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ABSTRACT: We investigate the interacting effects of predation and
competition on species coexistence in a model of seasonally recruiting
species in a constant environment. For these species, life-history
parameters, such as maximum productivity and survival, have im-
portant roles in fluctuation-dependent species coexistence in that
they introduce nonlinearities into population growth rates and cause
endogenous population fluctuations, which can activate the coexis-
tence mechanism termed “relative nonlinearity.” Under this mech-
anism, different species must differ in the nonlinearities of their
growth rates and must make different contributions to fluctuations
in competition and predation. Both of these features can result from
life-history trade-offs associated with seasonal recruitment. Coexis-
tence by relative nonlinearity can occur with or without predation.
However, predation can undermine coexistence. It does this by re-
ducing variance contrasts between species. However, when compe-
tition is not sufficient to cause endogenous population fluctuations,
predation can enable fluctuation-dependent coexistence by desta-
bilizing the equilibrium. This model also reproduces the classic find-
ing that coexistence can occur with selective predation provided that
it causes a trade-off between competition and predation. Our model
is formulated for competition between annual plant species subject
to seed predation, but it also applies to perennial communities where
competition and predation limit recruitment to the adult population.
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Predation is often assumed to promote coexistence of
competing species, but theoretical models imply that the
role of predation can vary greatly with the circumstances
(Chase et al. 2002). Recent theoretical work has focused
on equilibrium coexistence arising from a trade-off be-
tween competition and predation, often using differential
equation models (e.g., Grover and Holt 1998). Our chief
concern is not with equilibrium conditions but with how
predation modifies coexistence mechanisms that depend
on endogenous fluctuations in population densities, a
much neglected area of study. This question is most con-
veniently considered for species with seasonal recruitment
where both competition and predation affect the final
number of offspring contributing to the next generation.
Discrete-time models apply, leading to endogenous fluc-
tuations in many circumstances.

To make the discussion concrete, we frame it in terms
of annual plants in arid regions, showing later how the
results apply to seasonally recruiting species generally. For
annual plant species, environmental variation (Chesson
1994) and predation (Davidson et al. 1985) have figured
most prominently in hypotheses for species coexistence.
The idea that environmental variation promotes species
coexistence has much theoretical support (Chesson 1994;
Chesson et al. 2004) and some empirical support (Pake
and Venable 1995; Facelli et al. 2005; Sears and Chesson
2007). However, the importance of predation has not been
examined in theoretical models of annual plant commu-
nities. Rodent and ant predation on seeds is a major feature
of desert communities and has been studied empirically
for its potential role in maintenance of the diversity of
annual plants (Inouye et al. 1980; Davidson et al. 1985),
but the absence of theoretical developments has impeded
a better understanding. To redress this imbalance, the focus
in this article is on predation in the absence of environ-
mental variation, leaving the important question of the
interaction between predation and environmental varia-
tion to future publication (J. J. Kuang and P. Chesson,
unpublished manuscript).

We study predation that is selective, but not frequency
dependent, and consider both fluctuation-independent and
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fluctuation-dependent coexistence mechanisms (Chesson
2000). Fluctuation-independent coexistence means that the
mechanism does not require fluctuations over time for its
operation, and the addition of fluctuations need not destroy
the mechanism. In the past, such mechanisms have more
commonly been called “equilibrium mechanisms,” which
usually indicates coexistence at a stable equilibrium point.
Stability of the equilibrium means that the addition of fluc-
tuations, provided they are not too large, does not destroy
the prediction of coexistence (e.g., Turelli 1981). Fluctua-
tion-dependent mechanisms, on the other hand, require
fluctuations over time for their operation. Because we focus
on constant environmental conditions, we study fluctua-
tion-dependent coexistence arising from limit cycles and
chaotic dynamics.

Our study of fluctuation-independent coexistence re-
produces the classic requirement of a predation-compe-
tition trade-off, but it is exhibited here in a particularly
precise and intuitive form. This trade-off is not necessary
for fluctuation-dependent coexistence. Instead, life-history
trade-offs suffice. Fluctuation-dependent coexistence oc-
curs in our model with or without predation. The effect
of predation on fluctuation-dependent coexistence may be
positive, negative, or neutral depending on the circum-
stances. Importantly, we are able to explain the circum-
stances that allow each of these various outcomes.

Critical to fluctuation-dependent coexistence is nonlin-
earity of the population growth rates as functions of the
key limiting factors, competition and predation. For co-
existence, these nonlinearities must differ between species,
as first elucidated in resource competition models by Arm-
strong and McGehee (1980) and investigated more recently
by Adler (1990), Abrams and Holt (2002), and Abrams
(2004). This mechanism is termed “relative nonlinearity”
by Chesson (1994). Nonlinearity differences mean that the
different species are affected differently by temporal fluc-
tuations in their common limiting factors, with some species
being favored by large variance and others by small variance.
Moreover, these same nonlinearity differences mean that
different species generate different variances through the
feedback loops with their limiting factors. These consider-
ations can lead to the situation where some species are
favored by fluctuations but tend to dampen fluctuations
(they are “consumers of variance” in the parlance of Levins
[1979]). Others are relatively disadvantaged by variance but
tend to generate it. The net outcome is to favor coexistence
of these two sorts of species.

Although our development is framed in terms of annual
plants, the model can be considered more generally as rep-
resenting the dynamics of species with seasonal recruitment,
that is, with recruitment concentrated at a particular time
of year, a common situation in nature. For annual plants,
we mean recruitment of seed to the seed bank. For perennial
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Figure 1: Life cycle of desert annuals, showing production of new seed
(Y) from seeds that germinate (at rate G) subject to competition (C),
predation (P), and survival (s) of dormant seed in the seed bank.

organisms, we mean recruitment to the adult population.
Critical to our findings is the idea that the process of re-
cruitment is potentially strongly affected by competition and
predation, while survival of recruited organisms (seeds or
adults) is not. Life-history trade-offs then lead to relatively
nonlinear growth rates that enable fluctuation-dependent
species coexistence. Thus, our results are dependent on dis-
tinctions between processes of production and persistence,
with broad implications.

Model and Methods

Figure 1 illustrates the key features of an annual plant
community subject to seed predation. Plants compete but
also interact through a seed predator. These interactions
occur at different stages in the life cycle. For an individual
species, at the beginning of each season, some fraction G
of the seeds (N) in the seed bank germinate. Each seedling
produces Y seeds in the absence of competition and pre-
dation. Actual seed production is reduced by competition
and predation. We quantify competition by a number, C,
linearly dependent on the densities, GN, of the seedlings
of each of the competing species. We assume that com-
petition is of the Ricker form (Ricker 1954), reducing ac-
tual seed production to Ye “. A fraction of the newly pro-
duced seed is removed by predation, and the rest is
incorporated into the soil seed bank. Using the Nicholson-
Bailey formulation (Hassell 2000), the fraction surviving
predation (and hence incorporated into the seed bank) is
e ", where P is predator density and a is the attack rate.
The nongerminating (dormant) fraction (1 — G) of the
seed bank is subject to mortality and has the survival rate
s to the beginning of the next germination season. Thus,
for a system of n species with species-specific parameters,
we obtain the following system of difference equations:
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where C(t) = Z}L d,G,N;(t). Here, b is the conversion be-
tween seed and predator, s, is the survival rate of the
predator, and d is the competition coefficient. This same
set of equations can be used to model perennial organisms,
with some changes in definitions (app. F). A complete list
of notation is included in appendix A.

It is well known that coexistence is possible if intra-
specific competition dominates interspecific competition
(Volterra 1926; Lotka 1932). However, to study how co-
existence arises in the presence of predation or endogenous
fluctuations, we consider only situations where fluctua-
tion-independent coexistence is not built into assumptions
about competition. Thus, we assume that intra- and in-
terspecific competition are the same, which is consistent
with the idea that the annual plant species are limited by
just one resource or are limited in the same way by several
resources. Limitation by relatively few factors is a common
expectation for plants (Grubb 1977), and this feature of
our model allows the magnitude of competition to be
represented by the single quantity C.

Another simplification is the Type I functional response
of the predator to prey density implicit in the formula e™**
for the fraction of seed lost to predation. Type II functional
responses are more realistic in general but are difficult to
implement realistically in discrete-time models because
these functional responses represent behavior on a shorter
timescale than the annual timescale of the model (Nunney
1979). A Type II functional response might promote pop-
ulation fluctuations (Abrams 1999), but the Ricker and
Nicholson-Bailey components of the model also do this
(May and Oster 1976; Hassell 2000).

For mathematical simplicity, we assume that the ratio
b/d. is the same for each species. This means that the plant
species with more effect on plant resources (per seed) has
larger seeds, which provide more nutrition to the predator.
The ratio b/d; affects predator density and disappears from
the nondimensionalized equations used for the analysis
(app. B). These equations may exhibit deterministic fluc-
tuations, such as cycles or chaos, or settle on an equilib-
rium point.

Coexistence Conditions

Throughout this article, we focus on stable coexistence
defined by the invasibility criterion, in other words, re-
quiring each species to recover from rarity. This is an
ecological notion of stability suitable for situations where
populations may fluctuate over time (Chesson 2000) and

Predation-Competition Interactions E121

is not to be confused with stability of an equilibrium point.
Also, this is not the coexistence of neutral models (Hubbell
2001) where recovery from rarity need not occur. The
invasibility criterion has been developed for stochastic
models (Turelli 1978; Chesson and Ellner 1989; Ellner
1989), but it is also applicable to deterministic models
(Armstrong and McGehee 1980), as first suggested by
MacArthur and Levins (1964). It is necessary but not suf-
ficient for coexistence in the sense of permanence (Hutson
and Schmitt 1992). In practice, the full conditions for
permanence are difficult to calculate, and mutual invasi-
bility is often used in its place, backed up by simulation
to ensure that all persisting species remain bounded away
from zero. This is the approach we adopt here. See ap-
pendix C for further discussion.

In a mutual invasion analysis, one species (the invader)
is perturbed to effectively zero density, and the densities
of the n — 1 other species (the residents) are allowed to
converge on a joint equilibrium or steady fluctuations
(e.g., as defined by a limit cycle or ergodic chaos; Mat-
sumoto 1996) that they have in the absence of the invader.
The success of invasion is measured by the invader’s long-
term low-density growth rate (7;), as explained in appendix
C. If 7, is positive, we conclude that the invader increases
in the long run, and the invasion is successful. If r; for
each species is positive, we say the species coexist.

Fluctuation-Independent Coexistence

Because there is no distinction between intraspecific and
interspecific competition in this model, the most com-
petitive species excludes all others in the absence of pre-
dation and population fluctuations (Armstrong and
McGehee 1980). Similarly, in the absence of competition,
there would be no equilibrium coexistence because the
species most tolerant of predation would exclude all others
(Holt et al. 1994). With competition and predation both
present, we ask when their interaction promotes coexis-
tence. We consider first the case where resident species
come to equilibrium so that the invader encounters con-
stant conditions and coexistence is of the fluctuation-
independent form.

Fluctuation-independent coexistence requires selective
predation, that is, a, # a, (app. D), but several quantities
are important in defining when coexistence will occur. The
first is the productivity, 5, of each species j before ac-
counting for predation and competition. It is defined as
the log total seed production per unit of seed loss for each
species j, in other words, In {G;Y;/[1 — s,(1 — G;)]}. Next we
need the equilibrium values, P* and C;, of predation and
competition for each prey species j when present alone
(i.e., in its single-species resident state). Third, we need



E122 The American Naturalist

equilibrial predation and competition when the species are

jointly present. These are

m. —

T

B, = (2a)
a, — a,
and
cr, = an, — am, (2b)
a, — a,
(see app. D).

Assuming that species 2 is the species with the larger
value of a, appendix D shows that the coexistence con-
dition is

R"<R; <P ©)

Thus, the predator equilibrium, when both species are
present, must lie between the two equilibria with only one
prey species. Moreover, the species more vulnerable to
predation (with larger a) has to support higher predator
density when it is present alone. In addition, since B; must
be positive, this species must be the more productive spe-
cies (n,>m,). Appendix D shows that condition (3) is
equivalent to

C, <Cih<Cy, )

that is, the species supporting less predation (with lower
P*) has to support more competition (higher C~). To-
gether, expressions (3) and (4) precisely represent the idea
that coexistence results from a trade-off between com-
petition and predation, as has been discussed in a variety
of circumstances (Grover and Holt 1998; Holt et al. 1994;
HilleRisLambers and Dieckmann 2003). There are some
subtleties, however. Higher support of competition in the
presence of predation requires

L, (5)
a2 al

that is, higher productivity per unit predation rather than
higher productivity in absolute terms (n,<%,), which
would more normally apply in the absence of predation
(app. D). No more than two species can coexist by this
mechanism. The proof is similar to Levin’s (1970) dem-
onstration that the number of coexisting species cannot
exceed the number of limiting factors in a differential
equation model when these factors combine linearly. The
coexistence region in terms of 5, and 7, values is given in
figure 2.

An interesting special case occurs when one species does
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Figure 2: Coexistence region for two prey species with a competition-
predation trade-off as the only coexistence mechanism. In the region
enclosed by solid lines, resident species come to equilibrium. Above that,
in the dashed-line region, at least one resident has endogenous fluctu-
ations, but coexistence by a competition-predation trade-off still occurs.
Species 1 excludes species 2 to the right of the coexistence region, and
species 2 excludes species 1 to the left. G, = G, = 0.5, 5, = 5, = 0.8,
a, = 0.5,a, = 0.75,and s, = 0.2. See table A1 for definitions of symbols.

not support the predator. Condition (3) still holds, but
the requirement B* < B; simplifies to 5, > #,. This means
that coexistence is possible when species 2 has only a slight
advantage in net productivity, even though it may have a
large disadvantage in predation. This effect is shown in
figure 2 as the portion of the coexistence boundary cor-
responding to 7, = 7,, continued as a dashed line. Species
1 does not support the predator when present alone, but
species 2 enters the system because it is a superior com-
petitor. The predator can then enter the system and ensure
that species 2 does not become so abundant as to eliminate
species 1. Hence, coexistence occurs.

The Fluctuation-Dependent Case

When the resident equilibrium is unstable, endogenous
fluctuations arise, creating the potential for the long-term
low-density growth rate, 7, and hence the conditions for
invasion, to depend on these fluctuations. The quantity
r;is the average over time of the appropriate discrete-time
growth rate, r, which is given by the formula

r,=1In[s(l — G) + GY,e 9]

(app. C), where we have assumed for simplicity that pre-
dation is nonselective (a; = a). The quantities that vary
with time, C and P, can be combined into one, F =
C + aP, and the growth rate is then a nonlinear function
of this varying quantity, or a “limiting factor,” in the ter-
minology of Chesson (2000). Figure 3 illustrates the out-



Figure 3: How relative nonlinearity allows mutual invasibility. Each spe-
cies generates two-point cycles as resident, indicated in each panel by
the double-headed arrow. Each species also has convex nonlinearities.
The values of (F) are indicted by the vertical arrows and lie on the
straight lines joining the curve, r(F), at the two points of the cycle de-
termined by the resident species, as explained by scale transition theory
(Chesson et al. 2005). Hence, the fluctuations in Fincrease the r(F) values
over the growth rates at the mean of F, namely, r(F) (indicated by black
circles in A). The species with the solid line has the stronger nonlinearity
and so benefits more from these fluctuations. As invader in A, fluctuations
raise r(F) values of the solid-line species above the zero value experienced
by the other species as resident, allowing invasion. In B, the solid-line
species is resident and causes only small fluctuations in the limiting factor
F, and so only small differences between r(F) and r (F) result. In particular,
the benefit the resident gains from these fluctuations is insufficient to
give it a higher 7(F) than the invader, despite its stronger nonlinearity.
Resident 7(F) is zero by necessity, and so the invader (dashed line) has
positive 7(F), allowing invasion.

come in the simple case of a two-point limit cycle for
which F fluctuates equally between two values. Since r(F)
is a convex (concave up) function of F, (F) > r(F). Thus,
the actual long-term growth rate is greater than the growth
rate evaluated at the mean of the limiting factor, that is,
at the mean of the predator and prey densities. The degree
of difference between r(F) and r(F) depends on the mag-
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nitude of the fluctuations (Var (F)), which can change de-
pending on which species is the resident, as shown in figure
3. The right combination of nonlinearity differences and
variance differences promotes coexistence by relative non-
linearity, as discussed in the introduction to this article.
Nonlinearity depends on the rate at which seeds are lost
from the seed bank, which is the quantity § =1—
s(1 — G). Appendix E derives the following approximate
coexistence conditions, assuming 3, > (3;:

Var(F) . — oy Var(f) o
< >

2 <Bz_61 2

where Var (F) means the variance of F with species j as
resident and the other species as invader.

According to these conditions, trade-offs in life-history
parameters remain important for fluctuation-dependent
coexistence. The species with the higher net rate of seed
loss from the seed bank (higher §) must be compensated
with higher net productivity (higher 1) and must generate
higher variance. However, expression (6) may hold re-
gardless of the presence of predation, and in contrast to
the fluctuation-independent case, coexistence is possible
without predation, as we shall see below. Thus, coexistence
in the fluctuating system can arise by mechanisms other
than competition-predation trade-offs.

A variety of conditions, including different Y values (fig.
3), can lead to different levels of fluctuations as residents.
When a species with higher productivity has larger seed
loss rate and causes larger fluctuations as a resident (fig.
3A), it gives an advantage to the inferior competitor as
invader, which can lead to coexistence. Condition (6) can
hold even if only one species generates fluctuations as a
resident, but that species must be species 2, that is, the
species with the larger productivity and seed loss rate.
Under these circumstances, the invasion requirement for
species 2 becomes 7, > 7,, and coexistence condition (6)
applies with Var (F) = 0. Thus, coexistence is possible
when species 2 has only a slight advantage in net pro-
ductivity, even though it may have a large disadvantage in
seed persistence (fig. 4A).

Expression (6) gives a specific form of the standard
approximate condition (Chesson 1994, eq. [68]) for co-
existence by relative nonlinearity. The term 5, — 7, is a
comparison of the fitnesses of the species in their common
environment and is independent of fluctuations. The term
B, — B, measures relative nonlinearity as defined by Ches-
son (1994). Thus, it measures how the nonlinearity of the
growth rate of species 2 differs from the nonlinearity of
the growth rate of species 1. As shown in figure 3, an
invader species i with a negative value of 3, — 3, gains a
boost on average at low density from fluctuations from a
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Figure 4: Coexistence with predation and s-Y trade-offs. There is no
coexistence without predation because fluctuations are purely predation
driven. A, Coexistence region in Y,-Y, space. Note that the right boundary
coincides with the neutral coexistence line without predation. G, =
G, =0.1,5 =085, =04,4a =a, =1, s, = 0.5. B, Coexistence re-
gion in s-s, space. The straight portion of the right boundary coincides
with the neutral coexistence line without predation. G, = G, = 0.1,
Y, =30, Y, =50,a, = a, = 1, 5, = 0.5. See table Al for definitions of
symbols.

resident species r. However, an invader with a positive
value of 8; — 3, suffers a penalty relative to its competitor.
For coexistence, this penalized species must be the one
with the higher net productivity, , but the penalty it re-
ceives must be less than the boost that the other species
gains. This difference between the penalty and the boost
requires the invader with the negative value of 3, — 8, to
experience a larger Var (F) from the resident, as depicted
in figure 3.

Since n = In(GY/B) and 8 = 1 — s(1 — G), there are
potentially three pairwise trade-offs between the three pa-
rameters, G, Y, and s, associated with relative nonlinearity.
However, as shown in figure 1, the germination rate (G)
affects the prey dynamics through two paths in the life

cycle: production of new seed and persistence in the seed
bank. So by itself, the germination rate generates trade-
offs between these two pathways. Thus, we focus on two
kinds of trade-offs: s-Y trade-offs and self-trade-offs of G
values. In the coexistence regions graphed below (figs. 4—
8), numerical evaluation of the long-term low-density
growth of the original equations, not the quadratic ap-
proximations, is used to define coexistence boundaries.
The general features of these regions, however, are ex-
plained by the quadratic approximations.

Figures 4 and 5 consider cases in which fluctuations are
absent without predation, precluding coexistence. Because
predation is nonselective, equilibrium coexistence with
predation is impossible. However, the predator can intro-
duce fluctuations, and these do lead to coexistence in these
particular examples with s-Y trade-offs. In figure 4A, the
right boundary coincides with the neutral coexistence line
where the species have equal fitness. Species 2 is disad-
vantaged by fluctuations, but species 1 does not generate
fluctuations when present alone, and so species 2 can in-
vade with even a slight fitness advantage over species 1.
However, species 2 generates fluctuations, which disad-
vantage it and prevent it from excluding species 1, ex-
plaining coexistence.

In figure 4B, the coexistence region in the s,-s, plane
shows nonmonotonic behavior in the center of the realistic
range of s values, first increasing in width and then de-
creasing with increasing s. This occurs because the variance
of the system changes nonmonotonically with s. Simula-
tions show that larger s values have a direct effect on
variation by stabilizing prey dynamics. Larger s values also
have an indirect effect by increasing prey and predator

0 0.5 1

Figure 5: Coexistence shown in G,-G, space, with predation illustrating
the G self-trade-off. s, =5, = 0.8, Y, = Y, = 8,4, = a, = 1,5, = 0.5.
See table Al for definitions of symbols.
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Figure 6: Comparison of coexistence with and without predation and
s-Y trade-offs. A, Coexistence region in Y,-Y, space. Note that with pre-
dation, two alternative resident attractors are present in the vicinity of
Y, = 91. Thus, two alternative invasion boundaries occur, as indicated,
as a result of chaotic dynamics. G, = G, = 0.5, s, = 0.8, 5, = 0.4,
a, =a,=1, 5, =05 B, Coexistence region in s-s, space. G, =
G, =05 a =a =1,s =05 Y =30, Y, =50. See table Al for
definitions of symbols.

densities and the ranges of their fluctuations, thus increas-
ing the variance of F.

As discussed above, the germination rate produces a
trade-off between the benefits of productivity and persis-
tence in the seed bank in a way that should also create
the right variance relationships for species coexistence. Fig-
ure 5 illustrates this outcome for a case where fluctuations
would not occur in the absence of predation, and so pre-
dation is again necessary for coexistence.

Although predation can activate the relative-nonline-
arity mechanism by generating fluctuations when fluctu-
ations would be present in the absence of predation, pre-
dation need not have a positive effect on coexistence. In
the case of competition-induced fluctuations, introduction
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Figure 7: Comparison of coexistence regions with (solid line) and without
(dashed line) predation, for the case of germination trade-offs. s, =
5, =08 Y, =Y,=30,a =a =1,s = 0.5 See table Al for defi-
nitions of symbols.

of predation increases the magnitude of fluctuations and
increases both the upper and lower boundaries of the co-
existence region, leading to a narrower region overall, as
illustrated in figures 6 and 7. This finding of a generally
narrower coexistence region extends also to cases when
selective predation is present, even though selective pre-
dation is capable of generating coexistence in its own right
(fig. 8).

Discussion

This work provides a foundation for the study of the in-
teraction between predation and competition for species

100

50

70
y1

Figure 8: Comparison of coexistence regions with selective, nonselective,
and no predation. Hatched regions, from left to right, denote coexistence
with selective predation (g, < a,, 5, > s,), nonselective predation, and se-
lective predation (g, > a,, s,>s,). The unhatched region bounded by
dashed lines denotes coexistence without predation. See table Al for
definitions of symbols.
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with seasonal recruitment, for which endogenous fluctu-
ations potentially contribute to species coexistence. En-
dogenous fluctuations have been considered previously in
discussions of the role of predation in species coexistence
(Abrams 1999) but only concerning the possibility that
endogenous fluctuations reduce the effectiveness of fluc-
tuation-independent mechanisms. Our key example has
been desert annual plants, but as discussed below, the
findings are general to systems with seasonal recruitment.

We have restricted attention to the case of constant en-
vironmental conditions, and thus no exogenous fluctua-
tions, not because we expect that case to be a reasonable
approximation of nature but in order to examine coex-
istence mechanisms that do not require environmental
fluctuations. It is reasonable to expect multiple coexistence
mechanisms in any system, some relying on environmental
fluctuations and others not. It is important to emphasize
that different mechanisms can work in concert to yield an
overall coexistence-promoting effect (Chesson 2000).
Thus, the mechanisms discussed here may still be expected
to be present when others relying on environmental fluc-
tuations are present as well, even though environmental
fluctuations might well modify their action.

In the absence of both environmental and endogenous
fluctuations, we found support for the idea that coexis-
tence results from a trade-off between competition and
predation (Holt et al. 1994; Grover and Holt 1998; Abrams
1999). Our formulation gives particularly clear results in
terms of simple inequalities that must be satisfied by com-
petition and predation for coexistence to occur.

Endogenous fluctuations lead to the fluctuation-depen-
dent mechanism termed “relative nonlinearity,” as defined
in the introduction to this article. In most discussions of
relative nonlinearity, the requisite nonlinearities arise from
nonlinear functional responses of consumers to their re-
sources (e.g., Armstrong and McGehee 1980; Abrams
2004). Here, the nonlinearities arise from the presence of
the seed bank, which is protected from predation and com-
petition, while these density-dependent processes affect the
annual production of seed. Because the nonlinearities arise
from life-history traits, life-history differences, which may
result from standard life-history trade-offs between per-
sistence and reproductive traits (Roff 2002), lead to rel-
atively nonlinear population growth rates. The nonline-
arities present here are convex (i.e., concave up; fig. 3).
Higher persistence in the seed bank leads to greater con-
vexity, which has two important effects for species coex-
istence. First, a species with a more convex growth rate
gains greater long-term benefit from fluctuations. Second,
when a species is in high abundance, greater convexity
tends to dampen fluctuations in the system as a whole. A
second species with lower convexity gains a relative ad-
vantage from these low levels of fluctuations, but if that

second species is more productive, it tends to generate
large fluctuations when it is abundant, favoring the first
species. The net outcome is that two species with opposite
patterns of productivity and persistence in the seed bank
each tend to promote conditions that favor the recovery
of the other species from low density, promoting coex-
istence.

Coexistence between annual plants is possible by this
mechanism in the absence of predation, but predation
usually modifies the outcome. Fluctuating competition in
the absence of predation depends on our use of the Ricker
model of competition, which can cause fluctuations due
to overcompensating density dependence. This is not the
most realistic situation for plant species, although some
overcompensation is found in some plant populations
(MacDonald and Watkinson 1981). In some cases, we
found that predation is necessary for population fluctu-
ations to be present, and fluctuations arising in this way
can also permit coexistence by means of relative nonlin-
earity. More commonly, predation decreased the size of
the coexistence region. This reduction in the coexistence
region occurred because the contrast in the magnitude of
the population fluctuations for different species tended to
be reduced with predation, even though the overall mag-
nitude of fluctuations was often higher, thus undermining
the mechanism, usually pivoting the coexistence region,
and increasing the productivity required of the more pro-
ductive species.

Although our development has focused on annual plant
species, as noted in appendix F, equations of the same
form also apply to perennial species. The key quantities—
productivity, n, and persistence, 1 — 3—are defined in
analogous ways, with direct translation of the results from
annual plants to the perennial context. Our results depend
on the idea that competition and predation are of most
importance in the recruitment of new individuals, whether
they are seeds in the seed bank or new individuals joining
the adult population. Similar features appear in models of
freshwater zooplankton with persistent egg banks (Caceres
1997). Similar effects on community dynamics can arise
from subdivision of a population in space into refuge and
nonrefuge areas and, more generally, whenever the finite
rate of increase of a population can be divided into con-
tributions from processes that differ in their sensitivities
to predation and competition (see discussion of covariance
of sensitivity in Chesson 1990).

One caveat is that the equations of the text assume a
particular order of action of competition and predation,
with competition occurring earlier in the season and pre-
dation being of importance later. This fits well with ob-
servations of annual plant species where seed predators
attack the seeds after they have been produced. However,
for perennial species, where our focus is on recruitment



not to the seed bank but to the adult population, there is
no expectation that competition will precede predation.
However, preliminary studies of the model with the op-
posite ordering of predation and competition (app. F)
reproduce the phenomena reported here. Understandably,
coexistence regions change quantitatively, but no major
qualitative effects have been seen.

As in most other coexistence mechanisms, trade-offs of
one form or another are required for the coexistence mech-
anisms discussed here (Chase and Leibold 2001), but we
find some new insights into the way trade-offs can work.
We found cases where a major disadvantage in one attribute
can be compensated for by a slight advantage in another
attribute. In the fluctuation-independent case, we found that
a less-preferred prey might be unable to support the pred-
ator by itself. As a consequence, any productivity advantage
at all (even a very small one) was sufficient to allow invasion
(fig. 2). When this more productive species was more
strongly preferred by the predator and able to support the
predator, coexistence was possible. Coexistence resulted be-
cause the predator kept this species in check. Thus, the
trade-off necessary for coexistence here could be satisfied
by only slight productivity differences, even though pre-
dation differences might have been large. Similar phenom-
ena were found in the fluctuation-dependent case. For ex-
ample, one prey might have been unable to generate
fluctuations due to low productivity. Then a species with a
slight fitness advantage might have been able to invade the
system despite the fact that it had much lower tolerance to
newly arising fluctuations generated by its presence and
preventing it from excluding the other species (fig. 4).

In all forms of our models here, the coexistence mech-
anisms depend on the fact that predation is density depen-
dent and specifically that the predator has a numerical re-
sponse to the prey. With predation-competition trade-offs,
this numerical response allows one species to have strong
density-dependent limitation by predation while the other
has strong density-dependent limitation by competition, en-
abling their coexistence. In the fluctuation-dependent case,
the numerical response is a strong generator of endogenous
fluctuations, which can greatly modify the outcome with
competition alone. In contrast, adding density-independent
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predation to a model is equivalent to altering the mortality
rates and therefore introduces no new dynamical features,
whether the system comes to an equilibrium (Slobodkin
1961; Abrams 1977) or maintains fluctuations (Chesson and
Huntly 1997), although with nonlinear competition, mod-
ifying density-independent mortality rates can have sur-
prising effects (Holt 1985).

Previous work on coexistence of annual plants has em-
phasized the effects of temporal environmental fluctua-
tions, and the fundamental concept extends to many sea-
sonally recruiting species (Comins and Noble 1985;
Caceres 1997; Chesson 1997; Chesson et al. 2004). Co-
existence may also be promoted by spatiotemporal vari-
ation arising when natural enemies act as disturbance
agents (Caswell 1978) or create spatiotemporally varying
patterns of predation risk (Pacala and Crawley 1992). Pre-
vious work, however, has not explored the potential for
predator-mediated coexistence involving endogenous tem-
poral fluctuations with no spatial or exogenous compo-
nent. Our findings, however, suggest coexistence of no
more than three species in such circumstances (app. G),
while in nature, rich communities are often found. How-
ever, as discussed above, multiple coexistence mechanisms
acting in concert are likely to be found in most systems
in nature. In species with seasonal recruitment, in addition
to the mechanisms discussed here, we can well expect to
find mechanisms associated with environmental fluctua-
tions, frequency-dependent predation (Roughgarden and
Feldman 1975; Krivan 2003), and multiple predators with
different prey preferences (Grover 1994). Such mecha-
nisms applied to species with seasonal recruitment are the
subjects of future manuscripts.
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APPENDIX A

General Notation

Table Al: General notation

Symbol

Definition

*

Equilibrium

a Per capita predation rate on a prey species
b Conversion coefficient from prey to predator
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Table Al (Continued)

Symbol Definition
B8 Equal to 1 — s(1 — G), the loss rate from the seed bank
C Magnitude of competition
d Competition coefficient
F Combination of competition and predation
G Germination fraction
i Index for the invader
j Index for an arbitrary species j
n Number of competitors (annual plant species)
N Density of prey (annual plant)
O(x) A quantity that remains the same order of magnitude as x, as x becomes small
P Density of predator
r Population growth rate; when subscript, index for the resident
R Per capita recruitment in the absence of predation and competition (perennial model)
s Seed dormancy rate
Sa Adult survival rate in the perennial model
s, Survival of the predator
Y Annual plant seed yield
M Equal to In{GY/[1 — s(1 — G)]}, the seed production per unit seed loss, log scale
A Equal to N(t+ 1)/N(#), the finite rate of increase
APPENDIX B sufficient for coexistence in the sense of permanence (Hut-

Nondimensionalization of the Dynamical Equations

To nondimensionalize equations (1), first, the separate pa-
rameters b; and d; are replaced by the ratio b,/d. Assuming
that this ratio is the same for each species (as discussed
in the text), we can replace N; with dN, P with (d/b)P,
and a; with (b/d)a, The above system then reduces to the
following set of equations:

Nj(t+ 1) = N(tls,(1 — G) + GY;e” %"
(B1)

57=1,...,mn

n

Pt+1) = 2, GY,Ne “O[1 — e "+ P(t)
j=1

where C(f) = 3°_, G,N,(®). It is worthwhile to note that
in these nondimensionalized equations, seed density is
measured in units of competitive effect per unit area be-
cause d; is the competitive effect of a seedling, which may
be proportional to biomass.

APPENDIX C

Invasibility Criteria

As stated in the text, we use the invasibility criterion to
define stable coexistence. Although originally developed
for stochastic models (Turelli 1978; Chesson and Ellner
1989; Ellner 1989), it also applies to deterministic models
(Armstrong and McGehee 1980). It is necessary but not

son and Schmitt 1992); that is, population densities are
eventually bounded away from zero and infinity. Invasion
fails to be equivalent to permanence when increasing pop-
ulation fluctuations are possible or when crashes to ar-
bitrarily low density from intermediate densities are pos-
sible (Hofbauer and Sigmund 1989). The competition
present in our model means that all populations are
bounded above and ever-increasing cycles are not possible.
Although we have not rigorously proved that permanence
is equivalent to invasibility here, it appears to be the case,
as backed up by simulations.

In an invasion analysis, one species (the “invader”) is
removed from the system and reintroduced at low density
with the n — 1 other species (the “residents”) whose den-
sities have converged to a joint equilibrium or steady fluc-
tuations (e.g., as defined in a deterministic model by a
limit cycle or ergodic chaos; Matsumoto 1996). The success
of invasion is measured by the invader’s long-term growth
rate (1;), as defined below. If the long-term growth rate of
the invader is positive, we conclude that its population
increases in long run, and the invasion is successful. If the
long-term growth rate of each species as invader is positive,
we say the species coexist.

We define the growth rate of any species for the time
interval ¢ to ¢+ 1 as the change in In population size; in
other words,

r(®) = In N+ 1) — In N(). (C1)



This quantity is the same as In \(f), where

N+ 1)

A = NG

(C2)

is the finite rate of increase. In our models, the finite rate
of increase of a prey species is

ANE) = s(1 — G) + GYe “79P0), (C3)
and so r(¢) is given as
r(®) = In[s(1 — G) + GYe -], (C4)

The long-term population growth rate is defined as

T-1

S, () ST NG+ 1) — In N
7 = lim———— = lim
T T T T
In N(T) —1
_ “mw' C5)
T—x

For the residents, population densities are bounded pro-
vided that they converge on a bounded attractor. As a
consequence, the right-hand side of (C5) converges to
zero; in other words, the long-term population growth
rates of residents are zero. For an invader species i, r,(t)
in (C5) is evaluated for N(0) = 0, using equation (C4).
This quantity, 7, can be regarded as the limit as
N,0) = 0 of the quantity on the right in (C5) (taking
the limit as N;(0) — O first) or simply as the time average
of r(t), as defined above with N;(0) = 0. The long-term
growth rate 7, can be regarded as the long-term growth
trend while the invader remains at low density. Invader
growth rates can be positive, negative, or zero. As men-
tioned above, for coexistence we seek conditions that lead
to positive invader growth rates (7;> 0).

APPENDIX D

Fluctuation-Independent Coexistence

In this case, long-term low-density growth rates are just
the particular growth rates that invaders have with the
resident species at equilibrium. Thus, coexistence by the
invasibility criterion is the same as each species having a
low-density finite rate of increase greater than 1, that is,
N\, > 1, where we use the subscript i as the index for an
invader. We begin with the two-species case, which means
there is one resident species, designated by the index r.
Then, using the formula in (C3) for A\, we need to find
conditions such that
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N = [s(1 = G) + GYe & "] > 1,

i (DY)
where C" and P refer to competition and predation sup-
ported by the resident species r at equilibrium. Since the
resident is present alone, C’ = G,N;".

Equations for C” and P do not yield explicit solutions.
However, we can eliminate C from expression (D1) using
the fact that resident finite rates of increases (values of \,)
are equal to 1. Thus,

N =[50 -G)+ GYe ] =1,
implying

Cr* + arpr* = nri (DZ)
where 7, = In{G,Y,/[l — s(1 — G,)]}, that is, productivity
per unit seed lost.

Substituting expression (D2) in inequality (D1), we ob-
tain

o= [Si(l - G)+ GiYie’Cr**“iP;‘]

= [s(1 = G) + Gy, e ar], (D3)
When this is evaluated for both i = 1 and i = 2, we can
see that the two species coexist if

N = [5,1— G) + GYemremwr] >
(D4)
N = [5,(1— G,) + GYe @R >

If a, = a,, conditions (D4) lead to the contradiction
that n, > 5, and 7, <7,. Thus, stable coexistence cannot
result if the species are equally affected by competition
and predation. Hence, without loss of generality, we as-
sume that a, > a,. Then, expressions (D4) rearrange to
the following condition:

.~ M
a, — a,

P < <P (D5)

If the species do coexist and come to a joint equilibrium,
the values of Cand P (Cy}, and B7) at this joint equilibrium
are given by the expression

1

a, — a,

a,n, — am,

[Clz = , (D6)
=M

. =
P]Z

according to (D2).
Simulations have shown that invasion need not lead to



E130 The American Naturalist

convergence onto the C-P equilibrium given by (D6). In-
stead, the system may converge on a limit cycle. Never-
theless, the values in (D6) remain equilibria regardless of
whether the system converges on them. Using (D6), we
see that (D5) can be written as

R <P <P,

which is equation (3) in the main text. So for coexistence,
PJ must lie between the equilibrium predator densities
supported by each prey species separately. These predator
equilibrium relationships imply equilibrium relationships
for competition too because at equilibrium, competition
intensity and predator density must balance productivity,
and so they are linearly related as follows:

Ci+aR =1ny =
G +aP" =lnn, =

CS+ aB;
C, + a,B;

(D7)

Using these relationships, we see that condition (3) be-
comes

C:<ChL<Cl,

and positivity of expression (D6) is a direct consequence
of the above competition-predation trade-off. Recalling
that C is just the density of growing plants, the above
condition means that among two coexisting species, the
species with lower productivity has higher seedling den-
sity at its equilibrium as a single-species resident. This
surprising result is a consequence of predation. In the
presence of predation, the joint competitive factor,
Cy, = (am, — am,)/(a, — a,), must be positive. Thus, it
is necessary for the following inequality to be true:

mn_m

a, a

APPENDIX E

Quadratic Expansion of Prey Population Growth
Rate and Coexistence Conditions for the
Nonequilibrium Case

We consider here the special case of equal predation
(a; = a, for each species jand k), which, as we know from
above, does not yield coexistence in equilibrium settings.
Recall that the prey population growth rate is

(G P) = In[s(1 — G) + GY,e ).

We let F = C+ aP, and then we perform quadratic ex-

pansion on r(F) around the equilibrium of F, which is
denoted E’, as follows:

dr, .
n= 1 + EJ *(F_ P; )
1d°r
Ed—F; (F— P}*)Z + O(d?). (E1)

Evaluating the derivatives in (E1) and averaging over
time yields the mean growth rate of species j, expressed
as

[l

= ~B(F~ E)+36(1 - BF- EV + 0’ (£

where the overbars indicate the time average and (§ =
1 — s(1 — G) is the loss rate of the seed bank.

If the magnitude of the fluctuations is small, so that
F—F = O(0), and E — F = O(¢?), then (F— F)? =
Var (F) + O(¢°). Thus the long-term growth rate scaled
by B, is

~ —(F— E")+~(1 — B)Var(B.

J 2 J

(E3)

|

(A more detailed derivation of [E3] can be found be in
Chesson 1994.) On the left-hand side of this equation,
1;/B; is the rescaled long-term population growth rate. In
invasion analysis, we are interested only in the sign of the
long-term low-density population growth rate, and since
B3 is always positive, rescaling 7; does not change the results
of the invasion analysis. It does, however, simplify the
calculations and aid the biological interpretation of the
results.

Recall that the long-term growth rate of the resident,
7, is zero. Thus, the long-term growth rate of the invader
can be written 7,/3; = r,/8; — 1,/3,, or approximately

i

= (B = F) =6, — B, Var E), (E4)

=

where Var (F)) means the variance of F with the particular
resident r.

According to equation (D2), the total competition at
equilibrium for any species j is equal to the productivity
of species j; that is, F* = 7,. Thus, equation (E4) can be
simplified to



= (n,— n)=5 (8~ B)Var(E) (E5)

T
B;

For coexistence, this invasion rate must be positive for
each species as invader, which implies the coexistence con-
dition

Var (E) I Var (E)
<

2 <Bz_51 2

APPENDIX F

A Perennial Model

Equations (1) in the text, defining the model for annual
plants, can be modified for perennials. Both perennials and
annuals have a stage in the life cycle that persists over time.
For annuals it is the seed stage, and for perennials it is the
adult individual. The state variable to be used in the model
is the density of this persistent stage. Thus, while in the
annual model N(?) is the density in the seed bank, in the
perennial it is the adult density. For perennials, we introduce
the parameter R, for the per capita yield of new adults in
the absence of predation and competition. It includes seed
production, germination, and density-independent survival
before recruitment to the adult stage. The quantity R; re-
places G;Y; of the annual model, and dR; replaces d,G. (Al-
though d; disappears on nondimensionalization, it remains
important to recognize that it has a different value in pe-
rennial and annual cases.) The quantity s;(1 — G,) of the
annual model (the fraction of seed surviving in the seed
bank) is replaced by Sap the adult survival rate, in the pe-
rennial model. If predation comes after competition, as in
the annual model, the equations for the perennial are iden-
tical to those of the annual model, with these parameter
substitutions. Thus, the dynamics of the system are de-
scribed by the following set of equations, in nondimensional
form:

Nt + 1) = N(@[s,, + Rje ™0~
(F1)

5i=1...,m

n

Pt+1) = 2 RNe 1 — e %" + 5 P(t)
j=1

where C(t) = E;:IRij(t).

An alternative formulation that may be more realistic
in some circumstances is to have predation occur before
competition. Then competition is reduced in proportion
to the number of juveniles that have been lost to predation.
In this case, we obtain the following equations:
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I\]j(t"r )= I\]}-(t)[SA]‘f‘ Rjefn,P(r)fC(r)]
(F2)

. 5i=1,...,m
Pt+1) = O, RN[1— e "] + 5 P(t)
j=1

where C(f) = 2;[=1R7.e”‘1”’)1\7j(t).

In reality, we can expect the periods of competition and
predation to overlap with one another, even though their
relative intensities may well vary during the season. By
considering both extremes we can hope to bracket the
possibilities.

In both cases, the equations for the prey species are
derived simply by parameter substitution in the equations
for annual plants. The critical quantities, 75 By Chy and
B3, all come from the prey equations and therefore can
be obtained from the corresponding quantities for the an-
nual plant by making these parameter substitutions. In
particular, ; and (3; are given, respectively, as In [R;/(1 —
s,)] and (1 —s,;). The fluctuation-independent coexis-
tence conditions and the quadratic approximation for the
fluctuation-dependent case also all come from the prey
equations, and so they also agree exactly with those of the
annual model, given these parameter substitutions, re-
gardless of the order of predation and competition. How-
ever, the quantities C* and P" do depend on the predator
equation, and although the coexistence conditions in terms
of C and P" do not change with the order of predation
and competition, they do change when expressed in terms
of the underlying parameters. Similarly, for the fluctua-
tion-dependent case, although the coexistence conditions
in terms of Var (F) are independent of the order of pre-
dation and competition, the values of Var (F) do depend
on this order. However, our preliminary exploration of
equations (F2) has revealed no qualitative changes in the
conclusions.

APPENDIX G

Three-Species Coexistence

The section “Coexistence Conditions” in the main text
shows two-species coexistence through selective predation,
in the equilibrium case, or through relative nonlinearity,
when endogenous fluctuations are present. Because these
mechanisms arise in very different ways, they appear to
be independent of one another, which suggests that in
combination, three or more species may potentially co-
exist. Thus, we need to study selective predation in the
presence of endogenous fluctuations. Unfortunately, a sat-
isfactory quadratic approximation is not yet available in
this case. The quadratic expansion would have to be two-
dimensional because with selective predation there is no
common factor F that summarizes the combined intensity
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Figure G1: Coexistence of three prey species. Two different kinds of
trade-offs are present: a productivity-seed persistence trade-off between
species 1 and 2, and predation-competition (attack rate vs. productivity)
trade-offs between species 1 and 3 and between species 2 and 3. s, =
55, =5=08Y =Y,=Y,=30,4q =a, =1, a =131, G, =0.75,
G, = 0.1, G, = 0.4,and s, = 0.5. See table A1 for definitions of symbols.

of predation and competition for both prey species. Al-
though such a two-dimensional approximation might be
developed according the methods in Chesson (1994), the
results below do not justify going beyond simulation.

Figure G1 shows the coexistence of three species with
selective predation and endogenous fluctuations. There are
two different kinds of trade-offs between these species: a
productivity-seed persistence trade-off between species 1
and 2, and predation-competition (attack rate vs. pro-
ductivity) trade-offs between species 1 and 3 and between
species 2 and 3. Although productivity-seed persistence
trade-offs are included between 1 and 3 and between 2
and 3, these were found insulfficient for three-species co-
existence without predation-competition trade-offs. These
pairwise trade-offs, each of which allows two-species co-
existence alone, combine to allow three-species coexis-
tence. Notice that only parameters a and G differ between
species. Thus, these trade-offs allowing three-species co-
existence require only two-dimensional parameter varia-
tion as a consequence of the fact that G drives a trade-off
between the two processes, persistence and productivity,
as discussed above.

Simulations show that in three-species coexistence, the
two-dimensional sections through the coexistence region
are much smaller than the corresponding sections with
two-species coexistence, as shown in figure 7. Also, in-
vasion rates of one or more species may be very small,
and it may take more than 20,000 time steps before this
system has converged on its attractor, starting from low
densities. Thus, conditions created by residents, which
yield zero growth in the long run for residents, give only
weak long-run invader growth, indicating that two resi-
dents in combination leave fewer or weaker ecological op-

portunities for an invader to exploit. Thus, we do not view
this three-species coexistence system as ecologically mean-
ingful, since its rate of convergence to the orbit is too slow
to be robust in the face of environmental fluctuations,
even those of small magnitude.
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