
Our results are a set of shape measures (which we call
D-measures) that are analogous to moments or cumu-
lants of a probability distribution. These measures allow
us to characterize the effects of the shapes of a vital-rate
schedule on population growth.
The proposed measures are most useful when

population growth rate is low, and so it is a near
equilibrium approach. However, it is important to keep
in mind that in the ESS approach to life-history
evolution, and in the invasibility approach to species
coexistence, the chief interest is in determining the
boundaries of regions of parameter space delineating
positive and negative growth, as discussed above.
Hence, a near equilibrium approach is perfectly applic-
able to this goal.
We anticipate that these shape measures of vital-rate

schedules will lead to new insights into life-history
evolution and into competitive coexistence (Dewi, 1998;
Dewi and Chesson, 2003). We show here that they can
be used also in situations where the vital rates change
with time due to environmental variation. In that case,
where projection matrices follow a Markov process, a
quadratic approximation to the long-term population
growth rate for small variance has been developed
(Tuljapurkar, 1982, 1990, 1997). Our vital-rate shape
measures are applied to the situation where the total
fecundity of the population varies with the environment,
but the fecundity schedule retains its shape. Thus, the
fecundities of different age classes are assumed to
respond proportionately to their common varying
environment, a situation that can be argued as a
reasonable first approximation to reality.
2. General demographic models

The standard, discrete-time demographic model in a
constant environment is written in terms of a Lefkovitch
matrix as follows:

Pðt þ 1Þ ¼ LPðtÞ; ð1Þ

where P is a column vector of population density of each
class at time t; and

L ¼

b1 b2 b3 ? bs

ð1� d1Þ 0 0 ? 0

0 ð1� d2Þ 0 ? 0

^ ^ & ? ^

0 0 ? ð1� ds�1Þ ð1� dsÞ

0
BBBBBB@

1
CCCCCCA
:
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In this matrix, bx is the birth rate of an individual in the
age range x to x þ 1; and dx is the probability of death in
one unit of time for an individual in that class.
Note that the above matrix formulation accommo-

dates an infinity of age classes, provided mortality and
fecundity do not change after age s; by defining bsþj ¼ bs

and dsþj ¼ ds for jX0: The behavior of this model is well
understood, (e.g. Caswell, 2001). Asymptotically in
time, each subpopulation (i.e., each age class) grows at
exactly the same exponential rate, r; which is the natural
log of the dominant eigenvalue of L: The population
approaches a stable age distribution, and the proportion
of the population in age class x is

e�rxlxP
N

x¼1e
�rxlx

; ð2Þ

where lx ¼
Qx�1

i¼1 ð1� diÞ is the probability that any
given individual survives from ages 1 to x:
When the population is stationary ðr ¼ 0Þ; Eq. (2)

reduces to the stationary age distribution

px ¼ lxP
N

x¼1lx
; ð3Þ

where
P

N

x¼1 lx is the expected lifetime, and 1=
P

N

x¼1lx is
the death rate that corresponds to this expected lifetime
in a nonstructured model. We shall refer to this death
rate as the ‘‘nonstructured’’ death rate and denote it by
*d:With this notation, the stationary age distribution can
be written as

px ¼ *dlx: ð4Þ
For a given mortality schedule, the probability distribu-
tion for the age at death of any given individual is

fx ¼ dxlx; ð5Þ
which is closely related to the stationary age distribu-
tion. Note that both distributions sum to 1; i.e., both are
probability distributions.
Defining P�ðt þ 1Þ to be the total population size,

Eq. (1) implies

P�ðt þ 1Þ ¼
XN
x¼1

bxPxðtÞ þ
XN
x¼1

ð1� dxÞPxðtÞ: ð6Þ

If the vital rates are not age-dependent, then bx ¼ b̃; and
dx ¼ *d for all x; and Eq. (6) is reduced to the simplest
population growth equation

P�ðt þ 1Þ ¼ ð1þ b̃ � *dÞP�ðtÞ:

3. Structured mortality

First consider structured mortality alone, i.e. assume
age-independent reproduction (bx ¼ b̃ for all x). For
age-dependent mortality, we consider the standard
classification of survivorship curves due to Pearl and
Minner (Roff, 1992). Type I, II and III mortality
schedules result, respectively, from increasing dx; con-
stant dx; and decreasing dx with age, x: Hence ln lx is,
respectively, concave, linear, and convex as a function
of x:
With age-independent reproduction, Eq. (6) can be

written as

P�ðt þ 1Þ ¼ b̃P�ðtÞ þ
XN
x¼1

ð1� dxÞPxðtÞ: ð7Þ

On attaining a stable age distribution, this equation
becomes

P�ðt þ 1Þ ¼ b̃P�ðtÞ þ
XN
x¼1

ð1� dxÞ
e�rxlxP
N

y¼1e
�ryly

 !
P�ðtÞ

¼ ð1þ b̃ � #dÞP�ðtÞ; ð8Þ

where

#d ¼
P

N

x¼1 dxlxe�rxP
N

x¼1lxe�rx

¼ *d
P

N

x¼1 dxlxe�rxP
N

x¼1
*dlxe�rx

: ð9Þ

Expression (9) is the average death rate in the
population at its stable age distribution, written here
as a modification of the age-independent death rate *d;
defined above. Note that #d=*d is a ratio of the Laplace
transforms, with argument r; of the age at death
distribution and the stationary age distribution. The
particular value of r here, of course, is the exponential
growth rate of the population,

r ¼ ln P�ðt þ 1Þ
P�ðtÞ

� 

¼ lnf1þ b̃ � #dg: ð10Þ

Provided each transform exists in a neighborhood with
radius greater than r about zero, the standard properties
of Laplace transforms imply that

#d
*d
¼
P

N

n¼0
ð�rÞn

n! mnðdxlxÞP
N

n¼0
ð�rÞn

n! mnð*dlxÞ
; ð11Þ

where mnðpxÞ ¼
P

N

x¼1 xnpx is the nth moment of the
probability distribution fpxg: It is now just a short step
to the shape measures for the mortality schedule that we
seek. Using the ratio theorem for power series (Gradsh-
tein and Ryzhik, 1980) shape measures, Dm; can be
defined as the coefficients in the power series for the
ratio of #d=*d; i.e.

#d ¼ *d
XN
n¼0

ð�rÞnDðnÞ
m ; ð12Þ
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where:

Dð0Þ
m ¼ 1;

Dð1Þ
m ¼ m1ðdxlxÞ � m1ð*dlxÞ;

Dð2Þ
m ¼ 1

2
ðm2ðdxlxÞ � m2ð*dlxÞÞ

� ðm1ðdxlxÞ � m1ð*dlxÞÞm1ð*dlxÞ;

DðnÞ
m ¼ mnðdxlxÞ

n!
�
Xn

k¼1
Dðn�kÞ

m

mkð*dlxÞ
k!

for n40:

Independent of r; the Dm’s are characteristics of the
mortality schedule. There are two important uses of
these characteristics. First, the Dm’s define shape
characteristics for the mortality schedule in terms of
the moment differences between the distribution of the
age at death and the stationary age distribution. Note
that as these two distributions are identical for a type I
mortality schedule, these quantities measure deviations
from a type I mortality schedule, i.e. they measure
deviations from age-independent mortality. Simple
piecewise linear examples of types I–III mortality
schedules with their Dð1Þ

m are shown in Fig. 1.
A second use of these measures is that they permit

understanding of the effects of age structure on
population growth through the series expansion (12)
for #d; which gives the death rate in the population at the
stable age-distribution appearing in formula (10) for r:
This death rate is not independent of r; but the power
series equation for #d enables a first-order approximation
to r i.e., with error oðrÞ; by linearizing Eq. (10) in r:
Potentially, more accurate higher order approximations
to r are also available from polynomial approximations
of Eq. (10), but their practical utility seems limited.
In general, the DðnÞ

m depend on differences of moments,
up to order n; of the two distributions. The quantity Dð1Þ

m

measures the difference between the mean age at death
for any given cohort of individuals and the mean age of
a stationary population, and Dð2Þ

m measures half the
difference between the variances of the two distributions
Fig. 1. Mortality schedules of type I (short dashes) with Dm ¼ 0:2025

ðþÞ; Dm ¼ 0:4086 ðBÞ; of type II ðDm ¼ 0Þ (solid, W) and of type III

(long dashes) with Dm ¼ �4:1589 ð3Þ; Dm ¼ �1:9485 ð&Þ:
plus half the square of Dð1Þ
m :

Dð2Þ
m ¼ 1

2
½varðdxlxÞ � varð*dlxÞ þ ðDð1Þ

m Þ2�: ð13Þ
Fig. 2 compares the age at death and stationary age
distributions for several different mortality schedules.
For a type II mortality schedule (Fig. 2(b)), the two
distributions coincide and so the Dm’s are all zero. For
type III mortality schedules (Figs. 2(c) and (d)), the
mean cohort age at death is smaller than mean age of a
stationary population, which results in negative Dð1Þ

m :
Moreover, numerical investigation has consistently
shown that the variance of cohort age at death is
smaller than the variance of the stationary age distribu-
tion, plus the square of Dð1Þ

m ; which results in negative
Dð2Þ

m : Type I mortality schedules can be generated with a
fixed expected lifetime only if Dð1Þ

m and Dð2Þ
m are small,

because of the behavior of the two distributions.
A more intuitive understanding can be gained by

rewriting the D-measures as

Dð1Þ
m ¼

XN
x¼1

xlxðdx � *dÞ; ð14Þ

Dð2Þ
m ¼ 1

2

XN
x¼1

x2lxðdx � *dÞ
 !

� Dð1Þ
m

XN
x¼1

x*dlx: ð15Þ

The first measure sums the age-specific deviations from
constant mortality, weighted by xlx; which means that
later age classes are weighted more heavily relative to
the probability of surviving to that age. This measure is
clearly zero for type II mortality schedules. For type I
mortality schedules, with mortality concentrated in the
later age classes, the difference between age-specific
mortality and constant mortality is positive in the later,
more heavily weighted age classes. The second measure
exaggerates the difference ðdx � *dÞ by squaring the age
ðxÞ in the weights. Numerical study shows that the extra
term in the second measure involving the first measure
has an opposite effect but the order of magnitude is
smaller than the first term, and hence does not change
the sign of the second measure. The relationships
between the D-measures and the three mortality
schedules can be summarized as

DðnÞ
m

40 for type I mortality schedule;

¼ 0 for type II mortality schedule;

o0 for type III mortality schedule;

8><
>: ð16Þ

for n ¼ 1; 2:
We will now use the Dð1Þ

m measure to find an
approximation for r in the presence of structured
mortality. By truncating series (12) for the average
death rate at the second term, we obtain

#d ¼ *dð1� rDð1Þ
m Þ þ oðrÞ: ð17Þ

Substituting for #d in Eq. (10) we get

r ¼ lnf1þ b̃ � *dþ *dDð1Þ
m rg þ oðrÞ; ð18Þ
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(a) (b)

(c) (d)

Fig. 2. The distribution of cohort age at death, dxlx; (solid) and of stationary age, *dlx (dashes) for a type I mortality schedule with Dm ¼ 0:409 (a),

a type II mortality schedule (b), a type III mortality schedule with Dm ¼ �0:410; (c) and a type III mortality schedule with Dm ¼ �4:1587 (d), for
expected lifetime ¼ 9:
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which rearranges to

r ¼ lnf1þ b̃ � *dg þ ln 1þ
*dDð1Þ

m r

1þ b̃ � *d

( )
þ oðrÞ

¼ lnf1þ b̃ � *dg þ
*dDð1Þ

m

1þ b̃ � *d
r þ oðrÞ

¼ r̃ þ
*dDð1Þ

m

1þ b̃ � *d
r þ oðrÞ; ð19Þ

where

r̃ ¼ lnf1þ b̃ � *dg;
i.e., the value of r that occurs with a type II mortality
schedule. Solving Eq. (19) for r now yields

r ¼ r̃

1� *dDð1Þ
m =ð1þ b̃ � *dÞ

þ oðrÞ: ð20Þ

In this study, for simplicity, we illustrate these formulae
with just two levels of the death rate, distinguishing
early mortality (up to some age s), and later mortality
(after age s):

dx ¼
d1 for xps;

½ð1� d1Þs�1d1�=½d1=*d� 1þ ð1� d1Þs� for x4s:

�
ð21Þ

With fixed expected lifetime ð1=*dÞ; formula (21) has two
free parameters, the early death rate, d1; and the last age
having the early death rate, s: By varying these
parameters, types I–III mortality schedules can be
generated with a common expected lifetime. The
procedure for the graphs below was to vary these two
parameters over a rectangular grid of values. The
measure Dð1Þ

m for each mortality schedule was calculated
from Eq. (14). This procedure generates a range of Dð1Þ
m

values, and it is possible to find different mortality
schedules with similar Dð1Þ

m and different Dð2Þ
m : However,

here we will only consider Dð1Þ
m because only it appears in

the approximation for r: In the graphs below of r against
Dð1Þ

m there is scatter attributable to different values of

Dð2Þ
m at fixed Dð1Þ

m : In this study, the expected lifetime is
held constant so that comparisons between mortality
schedules focus on the distribution of mortality over age
classes rather than the magnitude of mortality, which is
captured by the expected lifetime.
Figs. 3 and 4 show the relationship between Dð1Þ

m and
the population growth rate for several values of the birth
rate. The population growth rate, calculated as the
natural log of the dominant eigenvalue of the matrix L is
compared with that calculated by the first-order
approximation to r; Eq. (20).
The quantity Dð1Þ

m does a good job of mapping each
mortality schedule into the population growth rate ðrÞ
when r is small. From this mapping (Eq. (20)) it can be
seen that, with fixed *d and b̃; jrj is lower with a type III
mortality schedule (larger early mortality), and higher
with a type I mortality schedule (smaller early mortal-
ity). In other words, when the population is increasing, a
type I mortality schedule allows faster population
growth than other mortality schedules, and when the
population is decreasing, a type III mortality schedule
results in slower population declines than other mortal-
ity schedules. Also, Figs. 3 and 4 show that the effect of
age-dependent mortality on population growth rate is
greater with greater *d (shorter lifespan). Therefore, for a
population of long-lived organisms, the effect of
structured mortality on population growth should only
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(a)

(b)

Fig. 3. Population growth rate ðrÞ with mortality schedules of type III
(a) and type I (b) with expected lifetime ¼ 9; calculated as ln of

the dominant eigenvalue of the projection matrix (symbols), and

calculated from the first-order approximation, Eq. (20) (lines).

b̃ equals 0 (3; dashes and dots), 0:0556 (&; solid), 0:1111 (W; dashes)

and 0:1667 (þ; short dashes).

(a)

(b)

Fig. 4. Population growth rate ðrÞ with mortality schedules of

expected lifetime ¼ 15 (a) and expected lifetime ¼ 25 (b), calculated

as ln of the dominant eigenvalue of the projection matrix (symbols),

and calculated from the first-order approximation, Eq. (20) (lines).

b̃ equals 0 ð3Þ; 0:0667 ð&Þ; 0:1222 ðWÞ and 0:1778 ðþÞ:
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be evident when Dð1Þ
m is moderately large, i.e., when there

is substantial deviation from a type II mortality
schedule.
Eq. (20) gives a simple, functional relationship be-

tween the age-independent characteristics (b̃; *d; and
r̃ ¼ lnð1þ b̃ � *dÞ) with mortality schedules and the
population growth rate. The population growth rate is
expressed in terms of the population growth rate
corresponding to a type II mortality schedule ðr̃Þ; age-
independent death rates ð*dÞ; and age-independent birth
rates ðb̃Þ; and the discrepancy between the actual
mortality schedule and a type II mortality schedule
ðDmÞ: Thus the D-measure not only summarizes age-
dependent characteristics, but also provides a simple
way of assessing the effect of the mortality structure on
population growth. Note that fixing b̃ and *d also fixes
the net reproductive rate, R0; which is equal to b̃=*d:
Thus, R0 and *d are an alternative parameter set useful in
life-history theory, which allows us to see the effects on
population growth of various trade-offs within the
constraints of fixed values of these parameters.
4. Structured fecundity

In this section, we will consider a standard demo-
graphic model with structured fecundity. The fecundity
schedule is expressed in terms of an overall fecundity
level, b̃; which is an age-independent parameter, and
age-dependent modulation of reproduction of age class
x ðkxÞ: The birth rate of age class thus x is kxb̃:
We will first consider a model without structured

mortality, i.e., dx ¼ *d for all x: We follow the idealized
fecundity schedules given by Roff (1992). The particular
examples we consider are piecewise linear (Fig. 6) and
specified in terms of kx as follows:

* Age-independent reproduction: kx ¼ 1 for all x:
* Uniform fecundity after maturity: A juvenile period,
with zero fecundity, followed by constant fecundity:
kx ¼ 0 for xom; and kx ¼ km for xXm; where m is
the age of maturity.

* Asymptotic fecundity: kx increases from the age of
maturity until it reaches a maximum value which it
sustains for all later ages.

* Triangular fecundity: Similar to asymptotic fecundity
but after reaching the maximum, fecundity declines
until a particular age and then remains constant.
Semelparity is a special case of the triangular
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schedule in which fecundity peaks at the age of
maturity and is zero in all subsequent age-classes.

Without loss of generality the fecundity function, kx;
can be constrained so that kx

*dlx sums to one making
kx

*dlx a probability distribution. This is equivalent to
requiring that

P
N

x¼1 kxlx ¼
P

N

x¼1 lx; which has the effect

of fixing R0 ¼ b̃=*d:
With age-dependent fecundity specified in this way,

Eq. (6) can be written as

P�ðt þ 1Þ ¼ b̃
XN
x¼1

kxPxðtÞ þ ð1� *dÞP�ðtÞ: ð22Þ

Assuming a stable age distribution, this equation
becomes

P�ðt þ 1Þ ¼ b̃

P
N

x¼1 kxe�rxlxP
N

x¼1e
�rxlx

� �
P�ðtÞ þ ð1� *dÞP�ðtÞ

¼ ð1þ b̂ � *dÞP�ðtÞ; ð23Þ
(a) (b

(c)

(e) (f

(d

Fig. 5. The distribution of cohort age at reproduction ðkx
*dlxÞ (solid), and

uniform curve with Df ¼ 5 (b), asymptotic curve with Df ¼ 5:1594 (c), trian

7 with Df ¼ �2 (e), and semelparity with age at maturity of 13 with Df ¼ 4
where

b̂ ¼ b̃

P
N

x¼1
*dlxkxe�rxP

N

x¼1
*dlxe�rx

:

The term b̂ is the average birth rate for all individuals in
the population.
Here, the population growth rate is simply

r ¼ lnf1þ b̂ � *dg: ð24Þ

By applying the same techniques used in the previous
section, the average birth rate ðb̂Þ can be written

b̂ ¼ b̃
XN
n¼0

ð�rÞnDðnÞ
f ; ð25Þ
)

)

)

of stationary age ð*dlxÞ (dashes) for age-independent reproduction (a),
gular curve with Df ¼ 2:7455 (d), semelparity with age at maturity of

(f), all with age-independent mortality and expected lifetime ¼ 9:
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Fig. 6. Age-dependent modulation of reproduction ðkxÞ for early peak
reproduction (long dashes) with Df ¼ �1:2545 ð3Þ; age-independent
reproduction ð&Þ; and delayed peak reproduction (dashes) with

Df ¼ 1 ðWÞ; Df ¼ 3:1594 ðþÞ; Df ¼ 5 ðBÞ; and Df ¼ 7:1594 ðXÞ;
when combined with a type II mortality schedule.

S. Dewi, P. Chesson / Theoretical Population Biology 65 (2004) 75–8882
where

Dð0Þ
f ¼ 1;

Dð1Þ
f ¼ m1ð*dlxkxÞ � m1ð*dlxÞ;

Dð2Þ
f ¼ 1

2
ðm2ð*dlxkxÞ � m2ð*dlxÞÞ
� ½m1ð*dlxkxÞ � m1ð*dlxÞ�m1ð*dlxÞ;

DðnÞ
f ¼ mnð*dlxkxÞ

n!
�
Xn

k¼1 D
ðn�kÞ
f

mkð*dlxÞ
k!

for n40:

In this case, the two distributions that define the D
measures are the cohort age at reproduction ð*dlxkxÞ; and
the stationary age distribution ð*dlxÞ (Fig. 5). Thus Df

quantifies the deviation of a fecundity schedule from
age-independent reproduction. The first measure ðDð1Þ

f Þ
is the difference between mean age at reproduction and
the mean age in a stationary population. The second
measure ðDð2Þ

f Þ is half the difference between the
variances of the two distributions, plus half the square
of the first measure:

Dð2Þ
f ¼ 1

2
½varð*dlxkxÞ � varð*dlxÞ þ ðDð1Þ

f Þ2�: ð26Þ

Fecundity schedules can be classified by the sign of Dð1Þ
f

into three forms with the following meanings: (i) Early
peak reproduction: the majority of offspring are
produced early in life ðDð1Þ

f o0Þ: (ii) Age-independent
reproduction when reproduction is spread out evenly
throughout the lifespan of an organism ðDð1Þ

f ¼ 0Þ:
(iii) Delayed peak reproduction when the majority of
offspring are produced late in life (i.e., Dð1Þ

f 40).
However, this classification is crude, and fails to capture
the four types present above (Fig. 6).
A more intuitive understanding of the measures is

gained by rewriting Df as

Dð1Þ
f ¼

XN
x¼1

x*dlxðkx � 1Þ; ð27Þ

Dð2Þ
f ¼ 1

2

XN
x¼1

x2 *dlxðkx � 1Þ
 !

� Dð1Þ
f

XN
x¼1

x*dlx: ð28Þ

The first measure ðDð1Þ
f Þ expresses the difference between

each age-dependent modulation of reproduction and
constant reproduction (i.e., kx ¼ 1 for all age classes),
weighted according to age class, such that more weight
is applied to later age classes relative to the probability
of surviving to those age classes. The second measure
ðDð2Þ

f Þ exaggerates the difference by squaring the age in
the weights. The extra term involving the first measure
has an opposite effect to the first term, but is smaller and
has not changed the sign in numerical studies. The
general pattern is:

DðnÞ
f

40 for delayed peak reproduction;

¼ 0 for age-independent reproduction;

o0 for early peak reproduction;

8><
>: ð29Þ
for n ¼ 1; 2: Expressions (27) and (28) provide us
with a quantitative classification of fecundity schedules.
Fig. 6 shows relationships between Dð1Þ

f and fecundity
schedules.
As in the previous section, only Dð1Þ

f will be used to
consider the effect of age-dependent fecundity on
population growth. The average birth rate satisfies the
first-order approximation

b̂ ¼ b̃ð1� rDð1Þ
f Þ þ oðrÞ: ð30Þ

Substituting in Eq. (24) we get

r ¼ lnf1þ b̃ � b̃Dð1Þ
f r � *dg þ oðrÞ: ð31Þ

Solving Eq. (31), by taking the first-order Taylor
approximation of r in the neighborhood of r ¼ 0; we get

r ¼ lnf1þ b̃ � *dg �
b̃Dð1Þ

f

1þ b̃ � *d
r þ oðrÞ;

which rearranges to

r ¼ r̃

1þ ðb̃Dð1Þ
f Þ=ð1þ b̃ � *dÞ

þ oðrÞ: ð32Þ

Eq. (32) gives the functional relationship between
fecundity schedules, age-independent vital rates and
the population growth rate. Note that the effect of age-
dependent fecundity increases with an increase in b̃:
Figs. 7 and 8 show that the general pattern can be

captured by Dð1Þ
f : The first-order approximation gives

good numerical accuracy when r is moderate, and fair
accuracy when r is large. The first-order approximation
is less accurate with early peak reproduction compared
with delayed peak reproduction for r of a similar
magnitude. Thus, early peak reproduction, which is
mostly produced by triangular curves, is not captured
adequately by the first-order D-measure alone. In
contrast, the effects of other fecundity schedules are
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(a)

(b)

Fig. 7. Population growth rate (r) with age-independent mortality and

expected lifetime ¼ 9; for all fecundity schedules (a), and for fecundity

schedules other than triangular curves (b), calculated as ln of dominant

eigenvalues of the projection matrices (symbols), and calculated from

the first-order approximation in Eq. (32) (lines). b̃ equals 0:0556 ð3Þ;
0:1111 ð&Þ; 0:1667 ðWÞ; 0:2222 ðþÞ and 0:2778 ðBÞ:

Fig. 8. Population growth rate ðrÞ with age-independent mortality of
and expected lifetime ¼ 9 with triangular curves, calculated as ln of

dominant eigenvalues of the projection matrices (symbols), and

calculated from the first-order approximation in Eq. (32) (lines). b̃

equals 0:0556 ð3Þ; 0:1111 ð&Þ; 0:1667 ðWÞ; 0:2222 ðþÞ and 0:2778 ðBÞ:
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captured very with just the first D-measure. This is not
unexpected as effects of triangular reproductive func-
tions are sensitive to their width, and it is easy to
produce different triangular schedules with similar Dð1Þ

f ’s
but different Dð2Þ

f ’s.
Delayed peak reproduction always gives smaller jrj
than early peak reproduction. When a population is
increasing, delayed peak reproduction gives lower r; and
early peak reproduction gives higher r: The opposite
pattern occurs in a decreasing population. This pattern
is widely recognized and, shown to be robust in different
settings. However, the overall quantitative pattern has
not been determined before.
5. Structured mortality and fecundity

We now combine structured mortality and fecundity
in the same demographic model. We retain the
constraint

P
N

x¼1 kxlx ¼
P

N

x¼1 lx ¼ 1=*d on the kx values.
Fig. 11 shows different fecundity schedules after
applying this constraint with types I and III mortality
schedules.
With a stable age distribution, the exact value of r is

here given by

r ¼ lnf1þ b̂ � #dg; ð33Þ

where b̂ and #d are defined as they were in the previous
two subsections. Applying the same approximation
procedures as used above, we obtain

rE
r̃

1þ ðb̃Dð1Þ
f � *dDð1Þ

m Þ=ð1þ b̃ � *dÞ
: ð34Þ

Age-dependent fecundity and age-dependent mortality
together produce more complex results than either
alone. The effects of the mortality and fecundity
schedules on the population growth rate are expressed
using shape measures scaled by the magnitude of age-
independent birth rate ðb̃Þ and death rate ð*dÞ: Figs. 9
and 10 show the three distributions: (i) stationary age,
(ii) cohort age at death, and (iii) cohort age at
reproduction.
Eq. (34) shows that the previous separate findings for

the effects of structured mortality and fecundity on
population growth continue to apply in combination. In
particular, a type III mortality schedule combined with
delayed peak reproduction increases r over the unstruc-
tured case in decreasing populations, and a type I
mortality schedule with the early peak reproduction
increases r over the unstructured case in increasing
populations, see Fig. 1. These findings are consistent
with common belief.
6. Stochastic demographic models

We will now consider the same demographic model
as 1, but with temporal fluctuations in birth rates. The
matrix model now takes the form

Pðt þ 1Þ ¼ LðtÞPðtÞ; ð35Þ
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(a) (b)

(c) (d)

(e)

Fig. 9. The distribution of cohort age at reproduction ð*dlxkxÞ (solid), cohort age at death ðdxlxÞ (dashes), and stationary age ð*dlxÞ (short dashes), for
a uniform curve with Df ¼ 3:3836 (a), an asymptotic curve with Df ¼ 2:6108 (b), a triangular curve with Df ¼ 3:4733 (c), semelparity with age at

maturity of 7 and Df ¼ 1:6807 (d), and semelparity with age at maturity of 13 and Df ¼ 7:6807 (e), all with a type I mortality schedule with

Dm ¼ 0:4086 and expected lifetime ¼ 9:
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where the constant matrix L of vital rates of Section 2 is
replaced by a time-dependent matrix LðtÞ: The only
difference between these two matrices is that bx is
replaced by b̃ðtÞkx in LðtÞ; with b̃ðtÞ varying over time
to describe temporal variation in fecundity. Eq. (6)
becomes

P�ðt þ 1Þ ¼ b̃ðtÞ
XN
x¼1

kxPxðtÞ þ
XN
x¼1

ð1� dxÞPxðtÞ

¼ b̃ðtÞ
XN
x¼1

kx

PxðtÞ
P�ðtÞ

þ
XN
x¼1

ð1� dxÞ
PxðtÞ
P�ðtÞ

 !
P�ðtÞ

¼ 1þ b̃ðtÞ
XN
x¼1

kxuxðtÞ �
XN
x¼1

dxuxðtÞ
 !

P�ðtÞ

¼ ð1þ b̂ðtÞ � #dðtÞÞP�ðtÞ; ð36Þ

where

#dðtÞ ¼
XN
x¼1

dxuxðtÞ;

b̂ðtÞ ¼ b̃ðtÞ
XN
x¼1

kxuxðtÞ;
and fuxðtÞg is the actual age distribution at time t:
Stochastic ergodicity theory (Lopez, 1961; Cohen, 1977)
implies that fuxðtÞg should converge in distribution and
that, for large t; the quantity ð%rÞ defined as

%r ¼ E ln
P�ðt þ 1Þ

P�ðtÞ

� 

ð37Þ

should approach a constant equal with probability 1 to
the actual long-term growth rate of the population. By
substituting Eq. (36) into Eq. (37), we obtain

%r ¼ E lnf1þ b̂ðtÞ � #dðtÞg: ð38Þ

In order to proceed simply to an approximation for the
long-term growth rate, we shall make the assumption
that the species in question is long lived so that the
population consists of many cohorts of different ages.
With no autocorrelation in birth rate fluctuations over
time, these cohorts will be approximately statistically
independent. Provided the vital rates of the population
do not change sharply with age, which would be at odds
with high longevity, it should be possible to replace the
actual stochastically fluctuating age distribution in
definitions of b̂ðtÞ and #dðtÞ with the stable age
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(a) (b)

(c) (d)

(e)

Fig. 10. The distribution of cohort age at reproduction ð*dlxkxÞ (solid), cohort age at death ðdxlxÞ (short dashes), and stationary age ð*dlxÞ (dashes), for
a uniform curve with Df ¼ 25:3683 (a), an asymptotic curve with Df ¼ 17:0295 (b), a triangular curve with Df ¼ 41:0359 (c), semelparity with age at

maturity of 7 and Df ¼ �39:4277 (d), and semelparity with age at maturity of 13 and Df ¼ �33:4277 (e), all with a type III mortality schedule with
Dm ¼ �4:1589 and expected lifetime ¼ 9:
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distribution attained with constant exponential popula-
tion growth at a rate %r: In other words, we assume that
fluctuations in the age distribution are unimportant,
though age structure itself, and fluctuations in birth
rates, are both are important in determining the long-
term growth rate. Although at first sight, this might
seem to seriously limit the application of the results here,
numerical results given below suggest that no large
errors are thereby introduced.
With this assumption, we can use Dm and Df from the

previous sections to replace #d and k̂ in Eq. (38), to get
the average population growth rate as follows:

%r ¼E ln½1þ b̃ðtÞð1� %rDð1Þ
f Þ � *dð1� %rDð1Þ

m Þ� þ oð%rÞ

¼E ln½1þ b̃ðtÞ � *d� %rðb̃ðtÞDð1Þ
f � *dDð1Þ

m Þ� þ oð%rÞ: ð39Þ

The first-order Taylor expansion of expression (39)
about %r ¼ 0 is

%r ¼ E ln½1þ b̃ðtÞ � *d� � E
b̃ðtÞDð1Þ

f � *dDð1Þ
m

1þ b̃ðtÞ � *d

" #
%r þ oð%rÞ:

ð40Þ
Solving expression (40) for %r yields

%r ¼
E ln½1þ b̃ðtÞ � *d�

1þ E½b̃ðtÞ=ð1þ b̃ðtÞ � *dÞ�Dð1Þ
f � E½1=ð1þ b̃ðtÞ � *dÞ�*dDð1Þ

m

:

This formula will normally require numerical integra-
tion using the distribution of b̃ðtÞki for evaluation.
Alternatively, making some assumptions about the
magnitude of the stochastic variation permits closed-
form calculation, as follows.
Let b� be the geometric mean of b̃ðtÞ; i.e. eE ln b̃ðtÞ; and

let s2 ¼ var½ln b̃ðtÞ�: We assume that m ¼ E½ln b̃ðtÞ �
ln *d� ¼ Oðs2Þ: With this assumption, Eq. (40) implies
that %r ¼ Oðs2Þ: Removing terms of smaller order from
Eq. (39), we obtain

%r ¼ E ln 1þ *d
b�

*d
eX � 1

� �� �
�

b�Dð1Þ
f � *dDð1Þ

m

1þ b� � *d
%r; ð41Þ

where

X ¼ ln
b̃ðtÞ
b�

� 

:
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(a)

(b)

Fig. 11. A type I mortality schedule with Dm ¼ 0:4086; with age-

independent reproduction ð3Þ; and delayed peak reproduction, with
Df ¼ 0:5399 ð&Þ; Df ¼ 1:6264 ðWÞ; Df ¼ 2:7015 ðþÞ; Df ¼ 3:5373

ðBÞ; and Df ¼ 4:5645 ðXÞ(a). A type III mortality schedule with

Dm ¼ �1:9485; early peak reproduction, with Df ¼ �12:2130 ð3Þ; age-
independent reproduction ð&Þ; and delayed peak reproduction,

with Df ¼ 3:1922 ðWÞ; Df ¼ 9:9659 ðþÞ; Df ¼ 15:1978 ðBÞ; and
Df ¼ 20:5213 ðXÞ (b).
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The first term before taking the expected value can be
re-written as

lnf1þ *d
b�

*d
eX � 1

� �
g ¼ lnf1þ *dðemþX � 1Þg

¼ ln 1þ *d mþ X þ 1
2
ðmþ X Þ2

� �� 

þ oððmþ XÞ2Þ

¼ *d mþ X þ 1
2
ðmþ X Þ2

� �
� 1
2
ð*dÞ2ðmþ X Þ2

þ oððmþ X Þ2Þ: ð42Þ

Taking expected values of Eq. (42) by noting that

Eðmþ XÞ2 ¼ m2 þ EX 2 ¼ m2 þ s2 ¼ s2 þ oðs2Þ;

we obtain

*dmþ 1
2
*dð1� *dÞs2:

Substituting this into Eq. (41) then yields

%r ¼ *dmþ 1
2
*dð1� *dÞs2 �

b�Dð1Þ
f � *dDð1Þ

m

1þ b� � *d
%r þ oð%rÞ: ð43Þ
Solving Eq. (43) for %r; we get

%r ¼
*dmþ 1

2
*dð1� *dÞs2

1þ ðb�Dð1Þ
f � *dDð1Þ

m Þ=ð1þ b� � *dÞ
þ oð%rÞ: ð44Þ

Since b� ¼ *dem; we can express Eq. (44) in terms of *d and
m by noting that

b�Dð1Þ
f � *dDð1Þ

m

1þ b� � *d
¼

*dðemDð1Þ
f � Dð1Þ

m Þ
1þ *dðem � 1Þ

¼
*dðDð1Þ

f � Dð1Þ
m þ mDð1Þ

f Þ
1þ *dm

þ oðs2Þ

¼ *dðDð1Þ
f � Dð1Þ

m þ mDð1Þ
f Þð1� *dmÞ þ oðs2Þ:

ð45Þ

Substituting Eq. (45) back to Eq. (44) now gives

%r ¼
*dmþ 1

2
*dð1� *dÞs2

1þ *dðDð1Þ
f � Dð1Þ

m þ mDð1Þ
f Þð1� *dmÞ

þ oðs2Þ

¼
*dmþ 1

2
*dð1� *dÞs2

1þ *dðDð1Þ
f � Dð1Þ

m Þ
þ oðs2Þ: ð46Þ

In Eq. (46), we can see how age-structured mortality and
fecundity affect population growth rate. A negative Dð1Þ

f

(early peak reproduction), and a positive Dð1Þ
m (type I

mortality), increase the absolute value of the population
growth rate. For long-lived organisms (small *d), age
structure becomes less important, unless mortality and
fecundity schedules are of extreme type (i.e., very large
Dð1Þ

m and Dð1Þ
f ), since the denominator of Eq. (46) is close

to one. Therefore, in studies of very long-lived organ-
isms, negligence of age-structure, or lumping age classes
with similar kx and dx; may be justified.
When mortality and fecundity are uniform across age

classes, Eq. (46) reduces to

%r ¼ *dðmþ 1
2
s2ð1� *dÞÞ þ oðs2Þ: ð47Þ

An equation very similar to this one, but without the age
structured effects, appears in the lottery competition
model for the growth of a low-density species in
competition with another species (Chesson, 1994). This
is not surprising as similar assumptions about stochastic
variation appear in both formulations. In a companion
article (Dewi and Chesson, 2003), we use the results here
to obtain coexistence conditions for the lottery model
with age structure.
The accuracy of this approximation to %r is assessed in

Fig. 12. Only the case with structured mortality is
considered here because structured fecundity is not
expected to produce a different pattern. Fig. 12 shows
the plot of Dð1Þ

m against the long-term population growth
rate, with s2 equals 0:25: Eq. (46) can approximate the
population growth rate when Ej½ln b̃�jo2:9: Otherwise,
the equation can only capture qualitatively the effect of
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(a)

(b)

Fig. 12. Population growth rate ð%rÞ with mortality schedules of type I
(a), and type III (b), with expected lifetime ¼ 9; age-independent

reproduction, and s2 ¼ 0:25; calculated from simulation (symbols),

and order approximation of Eq. (46) (lines). E½lnðb̃Þ� equals �3:2
(3; dots), �2:9 (&; dots and dashes), �2:6 (W; solid), �2:3 (þ; dashes),

and �2 (B; short dashes).
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different mortality schedules on the population growth
rate.
7. Discussion

The proposed shape measures, our D-measures,
characterize all aspects of the age dependence of
mortality and fecundity schedules relevant to determin-
ing the population growth rate at stable age structure
because then they define the population birth rates and
death rates ( #b and #d) via power series. Our focus above
has been primarily on using the first D measure in each
case to assess the effects of age structure on population
growth, but given the fact that these measures char-
acterize the relevant aspects of the shapes of the vital-rate
schedules, they suggest a research program to determine
more precisely the information provided by these
measures. This work in this article is just a beginning.
We have used the D-measures to obtain approximations
to r incorporating structured fecundity and mortality,
and these approximations are accurate for small r:More
accurate approximations to r would be available by
keeping higher than linear terms in the Taylor expan-
sions above. These would necessarily involve D-measures
beyond first order, and therefore would allow the
investigation of more subtle features of age structure
on population growth than can be represented by the
first-order D-measures that have been our focus.
Our results based on the D-measures agree with

previous findings on the effects of age structure on
population growth. In particular, they show that in an
increasing population a type I mortality schedule and
early peak reproduction have the effect of increasing
population growth. On the other hand, in a decreasing
population, type III mortality schedules and delayed
peak reproduction both reduce the rate of population
decline. The approximations to r based on the
D-measures show that the effects of structured mortality
and fecundity schedules should be small for populations
of long-lived organisms, subject to the constraint that r

is small. This prediction is valid both for deterministi-
cally growing and stochastically growing populations.
Therefore, for long-lived organisms, negligence of age
structure may be justified.
The D-measures have application to the study of life-

history evolution with the advantage that they summar-
ize age dependence for the entirety of a vital-rate
schedule. Thus, their application stands in contrast to
approaches based on sensitivity analysis in which the
effects of single vital rate are revealed. A previous
approach due to Caswell, called macroparameter
analysis (Caswell, 1982), is in essence a numerical
sensitivity analysis of l with respect to summary life-
history parameters associated with structured mortality
and fecundity, e.g., reproductive lifespan, mean age at
reproduction, and net reproductive rate. Caswell con-
cluded that a type III mortality schedule, longer
lifespan, delayed reproduction, and iteroparity were all
favored when populations decline, with the opposite
results when populations increase. Our study supports
these conclusions and shows a more detailed and general
pattern. Caswell used the parameters of parametric
curves to summarize the characteristics of vital-rate
schedules. Our D-measures yield a nonparametric
approach to the same ends, and are therefore capable
of achieving greater generality.
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