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CHAPTER 12

Scale Transition Theory for Understanding
Mechanisms in Metacommunities

Peter Chesson, Megan J. Donahue, Brett A. Melbourne,
and Anna L. W, Sears

Introduction

Ecological findings on small spatial or temporal scales often do not extrapolate to
larger scales (Wiens 1989; Kareiva 1990; Horne and Schneider 1995; Englund and
Cooper 2003). This empirical pattern has a parallel in ecological theory. In many
model systems, the rules devised for population dynamics on small spatial or
temporal scales can be quite different from those that emerge on large scales
(Levin 1992). For example, in models of host-parasitoid systems, the highly un-
stable Nicholson-Bailey model might describe local population dynamics, but
combined with spatial environmental variation, these local-scale instabilities may
give rise to dynamics on the larger spatial scale described by the potentially highly
stable host-parasitoid models of Bailey et al. (1962) and May (1978). Indeed, the-
oretical examples abound where the rules assumed on a small scale lead to con-
trasting outcomes on a larger scale, including changes in stability properties of
single species models, conversion of competitive exclusion into competitive co-
existence, and more mundane cases simply involving changes in quantitative fea-
tures of models, such as mean densities (Chesson 2001).

These results from theory are interesting for two reasons. First, they may ex-
plain at least some failures of small-scale experimental findings to translate to
larger scales, Second, they may provide a means of extrapolating, or scaling-up,
findings for small scales to larger scales. The metacommunity concept owes its
importance primarily to these issues of changes in rules with changes in scale, as
exemplified by early metacommunity models (Slatkin 1974; Hastings 1977, 1980;
sec review by Mouquet et al., chapter 10; Caswell 1978).

A complete ecological theory should explain community dynamics on all
scales (Levin 1992). Critical interactions between individual organisms occur
over a range of scales (Chesson 1998a; Murrell and Law 2003), but these scales are
mostly small. Scaling up theoretical findings from small scales is therefore essen-
tial. In classical (Hanski 1999), or equivalently, strict metacommunity models
(Chesson 2001), it is assumed that interactions between individuals take place
within local communities, but also that local communities do not persist. It fol-
lows that the system as a whole cannot be understood without reference to the
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larger scale of many local communities, which we refer to here as the regional or
metacommunity scale. This strict metacommunity scenario represents one ex-
treme of spatial structure that pervades ecological systems. In spatially-structured
systems gencrally, the implications of local-scale interactions are necessarily
modified by dispersal between localities in different states.

Scale transition theory (Chesson 1998a) is an attempt to systematize the study
of how local-scale dynamical rules become modified as larger scales are taken into
account. [t unites analytical, simulation, and empirical approaches to an ecologi-
cal question through key explanatory quantities accessible in all three approaches.
The broad outline of scale transition theory was formulated many years ago
(Chesson 1978, 1981), but rising theoretical and empirical interest in scale-
dependent phenomena implies broad potential for its use. [n essence, scale tran-
sition theory explains changes in dynamical rules with changes in scale in terms
of interactions between spatial or temporal variation and nonlinear dynamics on
local spatial scales. Many ecological processes lead to nonlinear dynamics includ-
ing intra- and interspecific competition, predation, and mutualism. At the same
time, spatial heterogeneity is a pervasive feature of ecological systems. It should
therefore not be surprising that their combined effects are important.

The scale transition approach describes local ecological interactions mathe-
matically in order to characterize their nonlinear nature. It then scales-up by av-
eraging the formulae describing local interactions over space. Regional dynamics
are then described by the mean field, that is, regional dynamics in the absence of
spatial variation, plus the scale transition, which quantifies how spatial variances
and covariances of population densities and environmental factors interact with
local nonlinearities to modify regional dynamics.

Traditional approaches to metapopulations emphasize colonization and
extinction dynamics of local populations connected by dispersal, with limited
attention to the details of local community dynamics (Nee et al. 1997, Mouquet
et al,, chapter 10). Scale transition theory provides an alternative framework to
understanding metapopulations and metacommunities in which the details of
local dynamics are central, Scale transition theory can be applied to systems in
which colonization and extinction are important features of local communities,
but italso applies broadly to spatially structured systems regardless of the impor-
tance of local extinction and recolonization. Thus, scale transition theory avoids
the criticism of traditional metapopulation models that the basic model structure
is too limited to apply to many systems in nature (Harrison and Taylor 1997).

To introduce the basic concepts of scale transition theory, we open with a dis-
cussion of how spatial variation in parasitism can stabilize host-parasitoid inter-
actions. This example illustrates a fundamental formula for discrete-time models
whereby average individual fitness over a spatial region is expressed in terms of a
mean-field component, interactions between nonlinear fitness and spatial vari-
ance, and covariation between fitness and density. Next, we show how this for-
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mula applies to patch models, which we illustrate using a model with local logis-
tic dynamics, and discuss the role of dispersal in generating the spatial variances
and covariances critical to the scale transition. We then extend the discrete-time
formulation to continuous time and use it to understand coexistence of competi-
tors in spatial Lotka-Volterra and related models. Our final model development
illustrates the full power of scale transition concepts in the study of coexistence of
annual plant species in a spatially varying environment. In conclusion, we relate
the scale-transition approach to other developments of spatial dynamics as ap-
plied to metacommunities. In chapter 13, Melbourne et al. apply the resuits pre-
sented here to three empirical systems,

General Discrete-Time Formulation of the Scale Transition
for Variation in Space

An individual at some location x in space has a fitness A, which measures the av-
erage contribution of an individual at x to the population after some defined in-
terval of time. Space can be continuous or discrete. Thus, x might represent a
patch, a point in continuous space, or a point on a discrete lattice. Time is as-
sumed discrete. Continuous-time formulations are discussed later and replace &
with a per capita growth rate.

We use the example of host-parasitoid models, as presented in box 12.1, to in-
troduce the fundamentals of scale transition theory. Host-parasitoid models have
had a key role in the many decades of theoretical research that attempted to ex-
plain the persistence of exploiter-victim interactions (Hassell 2000; Murdoch
et al. 2003). In host-parasitoid models, the primary factor affecting host fitness is
the spatially-varying parasitoid density, P, and so A, = f(P, ). Under Nicholson-
Bailey assumptions for local dynamics, fis an exponentially declining nonlinear
function, as illustrated by the solid line in figure 12.1. If the parasitoid were ho-
mogeneously distributed in space, this exponential decline in host fitness with
parasitoid density would lead to violent fluctuations in regional-scale host and
parasitoid densities, matching the local scale dynamics. In contrast, with enough
spatial variation in parasitoid density, these violent fluctuations are replaced by
convergence of the regional population densities on a stable equilibrium point, as
discussed in box 12.1.

The Effects of Spatial Variation and Nonlinearity on Spatial Average Fitness

To understand how stability results from spatial variation in the host-parasitoid
model, note that the spatial averages, N and P, of host and parasitoid densities are
the regional-scale densities. We then ask how the spatial average, A, of A_depends
on these regional-scale densities. Particular formulae are given in box 12.1, but
figure 12.1 gives a graphical illustration for the case where P, varies between just
two values equal to a fraction of P and a multiple of P, which might occur if the
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Box 12.1. Spatial variation in host-parasitoid systems

The traditional discrete-time Nicholson-Bailey host-parasitoid model
takes the form

N,., = ReN,

P, =N - RN, (12.BL.1)

where Nand Pare respectively host and parasitoid density, R is fitness of
unparasitized hosts, and a is the average rate at which individual para-
sitoids discover hosts (Hassell 2000). The negative exponential above,
exp( —aP,), is the fraction of hosts escaping parasitism. The second line of
the equation simply says that the number of parasitoids in the next gener-
ation is equal to the number of hosts killed by them in the current genera-
tion. It ismore commonly written P, = [1 — exp(—aP)]N,, but our form
is more general, and being linear in densities, does not change with spatial
scale.

This model is notoriously unstable and much theoretical research has
been directed toward modifications that predict stable coexistence of host
and parasitoid. Of the many such modifications (Hassell 2000), weare con-
cerned here only with those relating to spatial variation in the density of
parasitoids. These modifications lead to changes in the first line of equation
12.B1.1, but not the more general second line.

The first line of equation 12.B1.1 implies that host fitness is &, =
Rexp(—aP,). We can modify this equation by having the parasitoid density
vary in space, denoting by P, the density of parasitoids at location x. This
density will change with time, but for simplicity of notation, a subscript in-
dicating time is omitred. Host fitness as a function of local parasitoid den-
sity is then

A, = Re~, (12.B1.2)

Here Ris the host fitness in the absence of parasitism, P_is the local para-
sitoid density, and a is the average rate at which individual parasitoids
discover hosts.

Scale Transition for Independent Host and Parasitoid Distributions

May (1978) pointed out that when P_is distributed in space according a
gamma distribution, the average of A_over space takes the form

A, = R(1 + aP/k)* (12.B1.3)

where P, is the average of P_over space in year ¢, and 1/k is equal to the
square of the coefficient of variation (CV) of the parasitoid distribution in
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space. When the hosts and parasitoids are distributed independently of one
another, then, as explained in the text, the first line of equation 12.B1.1 can
be validly replaced by

N. =1,

I

|

" (12.B1.4)

(=

The model then predicts stable host an
the parasitoid CV is greater than 1.

For arbitrary spatial distributions of parasitoids, equation 12.B1.3 is re-
placed by

parasitoid coexistence provided

A, = FolaP), (12.B1.5)

(Chesson and Murdoch 1986) where @ is a function dependent on the rel-
ative distribution of parasitoids in space (the distribution of P_/P) and is
called the Laplace transform in statistical theory. (Figure 12.1 provides a
geometrical construction of @ for the simple case where parasitoid densi-
ties take on only two values.) The chief finding for the general case given by
equation 12.B1.5 is that the CV criterion for stability applicable to gamma
distributed hosts remains approximately applicable in this more general
case (Hassell et al. 1991).

Scale Transition for Correlated Host and Parasitoid Distributions

Several implicit assumptions are involved in the above conclusions. First, as
explained in the text, equation 12.81.4 is only valid when the fraction of
hosts parasitized is uncorrelated with host density. In other cases, the ap-
plicable equation for population dynamics is

N,

=+l

=iN, (12.B1.6)

where 4 is host individual average fitness, rather than host spatial average
fitness (A). Second the distribution of P./P is assumed constant over time,
which might not be true depending on the dispersal scenarios, The conclu-
sions above about stability, however, continue to apply to the CV of the dis-
tribution of parasitoids per host, provided this CV does not vary impor-
tantly over time (Hassell et al. 1991). Equations 12.B1.3 and 12.B1.5 are
valid for & replacing A when the probability distribution of P, is the per host
distribution (Chesson and Murdoch 1986), but if the distribution of P /P
over hosts varies with time, then k and @ must be given subscripts ¢ to indi-
cate that variation. How the distribution of P, /P might vary over time de-
pends on the nature of dispersal, which we have not addressed explicitly
here.
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Scale Transition Approximations

We can use formulae 12.6-12.8 in the text to obtain approximations to 4.
As f(P) = Re™*, f'(P) = —Rae "’ and f*(P) = Ra*e~**. Hence, A is ap-
proximated as

A= Re~"" + %Rale & Var(P), (12.B1.7)

and the fitness-density covariance is approximately,
Cov(h, v) = —Rae™" Cov(P, N)/N. (12.B1.8)

These combine to give an overall value of A equal to
A= Re {1+ %a‘ Var(P) — aCov(P, N)IN|.  (12.B1.9)

These approximations serve to show the moderating effect of variation in
parasitism on the relationship between A and P, and how this relationship
is affected by covariance between parasitoids and host density. Approxima-
tions like these, coupled with the corresponding approximations for
d3/dP, allow the stability rule discussed here to be derived for cases where
Ris near 1, that is, when host fitness in the absence of parasitism is not too
large (Hassell et al. 1991).

system consisted of just two patches. The dashed curve gives the relationship be-
tween A and P that is traced out as P varies. The diamonds illustrate how this
curve is calculated. The diamonds lie at the midpoints of line segments connect-
ing (P,, &) points for pairs of low and high parasitoid localities. The midpoint of
a line segment is necessarily the simple average of the endpoints of the same line
segment. Because the function f(P.) curves up (is concave up; see box 12.2), the
midpoints of the line segments are necessarily above the original curve. Thus, >
f(P), that is, spatial average fitness (A, which equals f(P)) exceeds that predicted
by the local relationship between fitness and parasitoid density (f(P)). Of most
importance for regional stability, the decline in A as a function of P is much more
moderate than the decline in &_as a function of P,

This effect of variation in parasitoid density on mean fitness is a particular il-
lustration of the phenomenon of nonlinear averaging (box 12.2) where a nonlin-
ear function of some variable quantity is averaged, and the result differs from the
nonlinear function of the average of that variable quantity. Here &, = f(P,), but A
- f(P) When the nonlinear function f curves in a consistent d:mcuon (i.e., is
concave up or concave down), the direction of the deviation between the average
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Host Survival

Parasitoid Density

Figure 12.1 Decline in host density as a function of parasitoid density, locally in space (solid line: &,
= Fe %), and regionally (dashed line: i = Fe * = Fo(aP)) for the special case of variation in para-
sitoid density in space between just two values of P, ane 5% of the mean and other 195% of the mean
(i.e. P. =005 Pand P_= 1.95 P). Note that the decline in host survival as parasitoid average density
increases is much more moderate in the presence of spatial heterogeneity (dashed line) than in its ab-
sence (solid line). The @'s arc at parucular (P, A) pairs illustrating the effect of Jensen’s inequality on
the relationship between X and P. The average of the two (P,, 4,) at the ®'s on each dotted line equals
the particular (P, &) pair at the # in the center of the line. Because of the curvature of A, as a function
of P, these averages necessarily lie above the values that would be given by the local i.-# relationship.

of the function f(P)and the function of the average f(P) is predictable and is
known as Jensen’s inequality (box 12.2).

The Importance of the Fitness-Density Covariance
and Individual Average Fitness

Given the more moderate behavior of the spatial average fitness as a function of
average parasitoid density in the host-parasitoid model, it is not surprising that
the regional-scale dynamics are more stable in the presence of spatial variation.
To draw firm conclusions, however, we must determine the extent to which A
determines regional-scale population dynamics. If &_is fitness for the period r to
t+ 1, the N_, individuals at location x and time ¢, give rise by reproduction and
survival to A N,  individuals at time ¢ + 1. If some of these disperse, then N_, ,,
# A_N_, butassuming dispersers do not leave the region, the total density in the
system at time ¢ + 1 is nevertheless

Z i = DN (12.1)

Dividing equation 12.1 by the number of local sites x in the system now shows
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Box 12.2 Properties of Nonlinear Averages

Basic to the scale transition is the idea of nonlinear averaging, that is, tak-
ing an average of some nonlinear function f(W) of a varying quantity W
(Chesson 1998a). Most introductions to statistics give some appreciation of
nonlinear averages from the two different formulae for the variance (see,
e.g. Ross 1997). We know that the variance Var(W) is defined as the average
squared deviation from the mean:

Var(W) = (W — WF, (12.B2.1)
butit also obeys the formula
Var(W) = Wi— (W)?, (12.B2.2)

that is, the variance of W is the difference between the mean of the square
of Wand the square of the mean of W. This formula rearranges to show
that the mean of the square of W exceeds the square of the mean of Wby
an amount exactly equal to the variance:

Wi= (W) + Var(W). (12.B2.3)

This finding is a particular case of the result that the mean.ﬂ_W), of a non-
linear function, generally differs from the function of the mean, f(W); bere
fiw) = wz,

Jensen’s Inequality

Unfortunately, only in special cases such as f{W) = W do we know exactly
how much the mean of the function and the function of the mean differ
from each other. However, we can tell the direction of the difference if the
function curves in a consistent direction, that is, it is concave, either up or
down. If f{W) is concave up, as indicated by f"(W) > 0, Jensen’s inequality
(Ross 1997) says that

fW) > f(W), (12.B2.4)

that is, the mean of the function is greater than the function of the mean.
Naturally, for concave down functions { f"(W) < 0), the reverse inequality
to inequality 12.B2.4 applies. For the particular case where f(W) = W2,
equation 12.82.3 tells us that the amount by which f(W)exceeds f(W) is
simply the veriance. Another example of an exact formula for f(W) s given
in box 12.1 for the host-parasitoid. Figures 12.1 and 12.2 give graphical il-
lustrations of Jensen’s inequality, which are available for the simple case
where W (respectively Pand N in these figures) vary over just two values.
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Quadratic Approximations

Although the exact difference between f_(‘rﬁT) and f(W} is not often known,
the following approximation

FW) = f(w) + % 7(W)Var(W), (12.B2.5)

holds generally whenever f(W) can be satisfactorily approximated by its
second order Taylor expansion, and can be derived simply from the special
case, equation 12.82.3 (Chesson 1998a).

Multidimensional Nonlinearities
Ecological models often involve multiple quantities varying simulta-
neously. With two varying quantities, U and W, we need to understand av-
erages, f(U, W), of functions nonlinear jointly in these varying quantities.
The simplest two-variable nonlinear function with a joint nonlinearity is
the product f{U, W) = UW. A simple extension of the variance formula
(12.B2.3) leads to the relationship

UW=U-W + Cov(U, W), (12.B2.:6)

that is, the mean of the product differs from the product of the means by an
amount equal to the covariance of the two quantities (Ross 1997).

Special Nonlinear Forms in Spatial Models

In spatial models, we encounter nonlinear functions of twa variables of the
form f(W)U, where f{W) is a nonlinear function of W separately. Applica-
tion of formula 12.B2.6 shows that

fIW)U = W) - U + Cov(f(W), U). (12.B2.7)
This covariance in this formula can be approximated by the formula
Cov(f(W), U) = f'(W)Cov(W, U) (12.82.8)

to the same order of accuracy as the approximation 12.B2,5 by linearly ap-
proximating f(W)as f(W) + f(W)(W — W), using standard statistical ar-
guments (Rao 1973}, Substituting the approximation 12.B2.5 for f(W), we
get the overall approximation

FOVU = 1| f(W) + % FUW)Var(W) | U + f(W)Cov(W, U). (12.B2.9)
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Nonlinearities in Patch Models

In the text, under the heading of patch models, we use expression 12.B2.9
in the special case where N = W = U, and so Cov(W, U) = Var(N). Thus,
expression 12.B2.9 implies

fININ= [ fIN) + -;1!- f"(N)Var(N) {N + f'(N)Var(N)

= { fIN) + % f"(N)Var(N) + f'(ﬁ)Var(N)fﬁ}ﬁ. (12.B2.10)

But applying approximation 12.B2.5 to the function F(N) = f{(N|N, we see
also that

E(N) =~ F(N) + %F“{ﬁ)Vm(N}. (12.B2.11)

However, as F'(N) = f"(N)N = 2f'(N), we sce that expressions 12.B2.10
and 12.B2.11 are in fact identical,

Checking Approximations

The approximations given here and used in the text work best when spatial
variation is small in magnitude. Thus, they give the initial trends in the
scale transition as spatial variation is introduced to a system. For any par-
ticular application with large spatial variation, it is necessary to check the
accuracy of these approximations by some means. It is not difficult to cal-
culate nonlinear averages numerically when the probability distributions
tor spatial variation are known, and thus check these formulae. When these
distributions are not known, simulation or other numerical methods are
needed to determine them,

that the dynamics of the regional-scale population density N are given by the
equation

N, =AN=AN

] (3 "

(12.2)

where X is the average of & over all individuals in the population, and is given by
the formula A = AN,/N, = X¥_a N, /T N, . Of most importance, average indi-
vidual fitness determines regional-scale population dynamics, because equation
12.2says N,,, = AN, -

To relate average individual fitness, Lto the spatial average fitness, A, we define
the relative density at location x as v, = N /N,, that is, the density at location x
compared with the average density in the system. Then we see that A can be ex-
pressed as
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A=AV, (12.3)

the spatial average of A v . Expression 12.3 is the average of a product, which is
therefore equal to the product of the average, A - V, plus the covariance, Cov(A, v},
between them (box 12.2). As Vis necessarily 1, this means that

A=2av= A+ Cov(d,v), (12.4)

(Chesson 2000a). Thus, we see that A differs from A by the spatial covariance,
Cov(}, v), between fitness of an individual at location x and the relative density
there, which is called the fitness-density covariance (or growth-density covari-
ance in Snyder and Chesson 2003). B

For any system, equation 12.4 says that the spatial average fitness A is equal to
the average individual fitness X when the fitness-density covariance is zero. For the
host-parasitoid model, the fitness-density covariance is zero whenever host den-
sity is uncorrelated with the incidence of parasitism, which is in fact not uncom-
mon in nature (Pacala and Hassell 1991). In such cases, the conclusions above
about A are also conclusions about &; that is, sufficient spatial variation in P, sta-
bilizes the host-parasitoid interaction (box 12.1). In cases where the fitness-
density covariance is not zero, it is still possible for spatial variation 1o be stabiliz-
ing (box 12.1), but the relevant calculations have to include this covariance.

To generalize these ideas, fitness can be simply a nonlinear function of some
factor W_determined by the point x in space:

), = f(W.). (12.5)

Ideally, W_is some quantity whose spatial average is meaningful. In the host-
parasitoid example, where W_ = P, the spatial average is simply parasitoid den-
sity on the larger spatial scale, which is both perfectly meaningful and useful. Such
utility need not apply to other fitness factors; for example, choosing W, = InP,
would not help, because the spatial average of In P, is not meaningful.

General Scale Transition Formulae

For general fitness factors, a simple and standard approximation to Jensen’s in-
equality allows us to see just how the scale transition works (Chesson 1998b; box
12.2). Here, equation 12.5 means that

A= f(W)= f(W) “"%f"(WJVar(W] (12.6)

Thus, therelationship of average fitness to average W differs from the relationship
that applies locally in space by an amount that is approximately proportional to
the variance Var(W) of the fitness factor W. The proportionality constant
1/2 f"(W) is a measure of the nonlinearity of the local-scale relationship between
fitness and W, at the mean of W,.

To obtain the relationship thween average individual fitness A and W, we
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must add the fitness-density covariance to equation 12.6. As explained in box
12.2, this covariance can be approximated as

Cov(f(W),v) = f(W)Cov(W, v). (12.7)

Combining equations 12.6 and 12.7, we obtain a general purpose approximation
1o A

L= f(W)+ %—f"(W)Var{W) + f'(W)Cov(W, v). (12.8)

The first term, f{W), is simply the nonspatial formula for A, and is commonly re-
ferred to in the literature as the “mean field” We define the “scale transition” to
be the difference A — f(W), which is expressed here as the effects of variance on
local nonlinear dynamics, 1/2 f(W)Var(W), and fitness-density covariance,
f'(W)Cov(W, v).

In box 12.1, this formula is applied to the host-parasitoid model to give a
simple understanding of how & is changed by various spatial relationships. It ap-
plies generally, however, ta spatial models represented in discrete time, whether
they are spatially explicit, spatially implicit, patch models, lattice models, or con-
tinuous space models. Moreover, it does not matter whether population sizes, N,
are represented as continuous variables, or are discrete. In continuous-space
discrete-N_models, for example, N_is zero at most points in space, and takes the
value one at places where an individual is present. In continuous space models,
and in many lattice models, W, is not simply a function of population densities
and environmental factors at the point x, but instead depends on conditions
around x expressed as a summary of the densities and environmental factorsin a
neighborhood centered at x (Neuhauser and Pacala 1999), or as averages of these
factors weighted inversely with distance from x using functions called competi-
tion kernels (Pacala and Silander 1985). It should be noted, however, that ap-
proximations like those above work best when spatial variation in W_is small, and
so should be regarded primarily as giving the initial trends for the scale transition
as spatial variation is increased from small values (box 12.2).

Patch Models

In patch-model approaches to spatial dynamics, the location of an individual has
the resolution of a patch, and the dynamical equations are formulated in terms of
the output of a patch, A_N.. In the simplest models this output is just a function
of N:

AN, = F(N.). (12.9)

Previous discussions of the scale transition have emphasized paich models point-
ing out that
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N, N N M

Figure 12.2 Scale transition for a patch model with A N, = F(N}, and density varving between two
values with equal frequency, showing the construction of one point (@) on the relationship between
F(N) and N. Note that the regional-scale output, N,,, = F(N,} = LN, lies below the output given by
the local relationship, F(N,). The particular curve represented here is the logistic.

N.,=AN=~FN)+ % F*(N)Var(N). (12.10)

Figure 12.2 shows how this works when N varies between just two values, for ex-
ample if the regional scale consists of just two local-scale patches.

The curve in figure 12.2 is the logistic equation, that is, F(N) = N[1 + r(1 —
NiK)], for which F"(N) = —2r/K. From equation 12.10, we obtain an equation
for population dynamics in the form

N. = N{1+r{1 - ﬁ)] - L 2

N,_, N,II r(l < KVar(N), (12.11)
which is exact because the logistic equation is quadratic and so approximation
(12.10) is exact. In box 12.2 it is shown that these patch-model approximations
for the scale transition are special cases of the previous approximations focusing
on A. Note that here FIN) = f(N)N, W= N, Var(W) = Var(N) = Cov(W, N) =
NCov(W, v), and so equation 12.8 for A implies



2005. Holyoak, M, Leibold, M.A., Holt, R.D., eds, Metacommunities: spatial
dynamics and ecological communities, pp 279-306

292 Chapter Twelve
N, =AiN.=f(N)N.+ % FUNIVAe(NON, + f(NDVar(N),  (12.12)

where the first term of equation 12.12 is the mean field, and the second two terms
are scale transition terms summing to 1/2 F*(N)Var(N) but dividing this quan-
tity into the effect of variance in nonlinear fitness and the effect of fitness-density
covariance. _

For the logistic, the fitness function f is linear and so f”(N) = 0. Thus, in the
logistic all the effects of the scale transition come from the fitness-density covari-
ance. Substituting the logistic formula f” (N) = —r/Kinto equation 12.12 repro-
duces the previous patch-model formula (equation 12.11) exactly. Alternatives to
the logistic, such as the Ricker model (Chesson 1998a), and the Ayala-Gilpin
8-logistic model (Chesson 1991b) have nonlinear fitness functions, that is, f"(N)
# 0, and all terms of the regional equation 12.12 are nonzero with these models
for local population dynamics.

Spatial Variance, Population Dynamics, and Dispersal

The development above omits explicit consideration of dispersal. By focusing on
A, or the output of a patch, A_N,, the equations are correct for any mede of dis-
persal provided any mortality that occurs during dispersal is factored into A_
(Chesson 1998a). The effects of dispersal are expressed by the relevant spatial
variances and covariances, which we have left unspecified. To allow population
dynamics to be fully understood, the way these variances and covariances change
over time, and especially how they depend on mean population densities, needs
to be known. Determining such relationships is the subject of moment closure
approximation techniques (Bolker and Pacala 1997), and can be difficult and
highly complex because these relationships depend not only on dispersal but also
on local dynamics and environmental variation. However, in certain cases, these
relationships are simply determined (Chesson 1998a). For example, if most indi-
viduals disperse, and dispersal is over long distances with the physical environ-
ment determining where individuals concentrate, then N_, can be modeled as

N,=UN, (12.13)

where U_varies in space (and possibly in time also) encoding features of the phys-
ical environment that influence dispersal to location x. Here the relative density,
v,, is simply U, With this model Var(N) = Var( U)Nf, that is, the variance is pro-
portional to the square of mean density, and so the coefficient of variation of den-
sity in space is constant over time, and determined by spatial variation in the
physical environment. In contrast, when patchiness in space is determined by
demographic stochasticity rather than environmental variation, long-distance
dispersal implies that Var{N) is proportional to N, (Chesson 1998a).
Substituting the model (equation 12.13) for the variance into the logistic for-
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mula (equation 12.11), leads to regional-scale dynamics that are logistic like the
local-scale dynamics. Spatial variance has the effect of strengthening the density
dependence at the regional scale, which is revealed as a lowered carrying capacity:
The new value of Kequals the old value divided by (1 + Var(U)). The regional dy-
namics of the system are altered quantitatively by spatial variation, but the rules
for regional dynamics do not differ qualitatively from the rules applicable to in-
puts and outputs of a patch at the local scale. However, when the linear fitness
function, f(N), of the logistic model is replaced by the more realistic nonlinear
f(N) of the Ricker model, regional-scale dynamics can be changed qualitatively
by environmentally-dependent dispersal (Chesson 1998a). Although local scale
dynamics may be chaotic in the Ricker model, environmentally-dependent dis-
persal can lead to highly stable regional dynamics. Similar, though much weaker
effects, are possible from demographic stochasticity (Var(N) proportional to N,),
in both the logistic model (Chesson 1998b) and the Ricker model (Chesson
1998a).

Continuous Time

From the perspective of the scale transition, the distinction between discrete time
and continuous time is not large. In continuous-time models, A is replaced by the
local per capita growth rate r_ = (dN,/dt)/N_as the fitness measure, with average
individual fitness now denoted r. The growth of a population at the regional scale
then takes the form
N — _
7=rN=r-N=lr+Cov(r,v)}N. (12.14)
t
In cases where r_has the representation r_ = f(W,), we have the general quadratic
approximation

dﬁ ~ f(W)N + % F/(W)Var(W) + f(W)Cov(W,V)IN,  (12.15)
t 2

which specializes to forms analogous to equations 12.10 and 12.12 in the appro-
priate patch-model circumnstances. Here f(W)N is the mean field, and the re-
maining terms give the scale transition in terms of local nonlinearity and fitness-
density covariance.

Lotka-Volterra Competition Models

A particular illustration of the formula (12.15) has been given by Bolker and
Pacala (1999) for a continuous space Lotka-Volterra competition model. In their
model, W, represents the total of intraspecific and interspecific competition ex-
perienced by an individual at x, which is assumed to be linearly related to the den-
sities of competitors in neighborhoods centered on the point x. Their model can
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be simplified to a patch model without loss of information for our purposes. Then
W, can be defined as a, N, + a,N,, where o denotes competition coefficients in
the form advocated in Chesson (2000b), and r, = fiW,) = r(1 - W), where r,
is the intrinsic rate of increase for species i. Thus, the local dynamical equation in

the absence of dispersal is

% =r(l=WIN,=r{l —a,N,— uiij] N, (12.16)
t

When expressed in this form, the criteria for species coexistence on the local scale
are simply

o e, > 1,0 % j, (12.17)

that is, local-scale intraspecific competition must exceed local-scale interspecific
competition Chesson (2000b).
As f is linear here, equation 12,15 is exact and reduces to

= r {1 = o,N, - ,N} N, — r,{a, Var(N,)) + a,Cov(N, N)}. (12.18)

s | i

(Lloyd and White 1980 produced a similar expression using the concept of “mean
crowding,” which is an important precursor to scale transition concepts, but ap-
plies only to linear fitness functions.) In equation 12.18, the mean field is r, {1 —
a,N, — a,N} N, that is, the Lotka-Volterra equations (12.16) with regional vari-
ables substituted for local variables. The linearity of f; means that the scale transi-
tion is simply the fitness-density covariance. Bolker and Pacala (1999) focus on
spatial variation that arises from demographic stochasticity and spatially local
dispersal, and uncover a variety of situations where the fitness-density covariance
is responsible for species coexistence. For example, they note that a locally dis-
persing species with a high r, can coexist with a superior competitor that lacks
these traits even though the superior species excludes the other in the nonspatial
case.

The most difficult feature of the Bolker and Pacala analysis is derivation of
dynamical equations for the relevant spatial variances and covariances using
moment closure approximation (see “Spatial Variance, Population Dynamics, and
Dispersal” above). For a much simpler illustration of how coexistence may result
from the fitness-density covariance terms in equation 12.18, assume that disper-
sal is rapid, and influenced by the physical environment so that N, is well ap-
proximated by U_N,, as in the previous section. Here the physical environmental
effects encoded in U_ may differ between species. _

Defining o, = Var(U,) and o, = Cov(U,, U, ) we have Var(N,) = o,N7, and
Cov(N, N) = o,N,N,. Substituting into equation 12.18, we obtain

U
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% =rfl — a1 + 6,)N,— a,(1 + 5NN (12.19)
’ .

Here the dynamics at the regional scale are again given by Lotka-Volterra equa-
tions, but the competition coefficients differ from the local scale coefficients: « is
replaced by a,(1 + o,) and o, is replaced by a,(1 + o). Applying standard Lotka-
Volterra coexistence criteria from Chesson (2000b), it follows that the species co-

existif
a(l +o a.  1+o,
i ts) > 1, orequivalently £ > —2 j# j, (12.20)
a,l + o) g 1toy

The left hand inequality simply says that regional-scale intraspecific competition
must exceed regional-scale interspecific competition. Variation in space modifies
the regional-scale coefficients over the local coefficients, necessarily increasing
regional-scale intraspecific competition, ;{1 + o), because 6, is a variance and
must be positive. However, regional-scale interspecific competition, a,(1 + o),
need not be increased because o, can be negative or zero. Moreover, the covari-
ance o, equals pV 0,0, where p is the correlation in space between N, and N

A zero value of p means that the species use space independently, and the
covariances are also zero. A p of 1, on the other hand, means identical use of space
by the two species; and if the variances are equal, the covariances are the same as
the variances. Then spatial variation terms cancel out of criterion 12.20 indicat-
ing for that case an absence of any effect of spatial variation on coexistence. How-
ever, identical use of space is unlikely, meaning that correlations in space are usu-
ally less than 1. Thus, whenever the variances o, are similar for the two species
(i.e., the species have similar coefficients of variation of density) the ratio (1 +
6,)/(1 + o) is less than 1, and the criterion 12.20 is more easily satisfied. In par-
ticular, coexistence can occur at the region-scale even when local-scale inter-
specific competition exceeds local-scale intraspecific competition.

This example is just one illustration of how differences between species in the
use of space can contribute to species coexistence. This possibility was first eluci-
dated in spatial Lotka-Volterra models with rapid dispersal by Shigesada and
Roughgarden (1982). Analogous to these spatial Lotka-Volterra competition
models are discrete-time spatial models of insects competing for patchily distrib-
uted resources (Atkinson and Shorrocks 1981; Ives 1988). Coexistence is known
to result in these models when intraspecific spatial aggregation is stronger than
interspecific aggregation. Such spatial aggregation can be measured by variances
and covariances analogous to ¢, and ¢, given here (Ives 1991). With few excep-
tions (Heard and Remer 1997; Remer and Heard 1998), the spatial coexistence
mechanism in these models has been found to be equivalent to spatial niche
differences (Green 1986; Chesson 1991; Hartley and Shorrocks 2002) or the spa-
tial storage effect (Chesson 2000a).
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However, spatial variation need not always promote coexistence in these sorts
of models. For example, the criteria (12.20) imply that coexistence might be con-
verted into competitive exclusion when species covary positively in space and
have very different spatial variances. Moreover, in other models for dispersal, such
as slow short-distance dispersal, heavily influenced by demographic stochasticity
(Bolker and Pacala 1999), the Lotka-Volterra equations are not recovered at the
regional level, which means that regional dynamics are qualitatively different
from local dynamics, In particular, the regional-level competition coefficients
are density-dependent, and the regional-level coexistence criteria are far more
complex than those above.

Coexistence Mechanisms in a Spatially Variable Environment

Scale transition ideas have been developed most extensively in the formulation
and analysis of mechanisms of competitive coexistence in a variable environment
(Chesson 2000a; Snyder and Chesson 2003). In variable-environment competi-
tion theory, particular biological processes generate particular types of nonlin-
earityand define distinct classes of coexistence mechanism, Aspects of this theory
are illustrated here using the annual plant model defined in table 12.1.

As defined by equation 12.T1.1, the fitness of an individual seed involves two
pathways in the life cycle. First, in any given year a seed may remain dormant, and
either survive to the next year or perish. Second, it may germinate, then poten-
tially survive as a seedling, grow, experience competition, and produce seed, some
of which may perish before the next year. Each of these events occurs with a prob-
ability or magnitude determined by the life-history parameters defined in the
table.

Each of the life-history parameters in the table could vary spatially with the en-
vironment in ways that differ between species, defining species-specific responses
to environmental conditions. Competition is also spatially variable, and its mag-
nitude at location x is expressed in the model by the quantity C_(the competitive
response), which combines the effects of intraspecific and interspecific competi-
tion for any species. However, we assume that C, is the same for each species, pre-
cluding the possibility of coexistence in the absence of variation in fitness in space
or time. Although not varying with species, C_varies in space because population
densities vary in space as a consequence of spatial variation in life-history param-
eters. In addition, and more importantly for species coexistence, C, may be spa-
tially variable because it is directly a function of two life-history parameters that
may vary in space. These life-history parameters are the germination fraction G,
which affects the initial number of competing seedlings, and V, which expresses
seedling survival and growth, and hence demand for resources by an individual
seedling as a function of the local physical environmental conditions. Thus, vari-
ation in Gand V, dueto spatial variation in the environment, of necessity leads to
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Table 12.1 Model of an annual plant community

N1 The number of seeds in the seed bank of species j in patch x at
the beginning of year ¢.
AN, (1) The amount of new seed produced by sceds that germinate,

plus the survivors of the seeds that do not germinate by the
end of year tfor species jand patch x.

o o, UNVG,
M) =35l = G)+—EEEL (2T

=

with the following notation:

A (0 The total output of a seed of species j at site x during year t
{survival plus new production).

5, Survival of ungerminated seed.

1-G Fraction of seed not germinating.

U, Fraction of seed production of species j successfully

incorporated into the seed bank by the beginning of the next
year (seed not lost to predation, pathogens, or other means
before being mixed into the soil surface).

Y, Seed production per surviving seedling of unit vigor in the
absence of competition.

v, Seedling survival and vigor (size).

G, Fraction of seed of species j germinating.

a Competitive effect of one seedling of species 1.

C.=1+XaVGN,1) Reduction in per capita seed output due to competition.

fE, C)=3s(1-G)+ UYE G/IC, Example of ffor the case where E_is V,

A o Reference values of E, and C, chosen near their means
{Chesson 2000a).

€ =f B,y —1 Standard environmental response,

% =1-flE",C) Standard competitive response.

the phenomenon of covariance between environment and competition (Chesson
2000a), which has a critical role in species coexistence, as we shall see.

To illustrate the behavior of the model under a variety of contrasting circum-
stances, we consider some simple extreme environmental scenarios (Chesson
1985). The first and simplest scenario is the case of pure spatiotemporal environ-
mental variation where the environment fluctuates independently in space and
time and, as a consequence, averages out to a constant in space and in time. Sec-
ond is the case of pure spatial variation where the physical environment varies
only spatially.

Several simplifying assumptions are introduced to facilitate analysis. First we
consider spatial variation in just one parameter at a time, and we assume that the
species have identical parameters except for those varying with the environment,
which we term “environmental responses.” Environmental responses are as-
sumed here to differ between species in their means but not in their variances.
Second, we assume that environmental responses vary independently between
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species over space or space and time. Third, we assume a patch model where
plants interact with each other homogeneously within patches, but disperse be-
tween patches. Fourth, just two kinds of dispersal are considered: (a) widespread
dispersal where all new seed is divided evenly between patches, and (b) wide-
spread dispersal with local retention where a fixed fraction p of the new seed is re-
tained in the natal patch. The number of patches will be assumed to be effectively
infinite. Finally, we restrict attention to just two species. Much more general treat-
ments of species coexistence in spatially variable environments are possible
(Chesson 2000a), but require more detailed analysis than can be given here.

To analyze the model, we must first express the fitness of an individual in terms
of spatially varying factors. Thus, using the equation 12.T1.1 in table 12.1, we
write the fitness of an individual of any species jas a function, f(E, C,), of the en-
vironmental response, which we denote generically as E_, and the competitive re-
sponse, C . Then, to provide a unified treatment of models with different spatially
varying life-history parameters, and indeed different basic models, these variables
are transformed into the new variables, €, and ‘¢, defined in table 12.1. These
new variables are increasing functions respectively of E_and C,, reflect the same
underlying biological processes, and contain the same information. To define
them (Chesson 2000a), one first chooses values E* and C” of E_ and C,_ near their
means with the property that A, = | when (E,, C,) = (E*, C*). Then %_is the
change in A, as E, moves away from E* and €_is the change in -\, as C, moves
away from C*. These definitions mean that the effects of E, and C, are translated
into the separate effects of environment and competition on 4. To obtain the
joint effects of environment and competition on A all that is needed in addition
to € and € isthe interaction between environment and competition. It follows
that &_is given in terms of €_and ‘€, by the generic equation,

A=1+ ?SJ“ -6, +716.%., (12.21)

where the single parameter y is negative and defines how strongly E, and C,
(equivalently, & _and ) interact in their determination of A, (Chesson 2000a).
This equation is true regardless of which life history parameter is represented by
E, and regardless of the form of competition.

- Aproduct such as €, € _in equation 12.21 is the mathematically simplest form
of an interaction between two variables in their determination of a third variable.
An interaction between two variables is also a special form of multidimensional
nonlinearity. The particular interaction in equation (12.21) stems directly from
the product of E, and 1/C, that occurs in A, when E_is any of the life-history
parameters U, Y, V, or Gdefinedin table 12.1. This interaction occurs because the
product UY VG determines how much new seed an individual seed would return
to the seed bank the following vear in the absence of competition, and this
amount is assumed to be reduced by a given proportion for a given magnitude of
competition. Thus, if two locations difter in the value of UYVG, the same mag-
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nitude of competition would have a larger effect at the location with the higher
value of UYVG.

To understand regional-scale dynamics of this model we need &, which of
course splits into the spatial average fitness and the fitness-density covariance: &
= & + Cov(R, v) (equation 12.4). For A, equation 12.21 must be averaged over
space. As discussed in box 12.2, the product nonlinearity € €, introduces a co-
variance term into 4, so that

A=1+%—€+7E-€+yCov(¥,6). (12.22)

Equation 12.22 simplifies if we assume that environmental fluctuations are small
in magnitude with small average differences between species, for then the term
€, -6 is small in comparison with the other terms (Chesson 2000a), and can be
neglected. Adding in the fitness-density covariance, we obtain

A, ~1+%—%+yCov(€,%) + Cov(i,v). (12.23)

Expression 12.23 can now be used to study species coexistence by invasibility
analysis (Chesson 2000a). In an invasibility analysis, one of the species, “the in-
vader” labeled 1, is set to zero density everywhere in space, and the other species,
“the resident” labeled r, has dynamics that are independent of the invader. We
wish to see if the invader can increase and enter the system, which means that it
must have a value of A greater than 1. The species coexist according to the invasi-
bility criterion if they can each increase as invaders.

Differences between resident and invader in the two covariance terms of ex-
pression 12.23 are critical to species coexistence. Table 12.2 gives the signs of these
covariance terms for various scenarios where the sign can be determined, without
further information, by the methods of Chesson (2000a). Full details will be pub-
lished elsewhere, but in many cases, as shown here, the entries in the table can be
determined quite simply and understood intuitively. Note that under the small
variation assumption invoked here, the signs of covariances involving the com-
petitive and environmental responses, €_and €, are the same as those involving
the original responses, E, and C,. Thus, arguments relating to E, and C, carry
overto €, and € .

Resident covariance between environment and competition, Cov(¥§ , €), is al-
ways positive when the competitive response C_is directly a function of the envi-
ronmental response £_ . However, it can also be positive when Cov{§ , v ) is posi-
tive, that is, when population density builds up in locations that are favorable
based on the response of the organisms to the physical environment. The invader
always has zero covariance between environment and competition because the
invader’s environmental response is never related to the cause of competition—
when it has zero density, C_is not a function of the invader’s environmental re-
sponse, and we have assumed that its environmental response is not correlated
with that of the resident. However, covariance between fitness and density can be
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Table 12.2 Results of the annual plant competition model

Covariance
between Covariance
Typeof environment and between ﬁt.ness and
Variable environmental Type of COMPEILOn Hesity
parameter variation dispersal resident  invader  resident  invader
v spatiotemporal widespread + 0 0 0
{st) (w)
st local retention (1) + 0 - +
Pure spatial {ps) w + ] 1] [}
ps 1 + 0 + +
G st w i 0 — 0
i + i] = ?
ps w o 0 = -
1 + 0 ? ?
Yuv st w 0 0 0 0
1 0 0 b +
ps w 0 0 0 0
1 + 4] + +

positive for the invader in cases with local retention and either sort of spatial vari-
ation. Local retention allows invader density to build up in environmentally or
competitively favorable locations. (Although absolute invader density is zero for
the invader, relative invader density is not: it is the limit of the ratio of two quan-
tities each approaching zero.) For the resident, local retention mostly gives nega-
tive fitness-density covariance when environmental variation is spatio-temporal.
This occurs because density builds up locally by chance runs of favorable local en-
vironments, increasing local competition. Since the current density is determined
by previous environments, which are uncorrelated with the current environment,
the component of the growth rate that is correlated with density is simply com-

petition; therefore fitness-density covariance is necessarily negative,
To see if &, is greater than 1 so that an invader can be successful, one notes that
A for aresident (A ) must be equal to 1, assuming that the species comes to equi-
librium in the region as a whole (but not necessarily locally in space). Note also
that ‘€ and vy are the same for the invader and resident under the assumptions
above, and so subtracting the resident A from the invader % leads to the equation
L —1=AE+Al+ Ax (12.24)

Where

AE=%¢ -, (12.25)

is a comparison of mean responses to the environment,



2005. Holyoak, M, Leibold, M.A., Holt, R.D., eds, Metacommunities: spatial
dynamics and ecological communities, pp 279-306

Scale Transition Theory 301
Al = (—1)|Cov(¥,,€) — Cov($§,, )] (12.26)

measures the spatial storage effect, and
Ax = Cov(k,v) — Cov(r,,v,), (12.27)

compares the fitness-density covariance for the invader and resident.

The three different terms in equation 12.24 have different effects on species co-
existence, representing different classes of mechanism. The first term, AE, would
yield competitive exclusion in the absence of spatial variation. It is an average fit-
ness comparison between species (Chesson 2000b) and is the mean-field compo-
nent. The second two terms, which are scale transition terms, have the potential
to be positive. Indeed, from table 12.2 there are many instances where Al s clearly
positive and several where Ax is clearly positive. These terms therefore have the
capability of negating the average fitness differences, thereby counteracting the
mean-field component and leading to situations where &, — 1 is positive for both
species, permitting them to coexist as determined by the invasibility criterion.

The clearest situation applies to spatial variation in the vigor parameter V. Spa-
tial environmental variation affecting the growing plant feeds into competition
because bigger plants use more resources. Thus, for the resident species, there is
always positive covariance between its environmental response and competitive
response. The assumption that the two species have statistically independent re-
sponses to the environment means that the invader’s environmental response is
independent of its competitive response, which is determined by the density and
environmental response of the resident. Thus, Al = (—y)Cov(¥€ , €), which is
positive. With widespread dispersal of seeds, the local environment leaves no sig-
nature on population density, and so in that case Cov(,, v, is simply zero. Thus,
a positive spatial storage effect is found; if this is large enough, it would overcome
average differences in the seedling survival rate, measured by AE, and permit the
two species to coexist,

With local retention of seed, some effects on Cov(A, v,) are possible. For ex-
ample, with spatiotemporal variation, the local resident density will reflect some
past values of V, which will affect competition. However, density will not be cor-
related with the environmental component of A, because of the independence of
the environment over time. The net result is negative fitness-density covariance
for the resident. The invader’s relative density will be negatively related to that of
the resident, reflecting previous competition. As a consequence, a weak positive
Cov{A,, v} is expected. Thus, Ax will be positive, promoting coexistence.

Germination fraction variation is similar to variation in vigor in that it always
leads to a positive storage effect through its effects on covariance between envi-
ronment, However, its effects on fitness-density covariance are more complicated
because higher local values of G cause local depletion of the seed bank. These
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cause changes in relative density regardless of local retention. Thus, only in the
case of spatiotemporal variation with widespread dispersal is a clear conclusion
possible. In that case the positive storage effect (AI) combines with positive Ak to
give an overall fitness promoting effect of variation in the germination fraction.

The final particular case of note is variation in the final yield parameter Y
(given vigor) or survival of seed predation, U. Variation in these parameters is as-
sumed not to directly affect competition. This means that covariance between en-
vironment and competition does not occur in the case of spatiotemporal varia-
tion regardless of dispersal. However, it does occur in the case of pure spatial
variation with local retention because local resident density increases with the
fixed favorability of the environment, increasing local competition, and causing
covariance between environment and competition. However, covariance between
fitness and density also results, Although this is positive for both resident and in-
vader, it is shown in Chesson (2000a) that in the absence of a persistent seed bank
(G = 1,0r s = 0), Ak is approximately 2[p/(1 — p)]{Cov(¥€ , €) — Cov(€,, ‘€)},
where p is the fraction of seed retained at the site. (Note that in Chesson (2000a)
the factor 2 was inadvertently omitted.) Thus, Ax is positive, is proportional to the
storage effect, and reinforces it, promoting coexistence.

Conclusions

Scale transition theory focuses on the mechanisms by which the rules for popula-
tion dynamics on local scales become modified to produce different rules for dy-
namics on larger spatial scales. Many of the specific issues discussed here as part
of scale-transition theory pervade analyses of spatial ecological models, including
models formally identified as metacommunity models. The difference here is the
focus on the interaction between nonlinearity in local population dynamics and
spatial variation as the explanation of the important outcomes on larger spatial
scales. In essence, the material presented here implies a research program in
which the interaction between nonlinearities and spatial variation is explored for
its mechanistic and biological content. Nonlinearities often arise from specific
biological postulates such as the nature of interactions within and between
species (Chesson 2001). The properties of these nonlinearities identify the kinds
of patterns of spatial variation that are important to outcomes at the scale of the
whole system.

In the metacommunity context, interactions between species, and between
species and their environment, lead to particular kinds of nonlinearity. For ex-
ample, in host-parasitoid systems, we have seen how the relationship between
percent parasitism and parasitoid density is a critical nonlinearity arising from as-
sumptions about parasitoid foraging (Hassell 2000) that implicates the coefficient
of variation of parasitoid density as a critical aspect of spatial variation for pre-
dicting the dynamics of the metacommunity (box 12.1). In studies of competi-
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tion in a spatially variable environment, we have seen that a two-dimensional
nonlinearity expressing the interaction between responses to the physical envi-
ronment and responses to competition arises from life-history postulates. This
nonlinearity implicates the covariance in space between the response to the envi-
ronment and the response to competition as a critical aspect of spatial variation
for coexistence at the regional scale. This covariance, together with the nonlin-
earity that makes it important, defines the species coexistence mechanism called
the spatial storage effect.

We have seen here also an important distinction between average individual
fitness, denoted by A, and the spatial average of fitness A. This distinction was first
discussed in the scientific literature by Lloyd (1967), who introduced the concept
of mean crowding, applicable to the logistic model. Fitness-density covariance
discussed here generalizes Lloyd’s concept, and itself reflects a two-dimensional
nonlinearity, the product of fitness and local density. This nonlinearity is present
in all spatially structured systems, and we have seen how the fitness-density co-
variance arising from it modifies the stability conditions in host-parasitoid
models, supplements the spatial storage effect in spatial competition models, and
introduces a coexistence mechanism with properties very similar to the spatial
storage effect in spatial Lotka-Volterra and similar models.

The role of the interaction between nonlinearities and spatial variation is less
apparent in the approach to metacommunities that describes local densities
simply in terms of presence and absence of a species (Nee et al. 1997). Nonlineari-
ties in local population dynamics can only be represented in these models in lim-
ited and somewhat extreme ways because of the limitations on the state variables
for local population densities. Nevertheless, nonlinearities in these presence-
absence models have critical roles in the outcomes at the metacommunity scale
(Chesson 2001),

The full scale transition program involves linkages between analytical meth-
ods, simulation and numerical methods, and experimental and observational ap-
proaches to understanding metacommunities. Analytical theory, as presented
here, identifies the key nonlinearities and spatial variation associated with it. This
stage is important especially in exploring the biclogical origin of nonlinearities
and their mechanistic role. The nature of spatial variation has a critical mecha-
nistic role, as most strikingly illustrated by the discussion of competition in a
variable environment where the pattern of covariance between environment and
competition arises from the way species relate to each other and to the physical
environment. Techniques of moment closure (Bolker and Pacala 1999), pair ap-
proximation (Ellner et al. 1998}, and Fourier analysis (Snyder and Chesson 2003)
have the potential to expand understanding in this area by approximate analyti-
cal and numerical techniques.

In areas where approximations fail or need to be supplemented, simulation
approaches can provide knowledge of the relevant variances and covariances or
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other measures of spatial variation applicable to the relevant nonlinearities.
When simulation must be used for this purpose, it will generally be in association
with analytical understanding of the nonlinearities and the mechanisms, as pre-
sented here. Thus, rather than simply use simulation to solve a problem, such as
whether the species coexist, one can ask instead which mechanisms are involved.
These mechanisms are quantified by calculating the measures of these mecha-
nisms, such as the quantities A/ and Ax in the assessment of species coexistence
in a variable environment. Thus, the relative importance of different mechanisms
is assessed quantitatively, and the comparison between different situations and
different models is greatly facilitated.

Of most importance, this program extends to the empirical level, as illustrated
by Melbourne et al. in chapter 13. Elements of models can be fitted to data to
quantify the relevant nonlinearities. Spatial variances and covariances are found
using variations on standard experimental and sampling designs. The same con-
cepts and same quantities are used at all levels in the scale transition program, and
so the ability to measure and test mechanisms quantitatively is greatly enhanced.
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