
Ecology, 87(6), 2006, pp. 1478–1488
� 2006 by the Ecological Society of America

THE SCALE TRANSITION: SCALING UP POPULATION DYNAMICS
WITH FIELD DATA

BRETT A. MELBOURNE
1,3

AND PETER CHESSON
2

1Center for Population Biology, University of California, Davis, California 95616 USA
2Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721 USA

Abstract. Applying the recent developments of scale transition theory, we demonstrate a
systematic approach to the problem of scaling up local scale interactions to regional scale
dynamics with field data. Dynamics on larger spatial scales differ from the predictions of local
dynamics alone because of an interaction between nonlinearity in population dynamics at the
local scale and spatial variation in density and environmental factors over the regional
population. Our systematic approach to scaling up involves the following five steps. First,
define a model for dynamics on the local spatial scale. Second, apply scale transition theory to
identify key interactions between nonlinearity and spatial variation that translate local
dynamics to the regional scale. Third, measure local-scale model parameters to determine
nonlinearities at local scales. Fourth, measure spatial variation. Finally, combine nonlinearity
and variation measures to obtain the scale transition. Using field data for the dynamics of
grazers and periphyton in a freshwater stream, we show that scale transition terms greatly
reduce the growth and equilibrium density of the periphyton population at the stream scale
compared to rock scale populations, confirming the importance of spatial mechanisms to
stream-scale dynamics.
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INTRODUCTION

A central problem in spatial ecology is predicting large-

scale population dynamics from small-scale processes,

and understanding why large-scale outcomes contradict

small-scale trends. Development of theory in this area

over several decades has been substantial but has

outpaced application to field systems (Steinberg and

Kareiva 1997). Scale transition theory (Chesson 1978,

1996, 1998a, b, Chesson et al. 2005) is a powerful new

approach to understanding spatiotemporal dynamics that

leads naturally to empirical assessment. Here, we apply

scale transition theory to field data for stream periphyton

and grazers, to predict large-scale dynamics and to

quantify mechanisms that drive the most important

changes to population dynamics on the larger scale.

Scale transition theory shows that the most important

changes in dynamics at the larger scale can be attributed

to interactions between local-scale nonlinear population

dynamics and spatial variation in either population

density or the physical environment (Chesson 1978,

1996, 1998a, b, Chesson et al. 2005). Large-scale

dynamical outcomes that contradict small-scale predic-

tions can be traced to such interactions in a wide range of

spatiotemporal models, including changes to stability,

persistence, coexistence, and carrying capacity (De Jong

1979, Ives 1988, Hassell et al. 1991, Bolker and Pacala

1997, 1999, Pacala and Levin 1997, Chesson 2000,

Snyder and Chesson 2003, 2004). As it is straightforward

to quantify local nonlinearities and spatial variation, it is

possible to measure their theoretically predicted inter-

action for specific field systems, as we have shown with

simulated data (Melbourne and Chesson 2005). If spatial

models are correct in their predictions that variation in

environmental conditions and population densities

explain important dynamical phenomena, such as

stability and coexistence, then a properly measured

interaction should be of the right magnitude and sign,

and should change with system parameters in a way that

explains the relevant phenomenon. In this study, we do

not focus on a specific dynamical phenomenon. Instead,

we provide proof of concept by measuring the interaction

between nonlinearity and variation in a consumer-

resource system and determining its effect on resource

dynamics at the larger scale.

Interactions between individuals, both within and

between species, invariably lead to nonlinear dynamics,

which can be defined by a model for local dynamics with

parameters that can be measured from field data.

According to scale transition theory, when densities vary

in space, and in some cases when environmental factors

vary in space, large-scale dynamics differ from the

predictions of local-scale dynamics due to interactions

between spatial variation and nonlinearities in local

dynamics (Chesson et al. 2005). Scale transition theory

identifies these critical interactions and defines the

measures of variation needed from field data to scale up.

The theory then shows how these measures of variation
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combine with measures of nonlinearity to determine the

change in dynamics from the local to the regional scale,

that is, the scale transition. Hence, a systematic approach

to studying the scale transition has five steps: (1) define a

model for dynamics on the local spatial scale, (2) apply

scale transition theory to identify key interactions

between nonlinearity and spatial variation that translate

local dynamics to the regional scale, (3) measure local-

scale model parameters to determine nonlinearities at

local scales, (4) measure spatial variation, (5) combine

nonlinearity and variation measures to obtain the scale

transition. We describe the first two steps here, applied to

stream periphyton and its invertebrate grazers. The

remaining steps are described in Methods and Results.

Model for dynamics on the local scale

We distinguish two scales: the rock scale, correspond-

ing to the upper surface (approximately 10–20 cm

diameter) of a rock on the stream bed; and the stream

scale (approximately 5 km length of stream). We shall

consider the local scale to be the rock and the regional

scale the stream (see Chesson 1996 and 1998a for how to

choose scales). We begin by formulating a general model

for local dynamics, with submodels for specific compo-

nents to be determined later. At the rock scale,

periphyton dynamics are determined by three processes:

periphyton growth, consumption by grazers, and

dispersal of periphyton to and from the rock, such that

dRx

dt
¼ gðRxÞ � f ðRxÞCx þ IR;x � ER;x ð1Þ

where R is resource density (periphyton biomass per unit

area), t is time, x indexes rocks, C is consumer density

(grazer biomass per unit area), and subscript R denotes

resource. The function g(R) describes periphyton growth

rate (biomass per unit area per unit time) as a function

of periphyton density, and f(R)C describes the rate of

periphyton consumption by grazers, where f(R) is the

functional response of a grazer. In writing consumption

as f(R)C, we assume that grazer consumption is

proportional to grazer density, which means that grazers

do not interact with each other directly through

interference but only indirectly by consuming periph-

yton, a standard assumption (Nisbet et al. 1997).

Periphyton dispersal to and from rock x is modeled by

the generic functions IR,x (immigration) and ER,x

(emigration), to which any set of dispersal rules could

be assigned, provided that dispersal mortality is factored

into the growth rate terms (Chesson 1998a). For

example, periphyton immigration rate, IR, at rock x

might depend on the output from nearby rocks and the

velocity and direction of stream currents. A model for

grazer dynamics on rock x is

dCx

dt
¼

�
cf ðRxÞ � m

�
Cx þ IC;x � EC;x ð2Þ

where c is the conversion efficiency of grazers, m is

grazer mortality, and grazer movement is modeled by

the generic functions IC,x and EC,x. Thus, a model for

the local dynamics of periphyton and grazers consists of

the coupled Eqs. 1 and 2. To match the time scale of

field experiments (i.e., two to three weeks), we reformu-

late the model for grazer dynamics (Eq. 2) to a short

time scale, over which the net gain in grazer density due

to the consumption of periphyton is negligible (Nisbet et

al. 1997). Thus, we set (cf(Rx)�m)Cx¼ 0, since the local

dynamics of grazers mostly reflects movement to and

from the rock. For example, movement might be a result

of foraging decisions made by individual grazers, or a

response to environmental conditions, stream flow, or

predators at the rock. To fully specify the model, we

need to specify submodels for g(R) and f(R) but for now

we leave the model in its general form and proceed to

scale up. As we will show, there is no need to specify the

periphyton dispersal and grazer movement functions.

Scale transition theory:

nonlinearity-variation interactions

We wish to scale up from the local scale of a rock to

the regional scale of a stream, where rocks are now

linked by dispersal of periphyton and movement of

grazers. In general, population densities on a large scale

can be expressed as averages of densities on smaller

scales (Chesson 1998a). Here, the regional density is the

average of the rock-scale densities, and so the regional

dynamics are obtained by averaging both sides of Eqs. 1

and 2:

dR

dt
¼ gðRÞ � f ðRÞCþ IR � ER ¼ gðRÞ � f ðRÞC þ IR � ER

¼ gðRÞ � f ðRÞC

dC

dt
¼ IC � EC ¼ IC � EC ¼ 0 ð3Þ

where the overbars indicate the spatial average. Thus,

the rate of change in periphyton density at the regional

scale is the average of the local rock-scale functions for

growth, consumption, and dispersal. As averages are

additive, the regional average simplifies to the separate

averages for growth, consumption, and dispersal (Eq. 3).

At the stream scale, the system can be considered

effectively closed (as defined by Chesson 1996). For

example, grazers might move extensively within a stream

by a range of dispersal mechanisms (Hershey et al. 1993)

but there is very little movement of larval grazers

between streams (Downes and Keough 1998). Between-

catchment migration by adults is not relevant on the

short time-scale considered here. Thus, individuals that

leave a rock enter another rock within the stream, so

that the total leaving rocks is equal to the total entering

rocks (i.e., I � E ¼ 0), while we assume that dispersal

mortality is built into the local functions. Regardless of

the exact mode of dispersal, the dispersal functions

disappear at the regional scale (Eq. 3).
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To find the scale transition, we express the regional

dynamics as being composed of the local dynamics plus

scale transition terms that account for scaling up (see

Appendix A):

dR

dt
¼ gðRÞ � f ðRÞC|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

mean-field model

þ Tg|{z}
a

� Tf C|{z}
b

� TfC|{z}
c

; ð4Þ

where Tg and TfC are scale transition terms arising

respectively from nonlinearity in periphyton growth and

nonlinearity in the consumer functional response. The

final scale transition term, TfC, arises because the

consumption rate is a product of the consumer func-

tional response and consumer density. The product of

two variables is a nonlinearity in two dimensions (see

Chesson et al. 2005). Here, the two dimensions are the

functional response, f(R), and the consumer density, C.

The key concept in Eq. 4 is that the mean-field model

represents local dynamics: it is the model that would

apply at the rock scale in the absence of migration

between rocks at different densities. In this light, the

scale transition is the difference between regional and

local dynamics (Chesson et al. 2005). The total scale

transition thus equals the sum of the three scale

transition terms (a–c) to the right of the mean-field

model.

The scale transition terms in Eq. 4 are a consequence

of nonlinear averaging: the average of the function is

generally different from the function of the average

when the function is nonlinear. The mean-field model is

the function of the average, so the scale transition terms

(a–c) quantify the difference between the average of the

function and the function of the average. Special cases of

nonlinear averaging in ecology that have been discussed

previously are Jensen’s inequality (Chesson 1981, 1991,

Ruel and Ayres 1999), and the idea of the ‘‘fallacy of the

averages’’ (Welsh et al. 1988). The importance of

nonlinear averaging to spatial ecology was first dis-

cussed by Chesson (1978) and a precursor can be found

in Lloyd’s mean crowding (Lloyd 1967).

The scale transition terms in Eq. 4 can be understood

in terms of interactions between nonlinearity and spatial

variation, from general scale transition formulae derived

in Chesson et al. (2005). Applied here, the general

formulae show that Tg is approximately ½g00(R)Var(R)
and Tf is approximately ½f 00(R)Var(R). In both of these

cases, the second derivative defines the nonlinearity of

the function, which is multiplied by the spatial variance

of periphyton between rocks. The final scale transition

term TfC exactly equals Cov( f (R),C), the covariance in

space between the functional response and consumer

density (Appendix A). This covariance can be approxi-

mated as f 0(R)Cov(R,C) (Chesson et al. 2005), where

Cov(R,C) is the covariance between periphyton and

grazer density over rocks (Appendix A). Putting them all

together we obtain the full approximation for grazer

dynamics:

dR

dt
’ gðRÞ � f ðRÞC

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
mean-field model

þ 1

2
g00ðRÞVarðRÞ
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

a

� 1

2
f 00ðRÞVarðRÞC
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

b

� f 0ðRÞCovðR;CÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
c

: ð5Þ

The approximation shows that, as products of measures

of nonlinearity and measures of spatial variation, the

scale transition terms represent interactions between

nonlinear dynamics and spatial variation.

Given the importance of nonlinearities, it is worth-

while seeing how each arises. Periphyton growth at the

local scale, g(R), would only be linear if there were no

density dependence in growth. However, competition

for resources (e.g., light) within the periphyton biofilm is

a well-established phenomenon (Hill and Boston 1991,

Hill 1996) and ensures that g(R) is nonlinear, for

example, as in the logistic model. Nonlinearity would

occur with light as a resource because, as the periphyton

grows thicker, lower-lying cells would be increasingly

shaded by cell layers above. For the functional response

of grazers, f (R), local nonlinearities might result from a

handling time requirement or an attack rate that varies

with periphyton density, for example, as in a classic type

II or type III functional response (Holling 1959). The

third scale transition term (c) also results from an

interaction between nonlinearity and spatial variation

due to the two-dimensional nonlinearity of periphyton

and grazer density. This nonlinearity arises directly

because grazers eat periphyton, thus causing the func-

tional response and consumer density to enter the

consumption rate as a product.

The scale transition terms can be thought of as

quantifying separate spatial mechanisms. To analyze the

importance of spatial mechanisms to dynamics, we

consider the magnitude and sign of the scale transition

terms relative to the mean-field model and to each other.

Depending on the sign of the second derivatives g00(R)
and f 00(R), which are determined by whether each

function is concave down (negative second derivative)

or concave up (positive second derivative), the first two

scale transition terms (a and b) may work either in

opposing directions, thus moderating the effect of

variation, or in the same direction, thus compounding

the effect of variation on stream-scale dynamics. The

effect of spatial variation in grazer density enters only

through spatial covariation with periphyton density and

depends on the sign and magnitude of the spatial

covariance between grazer and periphyton density (c).

Spatial variance and covariance can arise in many ways

and are sometimes determined by the details of

dispersal. Thus, the effect of different dispersal modes

on stream-scale dynamics is accounted for in the scale

transition terms in which the variance and covariance

appear. As the scale transition terms are responsible for

changing dynamics at the larger scale of the stream, they
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are key quantities that can be measured in the field to
provide a general test of spatial mechanisms. We

measure these quantities for periphyton and grazers by

fitting models to describe nonlinearities at the rock scale,
and using appropriate sampling and estimation methods

to measure spatial variation. We show that the

combined magnitude of the scale transition terms is
sufficient to change dynamics at the larger scale.

METHODS

Study system and field site

The Bimberamala and Yadboro Rivers are fourth-
order streams (sensu Strahler 1952), part of the Clyde

River system in southeastern New South Wales,

Australia (358230 S, 1508100 E). The stream bed consists
of rounded cobbles 10–20 cm in diameter. The mean

depth of experimental sites was 11 cm, and mean

stream velocity was 4.5 cm/s. Periphyton assemblages
were dominated by diatoms and green algae. Periphy-

ton was consumed by grazing invertebrates, mainly the

aquatic larvae of caddisfly (Trichoptera), mayfly
(Ephemeroptera), and waterpenny (Coleoptera: Psephi-

nidae) species.

Measuring nonlinearity: local submodels

To measure local nonlinearities, we specified alter-

native models for the growth and foraging functions in

Eq. 1, and fitted these to rock-scale data from a field
experiment to test for differences between alternative

models. We specified four alternative models for

periphyton growth and four alternative models for the

removal rate of periphyton by grazers (Table 1). As

discussed, these models ought not be linear but we

included linear models among the alternatives as a check

on the discriminatory power of the data.

Grazer exclusion experiment

The data for fitting growth and foraging models

consisted of initial and final measurements of periphyton

density over 25 days, with and without grazers. We set

up 40 randomly located pairs of rocks in the stream,

each pair having one rock with grazers excluded by an

electric pulse (Brown et al. 2000) and the other rock

freely accessible to grazers. Rocks in a pair were 50 cm

to 1 m apart. Pairs of rocks were arranged in the stream

in a hierarchical design described in Estimation of

variance and covariance. A periphyton sample (2.4 cm

diameter) was removed randomly from the top surface

of each rock using a standard sampler (Flower 1985).

The sample was taken immediately before implementing

grazer exclusion. A second sample was taken 25 days

later, 5 cm from the initial sample, in a random

direction. Periphyton biomass was measured as ash free

dry weight using a standard procedure (Britton and

Greeson 1989:129–130). Grazers were sampled at the

time of the final periphyton sample. Rocks were

collected from the stream bed into a net and, after first

taking the periphyton sample, grazers were removed

with a brush (following Downes et al. 1993). Grazer

density was measured as dry mass per square centimeter

of exposed rock surface area (following Doeg and Lake

1981, Graham et al. 1988), where dry mass was

TABLE 1. Alternative models for periphyton growth and removal rate by grazers

Name Model Parameters

Models for periphyton growth

Resource gradient�
gðRÞ ¼ P0

q
ð1� e�qRÞ � mR

P0, photosynthetic rate at periphyton surface
q, determines rate of decline of photosynthesis
with depth in the periphyton

m, rate of density loss per unit of density, due
to respiration and metabolism

Logistic
gðRÞ ¼ rR 1� R

K

� �
r, density independent growth rate
K, density at equilibrium

Exponential growth g(R) ¼ rR r, density independent growth rate
Constant accumulation g(R) ¼ a a, accumulation rate

Models for removal rate
of periphyton by grazers

Type II
f ðRÞC ¼ aR

1þ ahR
C

a, attack rate of the grazer
h, handling time of the grazer

Type III
f ðRÞC ¼ bR2

1þ bhR2
C

b, linear parameter for the attack rate of the grazer
h, handling time of the grazer

Linear increase f (R)C ¼ aRC a, attack rate
Saturated f (R)C ¼ cC c, constant removal rate

� The resource gradient model is derived in Appendix B.
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estimated from individual body lengths using allometric

relationships (Smock 1980, Meyer 1989, Towers et al.

1994).

Selection and parameter estimation of local models

We obtained maximum likelihood estimates of rock-

scale model parameters, where each model (Table 1) was

fitted to the final periphyton density assuming lognor-

mal errors. The predicted final density was obtained by

integrating over time starting from the initial density.

We inspected likelihood profiles to ensure that param-

eters were well defined by the data. Models for

periphyton growth, g(R), were fitted to the periphyton

data from the ungrazed rocks. Models for the removal

rate of periphyton, f (R)C, were fitted to the periphyton

data from the grazed rocks with grazer density as an

independent variable, and with g(R) set to the best-

fitting model estimated previously from the ungrazed

data. To determine which of the alternative models was

most consistent with the data, we used the Akaike

information criterion (AIC) (Akaike 1992).

The fitting method just described assumes that all of

the error in the model fit is in the final density, and that

initial density is measured without error. Since there is

observation error in the initial density, the parameter

estimates are biased (Carroll et al. 1995). To reduce bias

in the parameter estimates for the best-fitting models, we

used the simulation-extrapolation (SIMEX) method to

adjust maximum likelihood estimates (Cook and Ste-

fanski 1994, Stefanski and Cook 1995), based on the

observation error estimated separately by variance

components analysis. We used Cþþ for all of the

numerical work described here.

While taking the grazer samples, we discovered that

the sampling technique did not efficiently capture an

abundant grazer in the Yadboro River. This was a large-

bodied (2–3 cm) freshwater shrimp (Atyidae). These

grazers were most active at night and were conspicuous

by spotlight at many sites on the Yadboro River, yet

rare in our samples. They were rarely observed in the

Bimberamala River. Since we were not able to estimate

the density of this species, we fitted grazer models only

to the data from the Bimberamala River and tributaries

(n ¼ 20).

Estimation of spatial variance and covariance

We used a hierarchical sampling design to measure the

spatial variance components of periphyton density and

the components of spatial covariance for periphyton and

grazer density. The hierarchical sampling design in-

cluded five spatial scales. There were two catchments at

the largest scale (stream scale). Within each stream,

there were three sections of stream, each 1.6 km long

(reach scale). There were three or four sites located

randomly within each reach, such that there were 20

sites in total. Each site was a 10-m stream length (site

scale). Within each site, two 1-m2 plots were randomly

located on the stream bed (plot scale). Within each plot,

two rocks were selected as experimental units as

described in Grazer exclusion experiment (rock scale).

In the entire experiment, there were 80 rocks, 40 with

grazers excluded and 40 freely accessible to grazers.

Spatial variance components were estimated using

restricted maximum likelihood (REML; e.g., Searle et

al. 1992), after first transforming periphyton density to

the natural-logarithm scale. REML was used because

the design was hierarchical and not all units on all scales

were measured. Exploratory analyses (e.g., theoretical

quantile–quantile plots) implied that periphyton density

was well fitted by a lognormal distribution (Chambers et

al. 1983). Variances were backtransformed using stand-

ard formulae for the lognormal distribution (Johnson et

al. 1994). To calculate covariance components, we used

the method described by Searle et al. (1992), in which

variance components are estimated separately for each

variable and their sum, and the covariance components

formed as one half the difference between the variance

component of the sum and the sum of the variance

components for each variable separately. The sample

design allowed us to estimate variance components for

all scales and covariance components for the reach, site

and plot scales, with the plot covariance component

containing contributions from the rock scale.

Stream-scale density

The density at the stream scale is the mean of the

smaller-scale densities. The mean periphyton density

and grazer density at the stream scale were estimated

using ln-transformed and square-root-transformed data,

respectively. The means on the natural scale were

calculated using standard formulae so as to be free of

transformation bias (Miller 1984, Johnson et al. 1994).

We used the REML algorithm of Genstat 6.2 (VSN

International Ltd, Hemel Hempstead, UK) for all

analyses of means and variances because of the

hierarchical design described here.

Measuring the scale transition

We measured the scale transition in two ways:

quadratic approximation (Eq. 5) and exactly (Eq. 4),

by expected value according to the lognormal distribu-

tion for periphyton density. To quantify the scale

transition for the instantaneous rate of change, the

inputs to the quadratic approximation (Eq. 5) were the

observed mean periphyton density, R, and grazer

density, C, at the stream scale, the best-fitting models

for periphyton growth, g(R), and grazer foraging, f (R),

and their respective derivatives, and the total spatial

variance of R and R-C covariance at the rock scale,

because this is the scale of density dependence (Chesson

1998a). We calculated the exact scale transition for Tg

and Tf in Eq. 4 by first finding the expected value of the

nonlinear function at the stream scale (e.g., Rice 1995):

FðRÞ ¼
Z ‘

0

PðRÞFðRÞ dR ð6Þ
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where P(R) is the probability density function of the

lognormal distribution with parameters S2 ¼ Var(lnR)

and lnR ¼ ln R � 1
2
S2 (Johnson et al. 1994), and F(R) is

the nonlinear function g(R) or f (R). For term TfC of Eq.

4, Cov( f (R),C) was found exactly using the same

method described for Cov(R,C).

The instantaneous rate of change relates only to the

state of the system observed as a snapshot at the time of

the experiment. To extend the analyses beyond snap-

shots to short time scales, we assume that the coefficient

of variation, CV, of periphyton density is constant. Then,

the spatial variance, Var(R), is a function of the stream-

scale mean such that Var(R) ¼ CV
2R2, where CV

2 ¼
exp(S2)� 1 (Johnson et al. 1994). The covariance cannot

be extrapolated in the same way as the variance.

Therefore, in the analyses for short time scales that

include wide-ranging values for periphyton density, we

consider only the contributions of scale transition terms

a and b. Nevertheless, terms a and b account for most of

the scale transition at the observed stream-scale

periphyton density (see Results).

Over a short time scale, the dynamics of periphyton

density at the stream scale can also be considered in

relation to the equilibrium density of periphyton, R*,
defined as the density attained when periphyton growth

at the stream scale is exactly matched by grazer foraging

at the stream scale, that is when dR/dt¼ 0. Over a time

scale of days to weeks, there is effectively a fixed

standing crop of grazers at the regional scale but in

contrast to grazer dynamics, the dynamics of periphyton

are fast over short time scales. Thus, periphyton density

averaged over a closed system can approach equilibrium

over short time scales and it is useful to examine the

properties of this equilibrium.

RESULTS

Nonlinearities: model fits

Consistent with the well-established result of resource

competition in biofilms, we found that periphyton
growth was nonlinear. Logistic growth (Fig. 1A) was

the best fitting of the models defined in Table 1, as it had

the lowest AIC (82.1), followed by the resource gradient
model (AIC ¼ 83.9). Both linear models had poor fits

(AIC; constant accumulation, 87.6; exponential growth,

109.6) compared to the logistic growth model since the
AIC difference (DAIC) exceeded 4, with essentially no

support for the exponential growth model since DAIC

exceeded 10 (Burnham and Anderson 2002). In contrast
to the linear models, both nonlinear models showed no

systematic patterns in the residuals, further suggesting

that a nonlinear model is essential to describe these data.
The SIMEX adjusted parameter estimates for the

logistic model were r ¼ 0.0811 d�1, K ¼ 869.6 lg/cm2.

It was also clear that periphyton removal rate by

grazers was nonlinear. The type III model fitted the data
best (AIC 41.1; Fig. 1B), followed by the linear increase

model (AIC¼ 41.5) and the type II model (AIC¼ 43.5).

The saturated model (linear in C only) had the poorest
fit (AIC ¼ 50.9; DAIC ¼ 9.8), suggesting that the

hypothesis of a constant removal rate was unlikely, thus

confirming joint nonlinearity in R and C. The SIMEX
adjusted parameter estimates for the type III model were

b¼ 1.153 10�5 lg�2 cm4 d�1, h¼ 1.060 d. See Appendix

C for a detailed table of model fits.

FIG. 1. Initial and final periphyton density, on a natural-log scale, on rocks (A) without grazers and (B) with grazers. Models
shown are the best-fitting models for (A) periphyton growth rate, g(R) (the logistic model), and (B) grazer removal rate, f(R)C (the
type III model). Panel (B) shows the model for grazer removal rate for average grazer density in the three reaches of the
Bimberamala River. Symbols and line styles in panel (B) represent different reaches: triangles and solid line, reach 1; circles and
dashed line, reach 2; squares and dotted line, reach 3.
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Spatial variance and covariance components

For periphyton density, most variation occurred at

small to medium spatial scales, with similar variance

components for ln-transformed density at site (0.1006),

plot (0.1360), and rock (0.1483) scales. In contrast to

smaller scales, there was almost no variation at the

stream (0.0043) or reach (0) scales. See Appendix D for a

detailed table of results. The spatial covariance compo-

nents of periphyton and grazer density, Cov(R,C), and

of Cov( f (R),C) were small at all scales (Cov(R,C); reach,

�821; site, 225; plot plus rock, �180; Cov( f (R),C);

reach, �0.581; site, �0.003; plot plus rock, 0.289).

Quadratic approximation

Since the best fitting model for periphyton growth rate

was the logistic model, a quadratic function, the

quadratic expression for scale transition term Tg is

exact. The quadratic approximation for scale transition

term TfC performed adequately for the best-fitting type

III model compared to the exact calculation by expected

value (Fig. 3B). For the type III model, the approx-

imation overestimated term TfC by a factor of three

compared to the exact calculation. In the analyses that

follow (including Figs. 2–4), we present the exact scale

transition calculations.

Scale transition for instantaneous rate of change

The scale transition for the instantaneous rate of

change of the stream-scale periphyton density was large

and negative (Fig. 2). That is, the interaction between

nonlinearity and spatial variance in the spatial model

reduced dR/dt at the stream scale by 98% (from 2.37 to

0.053 lg�cm�2�d�1) compared to the mean-field model.

Of the three terms contributing to the scale transition,

Tg had the largest effect, followed by TfC, with these

two scale transition terms having opposing effects (Fig.

2). The positive effect of TfC offset 46% of the negative

effect of Tg (Fig. 2). These terms contributed most

because the total variance in periphyton density was

large and periphyton growth and consumption were

nonlinear. The total rock-scale variance on the loga-

rithm scale was 0.385, corresponding to a natural scale

CV of 0.685 and spatial variance of 52 215 lg2/cm4 for

the observed mean periphyton density of 333.5 lg/cm2.

The nonlinearities in periphyton growth and grazer

consumption are shown in Fig. 3A and B (rock-scale

model). Nonlinearity in periphyton growth was an order

of magnitude greater than nonlinearity in the functional

response of grazers (logistic g00(R) ¼�1.87 3 10�4, type

III g00(R) ¼�5.403 10�6).

The contribution of the third scale transition term,

TfC, was low compared to the first two terms (Fig. 2),

because the covariance between periphyton and grazer

density was small. The total covariance, Cov( f (R),C),

that is, TfC in Eq. 4, was�0.295 lg�cm�2�d�1. This small

total covariance was partly due to the weak spatial

FIG. 2. Contribution of each scale transition term to the
total change in the instantaneous rate of periphyton growth,
dR/dt, at the stream scale (Eq. 4, terms a–c), estimated from
field data. The change shown is relative to the mean-field model.

FIG. 3. Comparison of the rock-scale model (mean-field model, solid line) and the exact stream-scale model (dashed line). (A)
Logistic periphyton growth, g(R). DK represents the change in carrying capacity. (B) Type III grazer removal rate, f(R)C. The
dotted line is the quadratic approximation for the stream-scale model. (C) Full periphyton–grazer model, g(R) – f (R)C. DR*
represents the change in equilibrium density. The periphyton density observed at the stream scale is shown with its standard error.
The stream-scale models in panels (B) and (C) ignore the small effect of term TfC in Eq. 4.
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association of periphyton and grazer density: the

correlations corresponding to the total covariance were

Corr(R,C) ¼ �0.18, and Corr( f (R),C) ¼ �0.11. Thus,
compared to spatial variation in periphyton density,

spatial variation in grazer density contributed little to

the scale transition since variation in grazer density

contributes only through the covariance term.

Scale transition for short time scales

For periphyton growth without grazers over short

time scales, the interaction between nonlinearity and

spatial variation is predicted to reduce the growth rate

and lower the carrying capacity of periphyton at the

stream scale (Fig. 3A). Since the logistic model has a

hump-shaped production function, the second derivative

is negative. Thus, at all periphyton densities, periphyton

growth at the stream scale is reduced compared to the

patch scale (Fig. 3A). The maximum growth rate of

periphyton at the stream scale is reduced by 32% from

17.6 lg�cm�2�d�1 to 12.0 lg�cm�2�d�1 (Fig. 3A). Also, the

carrying capacity of periphyton at the stream scale is

reduced by 32% from 870 to 592 lg/cm2 (Fig. 3A). Apart

from these large quantitative changes, the production

function for periphyton growth at the stream scale has

the same qualitative form as the rock scale (Fig. 3A).

For the rate of grazer consumption, ignoring the small

effect of TfC, the stream-scale model predicts that the

removal rate will be decreased at high periphyton

density (R . 143 lg/cm2) compared to the rock-scale

model (Fig. 3B). The magnitude of the scale transition

for the removal rate is predicted to be highest at

intermediate R, where the function f (R) is the most

nonlinear (Fig. 3B). As well as these quantitative

changes, there is a qualitative change in the consump-

tion function at the stream scale: the curve is less

pronounced, especially at the inflection point, and

resembles more of a type II response.

For the full periphyton–grazer model over short time

scales, ignoring the small effect of TfC, the maximum

growth rate of periphyton at the stream scale is reduced

by 19% to 3.85 lg�cm�2�d�1, compared to 4.73

lg�cm�2�d�1 at the rock scale (Fig. 3C). The equilibrium

density is reduced by 27% to 327 lg/cm2, compared to

447 lg/cm2 at the rock scale (Fig. 3C).

Scale transition for the equilibrium density

The equilibrium density was reduced by 25% from 447

lg/cm2 in the patch model to 335 lg/cm2 in the stream-

scale model (Fig. 4). If we can assume the stream-scale

density was close to equilibrium at the time of the

experiment, the prediction of the stream-scale model was

remarkably close to the observed density of 333.5 lg/
cm2, although the mean-field model was also within the

95% confidence interval for the observed density (241.8,

460.0 lg/cm2; Fig. 3C). There was not strong evidence to

falsify the assumption of equilibrium, since there was

not a significant difference in mean periphyton density

at the stream scale between the initial and final samples

(grazed rocks, REML, v21 ¼ 0.4204, P ¼ 0.52).

The contribution of the three terms to the scale

transition (Eq. 4) of the equilibrium density was very

similar to that for the instantaneous rate of change

(compare Fig. 4 and Fig. 2). The term Tg had a large

negative effect and was opposed by the positive effect of

Tf C (Fig. 4). Again, the covariance term, TfC, had

relatively little effect (Fig. 4).

DISCUSSION

Our field example demonstrates the basic concepts

and properties of the scale transition in translating the

effects of local scale processes to the scale of the regional

population, where local populations are linked by

dispersal. By deriving a scale transition model, we

identified the component spatial mechanisms that

change dynamics at the regional scale. In our field

example, the local scale was a rock and the regional scale

was the stream. The structure of our model for the

stream scale consisted of a mean-field model, represent-

ing the local dynamics on a rock, modified by three new

terms to correct for the effects of spatial processes (Eq.

4). The new terms in the model were interactions

between nonlinearity and spatial variation (Eq. 5).

These scale transition terms, which can be thought of

as representing spatial mechanisms, were then measured

with field data. We confirmed the importance of spatial

mechanisms to the dynamics of the system at the stream

scale, since we measured scale transition terms with large

magnitude. Of the three terms, the largest effect was

from the interaction between nonlinear periphyton

growth and spatial variation in periphyton density (term

Tg), which reduced the instantaneous rate of change in

periphyton density (Figs. 2 and 3A). This effect was

opposed by the positive effect of the interaction between

type III consumption by grazers and spatial variation in

periphyton density (term Tf C; Figs. 2 and 3B) but was

FIG. 4. Contribution of each scale transition term (from Eq.
4) to the total change in the equilibrium density of periphyton
at the stream scale. The change shown is relative to the mean-
field model. The total change is the combined effect of all three
terms. The individual effect of each term is the effect of the term
alone without other scale transition terms in the model. In
contrast to Fig. 2, the effects here are not additive because the
equilibrium is nonlinear in these terms.
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little influenced by the covariance of periphyton and

grazer density (term TfC; Fig. 2). The combined effect of

the three scale transition terms was to reduce the

instantaneous rate of growth of the stream population

by 98% compared to the rock-scale populations (Fig. 2)

and to reduce the short term equilibrium density by 25%

(Figs. 3C and 4).

Studying spatial processes in natural ecological

systems is difficult, not least because of the effort

required to parameterize and test fully spatial-dynamic

models (Steinberg and Kareiva 1997). The scale

transition approach offers an alternative to fitting the

full details of complex spatial-dynamic models by

focusing on the mechanism by which spatial models

have important effects, namely the interaction between

nonlinearities and spatial variation. This interaction

explains the important dynamical outcomes on the

larger scale. In this empirical scale transition approach,

the effects of complex dispersal modes are measured by

their spatial variances and covariances, and their

importance evaluated by the magnitude of the terms in

which they appear in scale transition equations (e.g., Eq.

5). This focus allows the relative importance of different

mechanisms to be assessed quantitatively, and facilitates

comparison between different systems and different

models. An advantage of the approach is that we can

examine spatial mechanisms with relatively little data.

Even partial dynamics, such as the short term dynamics

examined here, can be explored for mechanistic and

biological content. This study was based on one snap-

shot of spatial structure, yet important spatial mecha-

nisms were revealed.

The dynamics and mechanisms of variation

We measured variances and covariance for a snapshot

in time but variances and covariances can also be

dynamic. Thus, the scale transition over longer periods

than considered here (i.e., months to years) will be

different at different times and depend on the dynamics

of variation. Ultimately, we need theory for the

dynamics of variation. While this area of theory is

developing, particularly in the application of moment

closure techniques (e.g., Bolker and Pacala 1997, Pacala

and Levin 1997, Keeling et al. 2002, Bolker 2003, Law et

al. 2003), current models lack major drivers likely to be

encountered in nature, such as spatial heterogeneity in

the environment (but see Bolker 2003, Snyder and

Chesson 2003, 2004), and density-dependent dispersal.

Indeed, there are likely to be many processes that

contribute to the dynamics of spatial variation, and

working them out for specific systems will involve a

combination of theory, simulation modeling, behavioral

experiments and field studies. This is perhaps one of the

greatest challenges in spatial ecology.

For the periphyton–grazer system, the action of

grazers is one of the main drivers of spatial variation

in periphyton density at small spatial scales as demon-

strated by experimental removal of grazers (Fig. 1).

Thus, consumption by grazers leads to a system of

patches with differing degrees of periphyton regrowth

(Nisbet et al. 1998, Richards et al. 2000). However,

shallow streams are highly variable environments, with a

host of environmental factors that contribute to spatial

variation in the biota, including solar radiation, current

velocity, water temperature, and disturbance by spates

and sedimentation (Allan 1995, Stevenson et al. 1996).

Many processes are responsible for spatial variation in

this system, as is likely true for all but the simplest of

laboratory systems.

A strength of the scale transition approach is that

regardless of the complex processes that give rise to

spatial variation, we can measure that variation directly.

With measurements of variation, we can determine the

consequences for dynamics at the regional scale, which

come about because of interactions between spatial

variation and nonlinearity at the local scale. A full

understanding of the mechanisms that generate the

dynamics of spatial variation is not necessary to examine

the importance of that variation to regional dynamics.

Here we emphasized quantifying the magnitude of

scale transition terms to examine the importance of

variation to regional dynamics but this empirical

approach is readily extended to link the scale transition

terms with the longer term dynamics of variances and

covariances (Chesson 1996, 1998a, b). One approach is

to empirically determine how variances and covariances

vary dynamically as functions of the means. It is

straightforward to track the dynamics of variances and

covariances using appropriate sampling designs, and

empirical studies show that spatial variation often

changes systematically with mean density (e.g., Taylor

et al. 1988, Clark et al. 1996). Application of the mean-

variance relationship to scaling up population dynamics

is discussed in Chesson (1998a, b) and Chesson et al.

(2005), where a range of mechanisms that generate such

relationships is considered. A fully dynamic system of

equations is then constructed by combining scale

transition equations with empirical mean-variation

functions. This approach is closely related to moment

closure methods, in which dynamical equations for

variances and covariances are also derived in addition to

equations for the means (e.g., Pacala and Levin 1997). In

contrast to moment closure methods, which rely on

knowing the mechanisms of dispersal in detail, empirical

explorations of relations between the moments them-

selves might often be more tractable for field data.

An aspect of scale transition theory that extends the

empirical approach presented here, is how spatial

variation on multiple scales contributes to scaling up

through an interaction with the spatial scales of

nonlinearities (Chesson 1998a, b). This is especially

useful for systems in which different nonlinear processes

operate on markedly different scales, or the scales of

nonlinearities differ between species. The critical issue

for such systems is how variation on different scales

propagates to the scales of the nonlinearities, and it is in
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this context that quantifying variance components at a

range of scales is especially useful.
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Modeling spatiotemporal dynamics in ecology. Landes
Bioscience, Austin, Texas, USA.

Chesson, P. 1998b. Spatial scales in the study of reef fishes: a
theoretical perspective. Australian Journal of Ecology 23:
209–215.

Chesson, P. 2000. General theory of competitive coexistence in
spatially-varying environments. Theoretical Population Biol-
ogy 58:211–237.

Chesson, P., M. J. Donahue, B. A. Melbourne, and A. L. Sears.
2005. Scale transition theory for understanding mechanisms
in metacommunities. Pages 279–306 in M. Holyoak, M. A.
Leibold, and R. D. Holt, editors. Metacommunities: spatial
dynamics and ecological communities. University of Chicago
Press, Chicago, Illinois, USA.

Clark, S. J., J. N. Perry, and E. J. P. Marshall. 1996. Estimating
Taylor’s power law parameters for weeds and the effect of
spatial scale. Weed Research 36:405–417.

Cook, J. R., and L. A. Stefanski. 1994. Simulation-extrapolation
estimation in parametric measurement error models. Journal
of the American Statistical Association 89:1314–1328.

De Jong, G. 1979. The influence of the distribution of juveniles
over patches of food on the dynamics of a population.
Netherlands Journal of Zoology 29:33–51.

Doeg, T., and P. S. Lake. 1981. A technique for assessing the
composition and density of the macroinvertebrate fauna of
large stones in streams. Hydrobiologia 80:3–6.

Downes, B. J., and M. J. Keough. 1998. Scaling of colonization
processes in streams: parallels and lessons from marine hard
substrata. Australian Journal of Ecology 23:8–26.

Downes, B. J., P. S. Lake, and E. S. G. Schreiber. 1993. Spatial
variation in the distribution of stream invertebrates: impli-
cations of patchiness for models of community organization.
Freshwater Biology 30:119–132.

Flower, R. J. 1985. An improved epilithon sampler and its
evaluation in two acid lakes. British Phycological Journal 20:
109–115.

Graham, A. A., D. J. S. McCaughan, and F. S. McKee. 1988.
Measurement of surface area of stones. Hydrobiologia 157:
85–87.

Hassell, M. P., R. M. May, S. W. Pacala, and P. L. Chesson.
1991. The persistence of host–parasitoid associations in
patchy environments. 1. A general criterion. American
Naturalist 138:568–583.

Hershey, A. E., J. Pastor, B. J. Peterson, and G. W. Kling.
1993. Stable isotopes resolve the drift paradox for Baetis
mayflies in an arctic river. Ecology 74:2315–2325.

Hill, W. 1996. Effects of light. Pages 121–148 in R. J. Stevenson,
M. L. Bothwell, and R. L. Lowe, editors. Algal ecology:
freshwater benthic ecosystems. Academic Press, San Diego,
California, USA.

Hill, W. R., and H. L. Boston. 1991. Community development
alters photosynthesis-irradiance relations in stream periphy-
ton. Limnology and Oceanography 36:1375–1389.

Holling, C. S. 1959. Some characteristics of simple types of
predation and parasitism. Canadian Entomologist 91:385–
389.

Ives, A. R. 1988. Covariance, coexistence and the population
dynamics of two competitors using a patchy resource.
Journal of Theoretical Biology 133:345–361.

Johnson, N. L., S. Kotz, and N. Balakrishnan. 1994.
Continuous univariate distributions. Second edition. John
Wiley and Sons, New York, New York, USA.

Keeling, M. J., H. B. Wilson, and S. W. Pacala. 2002.
Deterministic limits to stochastic spatial models of natural
enemies. American Naturalist 159:57–80.

Law, R., D. J. Murrell, and U. Dieckmann. 2003. Population
growth in space and time: spatial logistic equations. Ecology
84:252–262.

Lloyd, M. 1967. Mean crowding. Journal of Animal Ecology
36:1–30.

Melbourne, B. A., and P. Chesson. 2005. Scaling up population
dynamics: integrating theory and data. Oecologia 145:179–
187.

June 2006 1487SCALING UP POPULATION DYNAMICS



Meyer, E. 1989. The relationship between body length
parameters and dry mass in running water invertebrates.
Archiv für Hydrobiologie 117:191–203.

Miller, D. M. 1984. Reducing transformation bias in curve
fitting. American Statistician 38:124–126.

Nisbet, R. M., A. M. de Roos, W. G. Wilson, and R. E. Snyder.
1998. Discrete consumers, small scale resource heterogeneity,
and population stability. Ecology Letters 1:34–37.

Nisbet, R. M., S. Diehl, W. G. Wilson, S. D. Cooper, D. D.
Donalson, and K. Kratz. 1997. Primary-productivity gra-
dients and short-term population dynamics in open systems.
Ecological Monographs 67:535–553.

Pacala, S. W., and S. A. Levin. 1997. Biologically generated
spatial pattern and the coexistence of competing species.
Pages 204–232 in D. Tilman and P. Kareiva, editors. Spatial
ecology: the role of space in population dynamics and
interspecific interactions. Princeton University Press, Prince-
ton, New Jersey, USA.

Rice, J. A. 1995. Mathematical statistics and data analysis.
Second edition. Duxbury Press, Belmont, California, USA.

Richards, S. A., R. M. Nisbet, W. G. Wilson, and H. P.
Possingham. 2000. Grazers and diggers: Exploitation com-
petition and coexistence among foragers with different
feeding strategies on a single resource. American Naturalist
155:266–279.

Ruel, J. J., and M. P. Ayres. 1999. Jensen’s inequality predicts
effects of environmental variation. Trends in Ecology and
Evolution 14:361–366.

Searle, S. R., G. Casella, and C. E. McCulloch. 1992. Variance
components. John Wiley and Sons, New York, New York,
USA.

Smock, L. A. 1980. Relationships between body size and
biomass of aquatic insects. Freshwater Biology 10:375–383.

Snyder, R. E., and P. Chesson. 2003. Local dispersal can
facilitate coexistence in the presence of permanent spatial
heterogeneity. Ecology Letters 6:301–309.

Snyder, R. E., and P. Chesson. 2004. How the spatial scales of
dispersal, competition, and environmental heterogeneity
interact to affect coexistence. American Naturalist 164:633–
650.

Stefanski, L. A., and J. R. Cook. 1995. Simulation-extrapola-
tion: the measurement error jackknife. Journal of the
American Statistical Association 90:1247–1256.

Steinberg, E. K., and P. Kareiva. 1997. Challenges and
opportunities for empirical evaluation of ‘‘spatial theory.’’
Pages 318–332 in D. Tilman and P. Kareiva, editors. Spatial
ecology: the role of space in population dynamics and
interspecific interactions. Princeton University Press, Prince-
ton, New Jersey, USA.

Stevenson, R. J., M. L. Bothwell, , and R. L. Lowe, editors.
1996. Algal ecology: freshwater benthic ecosystems. Academ-
ic Press, San Diego, California, USA.

Strahler, A. N. 1952. Hypsometric (area-altitude) analysis of
erosional topography. Bulletin of the Geological Society of
America 63:1117–1142.

Taylor, L. R., J. N. Perry, I. P. Woiwood, and R. A. J. Taylor.
1988. Specificity of the spatial power-law in ecology and
agriculture. Nature 332:721–722.

Towers, D. J., I. M. Henderson, and C. J. Veltman. 1994.
Predicting dry weight of New-Zealand aquatic macroinverte-
brates from linear dimensions. New Zealand Journal of
Marine and Freshwater Research 28:159–166.

Welsh, A. H., A. T. Peterson, and S. A. Altmann. 1988. The
fallacy of averages. American Naturalist 132:277–288.

APPENDIX A

Exact and approximate stream-scale models of periphyton dynamics (Ecological Archives E087-087-A1).

APPENDIX B

Derivation of the resource gradient model of periphyton growth. (Ecological Archives E087-087-A2).

APPENDIX C

Details of rock-scale model fits (Ecological Archives E087-087-A3).

APPENDIX D

Spatial variance components for periphyton (Ecological Archives E087-087-A4).

BRETT A. MELBOURNE AND PETER CHESSON1488 Ecology, Vol. 87, No. 6


