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a b s t r a c t

Frequency-dependent seed predation (FDP) has been shown to be a powerful coexistence mechanism
in models of annual plant communities. However, FDP undermines the competition-based coexistence
mechanism called the storage effect (SEc), which relies on temporal environmental fluctuations that drive
fluctuations in competition. Although environmental fluctuations also drive fluctuations in predation, a
storage effect due to predation (SEp)may not arise due to a time lag between a change in the environment
and the resulting change in thepredation rate. Herewe showhowSEp can arisewithmultispecies FDP, and
in a two-species setting with density-dependent frequency-dependence, partially compensating for the
reduction in SEc, in the presence of predation. These outcomes occur when predatory behavior is flexible,
and can accommodate to changes in prey abundances on a within-year time scale, leading to changes
in predator preferences in response to prey abundances in a given year. When predator preferences are
determined by average prey abundances over several years, FDP is still a strong coexistence mechanism
but undermines SEc without creating SEp.

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

Interest in the role of predation in species coexistence mecha-
nisms has a long history in ecology (Chase et al., 2002). Much fo-
cus has been placed on how predation can alter the outcome of
competition (Chase et al., 2002), or combine with competition to
create new mechanisms (Holt et al., 1994; Grover and Holt, 1998).
However, beginning with Holt (1984) there has been a develop-
ing understanding of how predation can create coexistence mech-
anisms independently of competition. This idea then leads to the
concepts of predation-based and competition-based coexistence
mechanisms (Chesson and Kuang, 2008), and to the question of
how competition-based and predation-based coexistence mecha-
nisms interact with one another when present together (Chesson
and Kuang, 2008; Kuang and Chesson, 2008, 2009, 2010). Studies
like these show that predation-based mechanisms (for example,
predator partitioning) and competition-basedmechanisms (for ex-
ample, resource partitioning) tend to interact negatively, with the
result that the combined effect of twomechanisms is in factweaker
than the stronger separate mechanism (Chesson and Kuang, 2008;
Kuang and Chesson, 2010). Competition-based mechanisms pro-
mote species coexistence by intensifying intraspecific competition

∗ Corresponding author.
E-mail addresses: pchesson@u.arizona.edu (P. Chesson), jjkuang@u.arizona.edu

(J.J. Kuang).

0040-5809/$ – see front matter© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.tpb.2010.06.003
relative to interspecific competition, while predation-basedmech-
anisms intensify intraspecific apparent competition relative to in-
terspecific apparent competition (Chesson and Kuang, 2008). Thus,
the strength of each of these two sorts of mechanism is limited by
the strength of the interaction on which it is based. Because each
of these interactions can limit the strength of the other, coexis-
tence mechanisms based on each interaction can be limited by the
strength of the other interaction (Chesson and Kuang, 2008; Kuang
and Chesson, 2010).
As the relative strengths of predation and competition are var-

ied, other features of the system change in their importance also.
For example, the storage-effect coexistence mechanism based on
competition (SEc), depends on an interaction between competi-
tion and environmental fluctuations (Chesson, 2008). With the in-
troduction of predation, the role of environmental fluctuations in
promoting species coexistence can be much reduced (Kuang and
Chesson, 2010). This raises the question ofwhy no predation-based
coexistence mechanism arises from the interaction between pre-
dation and environmental fluctuations, retaining a role for en-
vironmental fluctuations in species coexistence. In our previous
work (Kuang and Chesson, 2009, 2010), we considered two dif-
ferent situations. In the first situation, predation was non selec-
tive and the single predator species led to no predation-based
coexistence mechanism (Kuang and Chesson, 2009). The absence
of an effective interaction between predation and environmental
fluctuations was traced to a time lag between an environmental
change and the response of predators through the numerical re-
sponse to the changed environmental conditions. In the second
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Table 1
General notation.

Symbol Definition

* Designates the equilibrium value of a variable
a The maximum value of the attack rate (instantaneous per capita predation rate)
A Magnitude of apparent competition
Ψ The combined magnitude of the coexistence mechanisms
C Magnitude of competition
C Standardized limiting factor, combining competition and apparent competition
E The environmental response: ln(G)
E Standardized environmental response
F Limiting factor, combining resource and apparent competition
G Germination fraction
i Index for an invader
{−i} Used as a superscript to indicate a measurement with species i as the invader
j Index for an arbitrary species j
n Number of annual plant species
N Density of an annual plant species
P Density of the predator
r Index for the resident when used as a subscript; population growth rate, when not a subscript
S Simpson’s index of diversity
s Seed survival in the seed bank
sp Survival of the predator between years
w Proportion of predation that is frequency-dependent
Yj Per capita seed yield of species j before accounting for competition and predation
β = 1− s(1− Ḡ), the mean fraction of seeds lost from the seed bank per unit time
∆P Magnitude of the coexistence promoting effect of frequency-dependent predation (FDP)
∆N Magnitude of nonlinear competitive variance (NCV)
∆Ic Magnitude of the storage effect due to competition (SEc)
∆Ip Magnitude of the storage effect due to predation (SEp)
η = ln

(
ḠY/

[
1− s(1− Ḡ)

])
, ln mean seed production per unit seed loss

λ Finite rate of increase, N(t + 1)/N(t)
ρ Correlation between the environmental responses, Ej ’s, of different species
σ 2 The common variance, Var(E), of the environmental responses
situation, predators changed their prey preferences as prey rela-
tive abundances changed (frequency-dependent predation, FDP),
potentially leading to a strong predation-based coexistence mech-
anism, but environmental fluctuations had a negative effect by de-
creasing average predator density, thereby decreasing the strength
of this predation-based mechanism (Kuang and Chesson, 2010).
Changes in predator behavior can be much quicker than

changes in predator population density, suggesting that there need
be no lag between changes in the environment and changes in
predation intensity when these changes are driven by behavior
changes. However, in our previous two-species model (Kuang
and Chesson, 2010) such changes were not able to influence
coexistence because coexistencemechanisms function by enabling
the recovery of species that fall to low density (Chesson, 2008).
In a two-species system with FDP, perturbation of one species to
low density renders the relative abundance of the other species
close to 100%, maximizing predation on that species, a situation
not sensitive to environmental fluctuations. Thus, predation rates
could not vary in a manner that creates a coexistence mechanism.
This raises the question of whether in multispecies systems
coexistence can arise from frequency-dependent behavior and
environmental fluctuations: although one species may be at low
density, the relative abundances of the other species can still
change in response to environmental change. We answer this
question here in the affirmative and present also a variation on
the standard model of FDP that allows predation rates to respond
to environmental fluctuations in two-species models when one
species is at low abundance. This variation on the standard model
realistically makes predation rates density dependent as well as
frequency dependent.
The particular system that we consider here is the annual plant

guild of arid environments, which is an important field system
for understanding the role of environmental fluctuations (Chesson
et al., 2004). In this system, environmental fluctuations cause
species’ absolute and relative abundances to vary greatly from
year to year, potentially driving coexistence by the storage effect
(Angert et al., 2009; Chesson et al., 2010). Seed predation is also
an important phenomenon in desert annual communities and it
has been suggested that it contributes to diversity maintenance
(Davidson et al., 1985). Thus, this system is ideal for exploration
of the issues discussed here.
In the developments below, we first present several alternative

forms of multispecies frequency-dependent behavior. We then
show how the total coexistence promoting effect of all the
mechanisms present can be divided into specific contributions
from each mechanism.
Thesemechanisms include the fluctuation-independent contri-

bution of frequency-dependent predation, as a well as the storage
effect, which is fluctuation-dependent. The storage effect, then, di-
vides into the storage effect due to competition (SEc) and the stor-
age effect due to predation (SEp). Approximate formulae for the
magnitudes of these mechanisms allow them to be understood,
and this understanding is backed up by simulations. The formulae
for the mechanism magnitudes show when SEp is expected, and
they allow its magnitude and interaction with SEc to be studied.
Although these issues are complex, our approach via measures of
mechanism magnitude leads to a strong understanding of the is-
sues involved.

2. Model and methods

We use the model of annual plant dynamics with predation of
Kuang and Chesson (2010). The symbols defining this model are
given in Table 1. Briefly, the model is as follows: desert plants
compete, but also interact through common seedpredators (Brown
and Venable, 1991). For an individual species, at the beginning
of each season, some fraction, G, of the seed, N , in the seed
bank germinates. Without competition, a seedling would produce
on average Y seeds by the end of the season. We assume that
competition can be quantified by a number, C , linearly dependent
on the densities of the seedlings of all competing species, and that
the actual number of seeds produced with competition is Ye−C per
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seedling. We assume that germination rates, G, vary stochastically
over time, implicitly driven by a stochastically varying physical
environment. The correlations between species are assumed to be
less than 1 so that each species has a unique pattern of germination
over time in accordance with studies of germination in annual
plant communities (Adondakis and Venable, 2004; Chesson et al.,
2010; Facelli et al., 2005). Variation in germination fraction is the
clearest means by which coexistence by the storage effect arises in
annual plant systems (Chesson et al., 2004), and so it is the basis of
our study of the effects of environmental fluctuations.
Predation is represented similarly by specifying e−Aj as the

fraction of seed of species j surviving seed predation. The quantity
Aj represents the magnitude of predation, and is given by different
formulae in different settings. As noted above, we assume seed
predation applies to the newly produced seed. Nongerminating
seeds are not subject to seed predation, as they are dispersed in
surface layers of the soil. However, they are subject to mortality,
and are assumed to have a survival rate sj to the beginning of
the next germination season. Assembling these components, we
obtain the following system of difference equations specifying
the dynamics of n annual plant species and a seed predator,
nondimensionalized for parameter reduction (Kuang and Chesson,
2010):

Nj(t + 1) = Nj(t)
(
sj(1− Gj)+ GjYje−C(t)−Aj(t)

)
,

j = 1, . . . , n (1a)

P(t + 1) =
n∑
j=1

GjYjNje−C(t)
(
1− e−Aj(t)

)
+ spP(t), (1b)

with

C(t) =
n∑
j=1

GjNj(t). (1c)

Here, the subscripts j indicate species-specific parameters and
the term spP(t) represents growth of the predator population not
accounted for by predation on this annual plant community. We
assume here that sp is less than 1, and can be thought of as predator
growth on resources that are poorer than those provided by annual
plant seeds (Kuang and Chesson, 2010). These resources might be
other plant products and insects that are available between seed
harvests from annual plants (Brown et al., 1994). In the model,
these resources are unable to support positive growth, but do
enhance predator persistence.
Kuang and Chesson (2010) use McNair’s (1980) model of

foraging subject to learning constraints to derive the following
formula for frequency-dependent predation:

Aj = a

(
(1− w)+ wGjYjNj/

∑
k

GkYkNk

)
P. (2)

In this formula, the absolute abundance of seed of species j
susceptible to predation is GjYjNje−C and so GjYjNj/

∑
k GkYkNk

is the relative abundance of species j. The effect of this relative
abundance on the foraging rate Aj is controlled by the parameterw.
When w = 0, predation is frequency independent, and Aj reduces
to aP . Withw = 1, frequency dependent behavior is maximal, and
in particular the predation rate on a species declines to zero as its
relative abundance decreases, giving a species at low abundance a
boost, strongly promoting coexistence (Kuang and Chesson, 2010).
In the form (2) the predator responds directly to current

seed production. We call this instantaneous FDP (iFDP). Because
the germination fraction Gj fluctuates over time in response to
environmental conditions, the predation rate changes immediately
as Gj changes. To understand timescale effects on predation as a
coexistence mechanism, we consider also the case where predator
Table 2
Types of frequency-dependent predation arising from foraging constraints.

Type of FDP Formula for Aj/aP

gFDP (1− w)+ w Nj∑
Nk

iFDP (1− w)+ w GjYjNj∑
GkYkNk

ddFDP (1− w)+ w GjYjNj∑
GkYkNk

[
B
∑
GkYkNke−C

1+B
∑
GkYkNke−C

]
Notation: Aj is the predation rate experienced by species j, w is the degree of
frequency dependence, a is the maximum value of the attack rate ; Nj , Gj , and
Yj , are respectively species j’s density, germination fraction, and seed yield. P is
predator density. B is a parameter determining the degree of density dependence
of predation.

behavior does not respond immediately to changes in seed
production, but instead represents a weighted moving average of
past seed production. The actual density of seed in the seed bank,
Nj(t), at the beginning of year t is one such weighted average of
seed produced prior to year t . For simplicity, we use this weighted
average to analyze the case of FDP that respondsmore gradually to
changes in seed abundance and refer to this case as gFDP. In this
case the predation rate, Aj, is given as

Aj = a
(
(1− w)+ wNj/

∑
Nk
)
P. (3)

Both types of FDP are summarized in Table 2.
For both iFDP and gFDP, the average value of Aj over species

is equal to a(1 − w + w/n), where n is the number of prey
species. Thus, the average per capita predation rate on individual
prey species declines as the number of prey species increases,
and this decline is stronger with greater frequency dependence,
w. Although this property might be seen as a weakness of the
model, it is found in nature, and is explained by foraging behavior
observed in nature (Bernays, 2001; Bernays et al., 2004). Moreover,
in Appendix A we show how these properties are to be expected
when FDP arises from foraging constraints, and are inevitable for
any model where Aj is strictly a function of the relative abundance
of prey species j. For comparison, we consider also a model where
Eq. (2) is modified to maintain the average foraging rate as the
number of species increases (Appendix A.3).
One further issue with these models is in fact the strict

frequency dependence of the predation, which arises from
McNair’s model from the assumption that the previous encounters
of the predator determine its current preference, without any
effect of the spacing of those encounters. Thus, skill gained from
a given prey encounter does not decay with time. It seems more
likely that when prey are scarce it would be more difficult for
predators to maintain skill in capturing specific prey species.
Thus, a further modification of McNair’s model (Appendix A.4)
considers effectiveness of learning to increase with the absolute
abundance of prey (Table 2), making the frequency dependence
density dependent (ddFDP).
These equationsmake the specific assumption that competition

equally affects all species, which precludes stable coexistence
in equilibrium settings without predation (e.g. Levin, 1970). The
form of FDP here is symmetric in the sense that species with
the same abundance experience the same predation rate. The
effects of resource competition and apparent competition on seed
production combine additively in these equations, so that seed
production is a function of Fj = C + Aj.
To analyze this model, we introduce some simplifying as-

sumptions. We assume that the germination fractions of different
species fluctuate randomly over time according to the same prob-
ability distribution. These germination fractions may be correlated
between species, but are independent over time. The survival rate
in the seed bank, s, is assumed the same for all species. However,
species can differ in their maximum seed yields, Y , and these dif-
ferences lead to mean fitness differences between species.
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Table 3
Mechanism quantification.

Mechanism Notation Magnitude from quadratic approximation

Frequency-dependent predation (FDP) ∆P awP̄ {−i}/(n− 1) (gFDP and iFDP)

awP{−i}
n−1

(
B
∑
r Mr

1+B
∑
r Mr

)
(ddFDP)

Nonlinear competitive variance (NCV) ∆N (1−β)
2

∑
r 6=i

[
var

(
F {−i}r

)
− var

(
F {−i}i

)]
/(n− 1)

Storage effect due to competition (SEc) ∆Ic
s
∑

r 6=i

[
cov

(
Er , C {−i}

)
− cov

(
Ei, C {−i}

)]
/(n− 1)

≈ sσ 2(1− ρ)ḠΣr 6=iN̄r/(n− 1)

Storage effect due to predation (SEp)
(nonzero only for iFDP and ddFDP)

∆Ip

s
∑

r 6=i
cov

(
Er , A{−i}r

)
/(n− 1)

≈ sawσ 2(1− ρ)S̄ · P̄/(n− 1) (iFDP)

≈
sawP̄σ 2

n− 1

{
U
[
(1− ρ)S̄

]
+ V

[
(1− ρ)(1− S̄)+ ρ

]}
(ddFDP)

Notation: Resident species are indicated by the subscript r; the superscript {−i} indicates a measurement with species i as invader, following the convention of Chesson
(2003), and the bar over a variable means a temporal average, which is the same as the expected value over the stationary distribution defined by resident species. P̄ {−i} is
the average predator density with species i as invader, and is equal to P∗{−i} if the system is at equilibrium. C is the magnitude of competition, and A is the magnitude of
apparent competition. Fj is the joint combined effect of resource and apparent competition, and equals C + Aj . β = 1− s(1− Ḡ) is the rate at which seeds are lost from the

seed bank. The quantity, ρ, is the correlation between residents and invader. U = B
∑
Mu/

(
1+ B

∑
Mu
)
and V = B

∑
Mu/

(
1+ B

∑
Mu
)2 , withMu = GuYuNue−C .
3. Model analysis

We use invasibility analysis (Chesson and Ellner, 1989; Ellner,
1989; Turelli, 1978) to define coexistence of competitors, as in
our previous work (Kuang and Chesson, 2009, 2010). Coexistence
by the invasibility criterion guarantees that coexisting species
recover from low density. Moreover, with stochastic environment
models of the sort considered here, the invasibility criterion
has been shown in some circumstances to imply convergence
of the stochastic processes describing population densities on
a stationary stochastic process with all species having positive
population sizes (Ellner, 1989). Although this outcome has been
demonstrated only in limited circumstances, and does have
some exceptions in extreme cases (Chesson, 1982), simulation
studies suggest that it applies broadly, and in particular to the
circumstances considered in this article (pers. obs.). To evaluate
the invasibility criterion, each species i is set in turn at zero
density, and its time average growth rate, r̄i, is calculated while
the other species are unconstrained and converge on the stationary
distribution they have in the absence of this species. If each r̄i is
positive, then the system satisfies the criterion. A species set to
zero density is called an invader, and the other species are termed
residents. Any quantity measured when species i is the invader
takes the superscript {−i}. For example, apparent competition for
a resident species r , when i is invader, is denoted A{−i}r .
With an invasibility analysis, it is possible to partition the

invasion rate r̄i into contributions from different coexistence
mechanisms. For the model given here, this has been done for the
two-species case (Kuang and Chesson, 2010), and is extended for
the multispecies situation in Appendix B. This procedure identifies
several mechanisms of coexistence whose strengths are given by
formulae in Table 3. A key quantity is the maximum productivity,
η, which is the natural log of average life-time production of
new seed from a given seed in the absence of competition and
predation (Table 1). This quantity has a critical role in the growth
rate formulae. To get rid of an awkward scaling factor, wemeasure
population growth on the time scale of seed generations. The
probability of a seed leaving the seed bank in any given year is
β = 1 − s(1 − Ḡ), and so a seed generation is 1/β . In these units,
we show that r̄i takes the form

r̄i ≈ ηi − η̄r + Ψi (4)

where η̄r is average productivity for resident species (Appendix B),
andΨi defines the combinedmagnitudes of the coexistence mech-
anisms. Fundamentally, in the absence of coexistencemechanisms,
the invasion rate would simply be ηi − η̄, which means that the
species with the largest value of ηwould exclude the other species
(Chesson, 2009). In the presence of stabilizing coexistence mech-
anisms, the Ψi take positive values. Then, species i can invade the
system if

ηi > η̄r − Ψi. (5)

Thus, the minimum value of ηi allowing species i to invade is equal
to the average resident productivity less Ψi. A positive value of
Ψi means that a species with productivity less than the average
of the residents can invade. Indeed, Ψi defines exactly how much
less the productivity of the invader must be before the invader is
excluded from the system. Positive values of Ψi thus allow species
with different productivities to coexist with one another.
HereΨi has contributions fromup to four differentmechanisms,

depending on the circumstances (Appendix B), which combine
additively to determine the value of Ψi:

Ψi = ∆P −∆N +∆Ic +∆Ip. (6)

These mechanisms are defined in Table 3, and discussed further
below. Briefly, ∆P is the excess average predation on resident
species due to FDP. The term∆N , ‘‘nonlinear competitive variance
(NCV)’’ (Snyder and Chesson, 2004)measures the effect of variance
in competition (resource and apparent combined); ∆Ic is the
storage effect due to competition, and ∆Ip is the storage effect
due to predation. All these mechanisms, with the exception of
∆Ip, are discussed in detail in Kuang and Chesson (2010) for the
two-species case, but are reviewed briefly below. Themultispecies
measures can be understood as averages over resident species
of the formulae applying in the two-species case for a given
pair of resident and invader species. Given this fact, it should
not be surprising that these multispecies measures share many
properties with their two-species counterparts, but their behavior
as the number of species increases is especially informative, and
in some cases undergoes qualitative change between two-species
and multispecies cases.

3.1. Properties of the mechanisms

∆P: The fluctuation-independent component of frequency dependent
predation
This term is the fluctuation-independent effect of FDP on

coexistence, i.e. it is an effect that is present independently of
environmental fluctuations. Environmental fluctuations do affect
this term through themagnitude of average predator density P̄ {−i}.
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This quantity is also inversely proportional to n − 1, which is the
number of resident species in an invasion analysis. Fundamentally,
∆P is the average excess predation that residents experience
compared to an invader, and this quantity decreases in inverse
proportion to n − 1 as the number of residents increases at fixed
predator density. However, as we shall see P̄ {−i} itself depends on
n − 1 in ways that depend greatly on other factors. Hence ∆P as
whole is not inversely proportional to n− 1.
∆N: Nonlinear competitive variance
The growth of any species depends nonlinearly on the

combination of competition and predation, Fj = C + Aj, which
fluctuates over time. Specifically, the growth rate is a concave up
function of Fj, and so fluctuations in Fjmake a positive contribution
to the long-termgrowth rate (Kuang and Chesson, 2008). However,
this contribution is greater for residents than invaders because
resident F is more variable than invader F , giving a negative effect
on coexistence. Conventionally,∆N is enteredwith a negative sign,
and so a negative effect on coexistence means a positive value
of ∆N . In simulations, the trend in ∆P − ∆N has followed that
in ∆P alone, and so ∆N can be viewed as a correction to ∆P for
fluctuating F . For simplicity we combine these mechanisms in the
figures.
∆I: The storage effect
The storage effect gives the contribution to species coexistence

of temporal partitioning of the environment. It involves the
average over time of the interaction between the species responses
to the environment, here Gj, and the density-dependent factors,
Fj = C + Aj. Here we mean density-dependence in a multispecies
sense: C and Aj both depend on the densities of all annual plant
species in the system. As defined here, competition, C , is explicitly
a function of N1, . . . ,Nn. Apparent competition, Aj, depends on
densities in two ways, explicitly through the FDP contributions,
and implicitly and indirectly through predator density, P , which
depends on past prey densities.
As Gj and Fj fluctuate over time, the growth rate, rj(t), fluctuates

in away that reflects their interaction. In particular, whenGj is low,
rj(t) is relatively insensitive to the value of Fj. Most important, high
values of Fj are prevented from having strongly negative effects
on population growth, provided survival of ungerminated seed is
not low: rj(t) can never be less than ln[s(1 − Gj)]. On the other
hand, when Gj is high, rj(t) depends greatly on Fj, and rj(t) can
vary widely. To understand this phenomenon quantitatively, we
put germination fraction on the log scale, defining Ej = lnGj. Then,
quadratic expansion of the growth rate (Appendix B) shows that
the interactive change in the growth rate as Ej and Fj deviate from
their average values is approximately

− s
(
Ej − Ēj

) (
Fj − F̄j

)
(7)

on a timescale of seed generations. Note that this product takes
a positive value, representing a positive effect on population
growth, when Ej is below average (below average germination)
and Fj is above average. This interaction results from persistence
of seed in the seed bank, and indeed is proportional to the seed
survival fraction s. It has the effect of reducing the impact on
population growth of the negative circumstances that result from
simultaneous poor germination andhigh competition or predation.
The opposite circumstances, i.e. above average Ej and below
average predation and competition, represent an opportunity that
is enhanced by long-termpersistence of the fruits of such favorable
circumstances in the seed bank. These benefits from the interactive
component (7) of population growth aremore available to invaders
than residents, which then promotes coexistence. To measure the
total magnitude of these benefits, Eq. (7) is averaged over time to
give

− s cov
(
Ej, Fj

)
. (8)
The average resident–invader difference in expression (8) then
defines the magnitude of the storage effect (Appendix B.2):

∆I = s[cov(Er , Fr)− cov(Ei, Fi)]
{r 6=i}

, (9)

where the over bar superscripted by {r 6= i} means the average
over resident species r .
As the density-dependent factor, Fj, depends additively on

two distinct factors, the covariance cov(Ej, Fj) divides into two
components,

cov
(
Ej, Fj

)
= cov

(
Ej, C

)
+ cov

(
Ej, Aj

)
, (10)

and hence the storage effect, ∆I , divides into two components.
The storage effect due to competition, SEc, arises from the first
covariance and the storage effect due to predation from the
second covariance. In our previous work (Kuang and Chesson,
2009, 2010), cov(Ej, Aj) was zero in a resident–invader scenario,
and so there was no storage effect due to predation. Without
frequency-dependent predation, Aj = aP and the independence
of the environment over timemeans that P(t) is uncorrelated with
Ej(t) (Kuang and Chesson, 2009). That remains true here. With all
forms of FDP considered here, the zero abundance of an invader
species i means that cov(Ei, Ai) is always zero. With two species,
the single-species resident is fixed at 100% relative abundance, and
this means that resident Ar(t) does not vary with the Er(t) for both
iFDP and gFDP. Thus, there is no storage effect due to predation
in the two-species case for either iFDP or gFDP. But as we shall
see below, a storage effect due to predation does arise in the two-
species casewith ddFDPbecause then residentAr(t)does varywith
the Er(t).
With gFDP, Ar(t) is uncorrelated with Er(t), regardless of

the number species, as Ar(t) reflects only past values of the
environmental responses. However, with multispecies iFDP, a
storage effect due to predation (SEp) appears. With two or more
resident species, Ar(t) increases directly as a function of Er(t)
because an increase in Er(t) increases the relative abundance of
the seed of species r . Thus, a positive value of cov(Er , Ar) results.
However, for an invader i, cov(Ei, Ai) remains zero because at
zero relative abundance Ai(t) cannot change as a function of
Ei(t), and P(t) is uncorrelated with Ei(t) regardless. Hence, an
invader–resident difference in cov(E, A) is guaranteed in this case.
So the immediate behavioral response of the predator to prey
relative abundances in a given year creates SEp with multispecies
iFDP.
The measures of the magnitudes of SEc and SEp are denoted

respectively by ∆Ic and ∆Ip (Table 3). For iFDP, they are both
proportional to σ 2(1 − ρ), where σ 2 is the common variance
of Ej(t), and ρ is the common correlation between species. It
follows that σ 2(1 − ρ) is that component of the variance of E
that is independent between species. An interesting feature of the
measure ∆Ip of SEp is that is it proportional to the time average
value, S̄, of Simpson’s index of diversity for resident species,
divided by n− 1, the number of resident species. Simpson’s index
is the probability that two individuals chosen at random will be
different species. It is thus zero when there is only one resident
species, rendering SEp absent in this case. For any fixed number of
residents, this formula says that SEp is stronger when residents are
more equal in abundance. This outcome reflects the fact that even
abundances in the seedbank lead to a dominant influence of the
current environment on seedling relative abundances, maximizing
the covariance between environment and apparent competition
for residents. However, as the number of resident species, n − 1,
increases, S̄/(n− 1) declines, and so like∆P and∆Ic ,∆Ip weakens
as the number of resident species increases.
The dependence on Simpson’s index in the case of iFDP empha-

sizes that if the residents have no diversity, there is no SEp. In par-
ticular, in the two-species case, SEp cannot occur with iFDP. With
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(a) B = 1. (b) B = 1000.

Fig. 1. Mechanismmagnitudes with ddFDP. The separatemechanisms, FDP−NCV (∆P−∆N , dashed line), SEc (∆Ic , solid line), and SEp (∆Ip , dash–dot line), and the combined
magnitudes of all mechanisms (gray line), plotted against the seed yield parameter, Y . Without the predator, SEc is the only mechanism. The predator enters at sufficiently
high seed yield, at which point SEc declines in importance. Panel (a), parameter B = 1 (strong density dependence), allowing SEp to be an important mechanism. Panel (b),
parameter B = 1000 (weak density dependence), allowing only weak SEp. Common parameters: a = 0.2, s = 0.8, sp = 0.8, w = 0.5; G is beta(0.5, 0.5), independent
between species.
ddFDP, however, there is no requirement for diversity in the prey.
The formula for ∆Ip in the case of ddFDP (Table 3) consists of two
components. The componentmultiplied by the positive quantityU ,
is the quantity defining∆Ip in the case of iFDP, but the component
multiplied byV is unique to ddFDP andhas the interesting property
that it is a decreasing function of Simpson’s index. Moreover, this
component is maximized when ρ = 1, i.e. when the annual plant
species respond identically to the physical environment. Thus, it
also has the unique feature that it does not require species-specific
responses to the environment. This outcome reflects the fact
that with density-dependent predation, low density weakens any
correlation between the environment and apparent competition
without reliance on species having different responses to the phys-
ical environment, thus rendering invader cov(E, A) zero. With
iFDP, resident cov(E, A) still cannot be nonzero with ρ = 1 be-
cause the factor elevating predation rates of residents is repeated
encounters with the same prey alone. However, with ddFDP, pre-
dation rates also vary with the time since the previous encounter,
which then reflects the overall abundance of prey, not just the
identity of the previous prey encountered. Relative to iFDP, a
predator with ddFDP pays a penalty in ability to catch prey as prey
absolute abundances go down. This penalty is partially recovered
by cov(E, A) because it accounts for higher overall capture rates
when the environment makes a prey species more abundant. This
effect is only strong for a prey species that is abundant in the seed
bank, for only then can A strongly reflect E. Thus, a contrast be-
tween residents and invaders arises, driving the storage effect.

4. Magnitudes and interactions of coexistence mechanisms

As we have seen above, there are differences between the three
sorts of FDP depending on the number of annual plant species
present. Thus, we distinguish between the two-species case and
the multispecies case in our discussion.

4.1. Interacting coexistence mechanisms in the two-species case

The two-species cases with iFDP and gFDP are fully described
in Kuang and Chesson (2010). Our chief concern here is how
ddFDP differs from these two other forms of FDP. The outstanding
distinction is that SEp is positive in the two-species case of ddFDP.
Fig. 1 shows how the magnitudes of the mechanisms vary with
the yield Y . In panel (a), with a low value of B, the spacing of
prey encounters has a major effect and so SEp occurs. At low yield,
the predator is not supported. As yield is increased, the predator
is able to enter, sharply reducing SEc, but replacing it with SEp.
SEc is never completely zero, and the combined effects of SEc and
SEp increase as the yield increases. The parameter B decreases the
sensitivity of predator learning to prey density, and as B becomes
large, the situation applying for iFDP and gFDP is approached. Thus,
SEp disappears for large B (∆Ip approaches zero).

4.2. Interacting coexistence mechanisms with many species

In a multi-species setting in a variable environment, gFDP
is strongly distinguished from iFDP and ddFDP, because gFDP
never leads to SEp. We assess the multiple species coexistence
region in terms of the minimum productivity (η) required for
invasion, which we determine by simulation. For simplicity,
resident productivities are assumed equal. However, simulations
show that resident differences in seed yield donot affect the critical
patterns. The mechanism NCV (∆N) is present in all cases, but its
role seems to be to reduce the effects of FDP, without changing
trends, as we have seen above, and so we mention it no further
below.
We first discuss the difference between iFDP and gFDP, as

shown in Fig. 2. In a constant environment, there is no distinction
between these twowhile residents have the same productivity and
germination rate. As the numbers of residents increase, the mini-
mum invasion requirement increases. In a variable environment,
patterns are qualitatively similar for both iFDP and gFDP. In a vari-
able environment, and 5% FDP, SEc is dominant and predation has
a negative effect on coexistence, indicated by the higher minimum
productivity requirements compared with SEc alone. At 50% FDP,
predation not only compensates for its negative impact on SEc, but
also allows coexistence of species with lower productivity com-
pared to the case without predation. Thus, at w = 0.5, both types
of FDP have more effect than SEc as a coexistence mechanism for
the chosen set of parameters.
Fig. 2 also shows more complex effects occurring with 100%

FDP. With only few residents in the system, the minimum
productivity for invasion is the lowest compared with any other
level of FDP and also compared with no predation. This outcome
is not surprising, because at 100% FDP, the predator ignores the
invader, and preys only on the residents, greatly advantaging the
invader. However, as the number of residents increases, eventually
the invasion requirement jumps sharply with iFDP and gFDP,
associated with a drop in foraging efficiency (Appendix B.2) and
a reduction in predator density (Fig. 3). This occurs earliest with
no environmental variation, when mean predation rates are too
low to sustain the predator in the system. With environmental
fluctuations, SEp not only benefits the invader by slowing the
increase in the minimum invasion requirement, it also benefits
the predator. Environmental fluctuationsmaintain uneven relative
abundances of the prey. With FDP, this means average prey intake
rates are higher (Appendix A). However, formore than 10 residents
(not shown), FDP has no or very low effect in all cases, and
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Fig. 2. Minimum invasion requirements as a function of number of residents. The minimum invasion requirement, η, is a direct measure of the combined strength of all
coexistence mechanisms, with lower values meaning greater strength. The horizontal solid line gives the resident η, set the same for each resident species. When min(η)
has this value, the combined mechanisms have zero strength. The gray line defines the case without the predator. The percentages define the percent FDP (the quantity
100w%). Thus, w = 1, dash–dot line; w = 0.5, dashed line; w = 0.05, solid line. (a) No environmental variation, which also means no coexistence without a predator.
(b) Gradual frequency-dependent predation (gFDP). (c) Instantaneous frequency-dependent predation (iFDP). (d) Combined density-dependent and frequency-dependent
predation (ddFDP). Parameter: s = 0.8, Yr = 30, sp = 0.8, a = 0.2, G = beta(0.5, 0.5) independent between species.
Fig. 3. Changes in mean predator density with changes in species richness. Time
averages of predator density at 100% FDP. The curves correspond to the four panels
of Fig. 2, with the same parameter values and show changes in predator density
underlying the patterns in Fig. 2.

coexistence is promoted almost entirely, or completely, by SEc
alone.
Fig. 2 also shows the outcomes for ddFDP. It shows a similar

pattern to iFDP. For the same values of other parameters, the
quantity B, which determines the closeness of the model to iFDP,
shows that ddFDP is slightly less effective at maintaining diversity
than is iFDP, but that is at least partly the effect of lower overall
average predation rates due to the reduced efficacy of learning. The
biggest effect occurs as the number of residents reaches 6 with
100% FDP, for then a low value of B leads to a sharp increase in
theminimum η for invasion, reflecting a strong decline in predator
abundance in that case (Fig. 3).

5. Discussion

Although frequency-dependent predation has long been known
in models to be a powerful mechanism of species coexistence
(Roughgarden and Feldman, 1975; Krivan, 2003), it has not previ-
ously been understood as a component of fluctuation-dependent
coexistence. Here we have seen how frequency-dependent behav-
ior can lead to the fluctuation-dependent coexistence mechanism,
the storage effect due to predation (SEp). In our previousworkwith
models having just two prey species (Kuang and Chesson, 2010),
we found that although frequency-dependent predation could pro-
mote coexistence, the presence of predation undermined the stor-
age effect due to competition (SEc). Thus, it undermined the role
of environmental fluctuations in promoting species coexistence.
The net outcome from predation could be an enhancement of the
abilities of annual plant species to coexist if frequency dependence
were strong enough, but it could also be a net undermining of coex-
istence if frequency dependence were weaker. Here, we have seen
how the ability of predators to respond behaviorally to annual fluc-
tuations in the relative and absolute abundances of annual plant
seed can create SEp, maintaining a strong role for environmental
fluctuations in species coexistence even though predation still un-
dermines SEc.
Critical to the presence of SEp is temporal covariance be-

tween the mortality rate due to predation and the response of an-
nual plant seed production to environmental conditions. Invader
resident-differences in this covariance, along with persistence of
dormant seed in the seed-bank, create SEp. When frequency-
dependent predation reflects densities in the seed bank (gFDP),
rather than current seed production (iFDP and ddFDP), this covari-
ance does not occur and SEp is absent. However, predators that ad-
just their seed preferences to the current relative abundances of
plant seed (iFDP and ddFDP) do create this covariance, and hence
SEp. A peculiar feature of SEp compared with SEc is that there
is never any covariance between predation and the invader envi-
ronmental response. It follows that the magnitude of SEp reflects
entirely the extent to which resident species are attacked more
heavily when the environment favors them (i.e. cov(E, A) for resi-
dents) rather than a comparison between residents and invaders in
this regard. Thus, unlike SEc, the correlation between resident and
invader responses to the environment is irrelevant to the magni-
tude of SEp.
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When predation is strictly frequency-dependent on current
seedproduction, i.e.when theper capitamortality due to predation
on a species is strictly a function of the relative abundance of
new seed of the species (iFDP), SEp only occurs when at least
three annual plant species are present. The technical reason is
that in an invasibility analysis with two species, the resident
is at 100% relative abundance (the invader is at 0%), regardless
of the environment, and so the per capita predation rates are
fixed and unresponsive to the environment. We do not have
to think of this in terms of an invasibility analysis, however,
because it also has meaning for the dynamics of two species
following the decline of one of them to low abundance. A large
disparity in species abundances cannot be quickly changed by
an environmental change, and so the relative predation rates are
insensitive to the environment in such cases. Thus, fluctuations in
per capita predation rates become less important as one species
declines in abundance. In this case of two annual plant species,
however, the fluctuation-independent component of predation,
measured here through∆P , is maximal. This outcome means that
although SEp does not arise, strong FDP still has a strong effect on
coexistence. In this case, it is the role of fluctuations in coexistence
that becomes diminished when a predator is introduced, not the
overall ability of species to coexist.
With more than two plant species, and iFDP with one species

at low density, new seed production of the remaining species
can vary greatly in relative magnitude as the environment varies.
This tendency depends on two factors. First is the relative
abundances of the species in the seed bank, from which relative
abundances of new seed production can deviate, both positively
and negatively. These deviations occur most readily when species
are at similar relative abundances in the seed bank. Second is the
correlation between species in germination fraction. If germination
fractions do not show relative fluctuations (the case with high
correlation), environmental fluctuations do not create relative
variation in seed production. These two factors both appear
explicitly in the formula for the magnitude of SEp (∆Ip) as the
product S̄ (1− ρ), where S̄ is the time average of Simpson’s
diversity index for resident species (measuring evenness when n
is fixed), and ρ is the correlation between species’ environmental
responses. Fundamentally, when species’ relative abundances can
be moved easily to extreme values by environmental fluctuations,
strong covariance between mortality rates and the environment
arise. This covariance promotes coexistence because it prevents
abundant species from gaining full advantage of favorable
environmental conditions, providing a relative advantage to
species at low density, promoting their recovery. It is also
worthwhile noting that with frequency-dependent predation
and many species, average relative abundance is necessarily
low. Without environmental fluctuations, FDP would mostly
be responsible for checking the growth of the more abundant
species. With strong environmental fluctuations affecting species
differentially, all species are checked by FDP, but at different times,
and it this effect that is captured by SEp.
Although strict frequency dependence of per capita predation

rates requires more than two plant species to create SEp, with
density dependence as well, this is not necessary. We introduced
density-dependent frequency-dependent predation (ddFDP) by
modifying our iFDP model with the assumption that prey capture
ability depends not just on the relative frequency with which
a prey is encountered (which leads to strict FDP), but also
on the absolute rate of prey encounters. This means that the
growth of even a single species resident is checked when the
environment favors it because predation rates go up with the
total seed production, not just with relative seed production. In
terms of storage-effect theory, covariance between environment
and apparent competition (cov(E, A)) arises. The formula for ∆Ip
(the magnitude of SEp) in that case has two components to it. One
of these reflects frequency dependence and involves the same term
S̄ (1− ρ), discussed above, showing how coexistence is enhanced
by evenness of residents in the seed bank and low correlation
between their environmental responses. This term is zero for a
guild of only two annual plant species. However, another term is
present that varies quite differently because it depends on absolute
prey abundances, not relative prey abundances. It decreases as
a function of Simpson’s index, and increases as a function of
the correlation between environmental responses, exactly the
opposite of the first term. Thus, a storage effect due to predation is
possible with ddFDP under quite different circumstances to iFDP.
The conditions for ddFDP to create SEp are much broader than for
iFDP, and since it is more realistic, it is the preferred model.
Another factor in these effects is the numerical response

of the predator, and especially the average density (P̄) that
it maintains. The mechanism measures ∆P and ∆Ip are both
proportional to P̄ , but the behavior of P̄ is not so easy to
predict. Interestingly, in the presence of frequency-dependent
predation, although environmental fluctuations can depress P̄
slightly for low diversity annual plant guilds, for high diversity
guilds, environmental fluctuations can prevent collapse of the
predator population, presumably by ensuring that new seed
production is mostly dominated by a few species in any given
year, as has been observed in nature in annual plant guilds
(Chesson et al., 2010). This effect, which creates SEp, helps
maintain predator abundance by increasing foraging efficiency.
High predator abundance, however, depresses plant densities,
with the result that competition and the competition-based
mechanism, SEc, are reduced. It is this reduction in plant densities
that causes coexistence to be dramatically undermined with the
introduction of a frequency-independent predator (Kuang and
Chesson, 2009).
These developments are framed in terms of annual plant species

and temporal variation in seed germination. The key features of
this analysis clearly generalize, as inspection of the derivations in
Appendix B.2 reveals. Several broad principles are involved. First,
as we have emphasized elsewhere (Chesson and Kuang, 2008;
Kuang and Chesson, 2009, 2010) and in the introduction to this
article, the overall magnitudes of competition and predation limit
the potential magnitudes respectively of competition-based and
predation-based mechanisms. That is seen here in the decline of
SEc as a predator is introduced and limits prey density, limiting
competition, and in the collapse of predation-based mechanisms
as the predator density falls as a consequence of increasing
prey diversity. Second, for environmental fluctuations to lead to
coexistence, some form of storage or buffered population growth
is required. That occurs here through persistence of dormant
seed in the seed bank, but can occur in perennial organisms
by high survival of adult organisms. Buffered population growth
makes the population growth rate an interactive function of the
environmental responses and the density-dependent processes of
competition and apparent competition. It then follows that long-
term population growth is dependent on the covariances between
the environmental response and the responses to competition and
apparent competition. The storage effect, in the various forms that
we have discussed, is the outcome, and that is certainly not limited
to this annual plant model.
It is worthwhile considering how the storage effect might

arise also with specific variations on the annual plant model. We
considered environmental variation driving seed germination, as
that is a clear way in which covariance between environment
and competition arises. Had we considered instead temporal
variation in the seed yield parameter, Y , then there would have
been no covariance between environment and competition, and
no SEc. However, covariance between environment and apparent
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competition would still have occurred with iFDP and ddFDP,
generating SEp. In making these distinctions, however, it is
important to be clear what the parameter Y means biologically.
In Chesson et al. (2005) and Angert et al. (2009) it is given as
the product of seed production per unit biomass and a parameter
V representing average mass of an individual plant, which is
therefore reflective of seedling growth and survival. Higher growth
is associatedwith higher demand for resources and thereforemore
competition. Thus, themagnitude of competition, C , depends on V .
For this reason, temporal variation in V would lead to SEc (Angert
et al., 2009) and also SEp with iFDP and ddFDP. On the other hand,
temporal variation in seed production per unit biomass reflects
processes occurring after competition has occurred. Thus, C does
not depend on seed production per unit biomass, and temporal
variation in seed production per unit biomass would not lead to
SEc, but SEp would still occur.
As with most analytical model analyses, simplifying assump-

tions were used here to obtain clear easily understood formulae.
These are special cases of the more complex general formulae de-
veloped in Chesson (1994, 2008). Here, assumptions of equalmean
germination fractions, and small differences between species in
the seed yield parameter, Y , meant that Simpson’s index, S, was
calculated simply on the density of seed in the seed bank. It is clear
from the derivation (Appendix B.2), however, that inmore complex
cases it would need to be not the crude densities in the seed bank
but densities weighted by average germination fraction and seed
yield. Moreover, it is clear that further weightings would be neces-
sary with a more general form of frequency-dependent predation
where species are not favored equally by the predator at equal rel-
ative abundances (formula A.6 of Kuang and Chesson, 2010). Al-
though these would seem to be complications, a little reflection
indicates that they make perfect sense ecologically.
Frequency-dependent predation is far from the only way

that predation-based coexistence mechanisms can arise. In a
seminal work, Holt (1984) demonstrated predation-based species
coexistence resulting from various interactions between predation
and spatial variation, some of which correspond to spatial versions
of SEp. A recent focus of theoretical work has been predation-
competition tradeoffs (Chesson and Kuang, 2008; Grover and
Holt, 1998; Holt et al., 1994; Kuang and Chesson, 2008), but
a serious weakness of this mechanism is that acting alone it
cannot stabilize the coexistence of more than two prey species.
Predator partitioning is a much more viable possibility (Chesson
and Kuang, 2008). A related idea, recently termed ‘‘differential
sensitivity’’, suggests that species differ in their sensitivities to
predation or other natural enemies, and that natural enemy
effects fluctuate substantially in time or space (Kelly and Bowler,
2009). These natural enemy effects are incorporated in a density-
independent way. In particular, no numerical response is assumed.
In effect, the natural enemies act like the physical environment,
as modeled here, because they are not involved in feedback
loops with plant species. They do not create predation-based
mechanisms (Chesson and Kuang, 2008) because, in the absence
of any density-dependent component of predation, apparent
competition cannot occur. Instead predation drives fluctuations
in competition, and treating mortality due to predation as the
environmental response, covariance between environment and
competition, and ultimately SEc, result. Thus, in a terminology
where predation-based mechanisms arise from the pattern of
apparent competition, and competition-based mechanisms from
the pattern of competition (Chesson and Kuang, 2008), the role
of predation in Kelly and Bowler (2009), and also in the spatial
model of Pacala and Tilman (1994), is to mediate competition-
based coexistence.
All mechanisms discussed so far rely on just a single predator

species. However, natural systems generally have a multiplicity
of predators. Coexistence by predator partitioning occurs when
different predators focus on different prey species (Chesson
and Kuang, 2008). Acting alone, predator-partitioning can only
maintain asmanyprey species as there are predators, yet predators
are normally regarded as less species rich than their prey.
Broadening the category of predators to include all natural enemies
breaks this restriction, although it is unknown how effective
different sorts of natural enemies might be in promoting diversity
by natural enemy partitioning. In some guilds, for example tropical
forests, natural enemy partitioning is an attractive possibility as
developed in the Janzen–Connell hypothesis (Adler and Muller-
Landau, 2005; Connell, 1970; Janzen, 1970; Petermannet al., 2008).
Regardless, FDPhas the attractive feature that it has the potential to
maintain prey species diversity with many fewer effective natural
enemies than prey species.
The form of FDP here is based on learning constraints (Kuang

and Chesson, 2010). An alternative origin of FDP is optimal diet
selection (Abrams and Matsuda, 2004; Krivan, 2003; Ma et al.,
2003), which has been found to promote coexistence of two prey
species (Krivan, 2003). However, it remains to be considered more
generally. As it is based on asymmetries between species it has an
intrinsic asymmetry that constraint-based FDPdoes not have.With
optimal diet selection, FDP arises from the inclusion of species in
the diet as more preferred species become rare. This mechanism
would seem to limit the extent of any low-density advantage
that it might provide, especially in multispecies systems. One
feature of FDP based on foraging constraints that is not so intuitive
is that foraging efficiency necessarily goes down with diversity.
This feature has been found in nature (Bernays, 2001; Bernays
et al., 2004), and means that FDP as a coexistence mechanism
weakens as diversity is increased, tending to place a limit on
the diversity that can be maintained. However, most mechanisms
have this property, as we see here with SEc. If FDP is prevented
from weakening as diversity increases, as in Appendix A.3, FDP
does not weaken as a coexistencemechanism, promoting diversity
extremely powerfully (Appendix A.3), but this situation seems
fanciful. Appendix A provides an extended discussion of these
issues.
There is much to be learned about the actual sorts of FDP

present in nature and their strengths. Surprisingly, despite initial
enthusiasm for field studies of FDP, and numerous lab studies, this
important phenomenon has been investigated to only a limited
degree in nature (Kuang and Chesson, 2010). Although FDP has
been found among seed predators, and in several other systems
in these studies, the generality of this phenomenon is poorly
understood. The potential for important roles of FDP in diversity
maintenance, with different forms of FDP potentially having rather
different effects, implies there is much to be gained by renewed
empirical emphasis on this phenomenon.
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Appendix A. Models of frequency-dependent predation

The model of frequency-dependent predation (FDP) used
in the text is derived in Kuang and Chesson (2010) from a
model of foraging under learning constraints due to McNair
(1980). Models of frequency-dependent behavior are oftenwritten
down on intuitive grounds, but then often have unintended and
questionable consequences for predator efficiency (Holt, 1983).
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For this reason derivation from a behavioral submodel with
clearly defined assumptions is vitally important. McNair’s model
applies to asymptotic consumption rates in continuous time, with
replenishment of the prey so that prey encounter rates do not
change over the period in question. In the textwe use an integrated
form of this equation (the depletion rate Aj is replaced by the
survival probability exp(−Aj)). This approach in effect assumes
that per capita predation rates are fixed at the beginning of
the interval of time in question rather than being continuously
updated as prey depletion occurs. Simulations have revealed only
quantitative, not qualitative differences in the results from this
assumption.
In themultispecies case, the formula that we use for FDP differs

distinctly from a more commonly used formula of Comins and
Hassell (1976), based not on a foraging model, but on intuitive
grounds. In the text we find that the strength of FDP declines
at the number of species decreases, which might be regarded as
a weakness of our model formulation. However, the formula of
Comins and Hassell (1976) becomes inconsistent when a prey
species goes extinct, and cannot be used to study the effects of the
number of prey species on species coexistence. In Appendix A.1,
we show that our formulae are fully consistent as the number
of prey species changes. In Appendix A.2, we show that average
foraging efficiency must decline with the number of prey species
andwith the degree of frequency dependencewhenever the attack
rate is strictly a function of prey relative abundances. Thus, this
decline in foraging efficiency is inevitable with a consistent model
of FDP, at least under symmetry conditions where only the relative
abundance of a prey species determines the attack rate on it.
In Appendix A.3, we present a formula for frequency-dependent
attack rates that remains consistent when extinctions occur, but
is free from the constraints that are a natural part of McNair’s
(1980) foraging model. In this model, foraging efficiency does not
depend on the frequency of an individual prey species alone, and
the average foraging efficiency on an individual prey species does
not decline with the number of prey species and the degree of
frequency dependence. We argue, however, that this outcome is
unrealistic. Finally in Appendix A.4, we show howMcNair’s (1980)
model can bemodified to provide the model of density-dependent
frequency-dependence used in the text.

A.1. The formulae for frequency dependent predation used here

Prey species j’s relative frequency is uj = Nj/(N1 + · · · + Nn),
whereNj is either the density of the seeds of the prey species in the
seed bank or its current seed crop. The quantity n is the number of
species. The text provides a very simple attack-rate formula for FDP
which we write here as

Aj/P = a(1− w + wuj). (A.1)

Note that this attack rate is a function of relative abundance only.
The parameterw determines the degree of frequency dependence.
This formula does not depend on the number of species, and
does not depend on absolute abundances of the species. It has
two critical features. First, as we have emphasized, it follows
from reasonable postulates about foraging behavior under learning
constraints (Kuang and Chesson, 2010), as embodied in McNair’s
(1980) foragingmodel. Second, this formula applies consistently as
the number of species is changed. For example, when the relative
abundance of a given species approaches zero in (A.1) it is natural
to expect the formula to converge on that applying with one fewer
species. This formula does that trivially because the formula itself
does not include n as a parameter, and is just a continuous function
of uj. In contrast, a formula for frequency-dependent predation that
has been used a number of times in the literature (Bonsall and
Hassell, 1999; Hassell and Comins, 1976), without this important
property, is given in our notation as

Aj/P = a(1− w + nwuj). (A.2)

Note that the only change in the formula is the n in front of w.
Formula (A.2) has the intuitively attractive feature that averaging
across species gives the constant value a. So regardless of the level
of frequency dependence in the system, the average attack rate
remains the same. However, given the frequent counter-intuitive
nature of science, what at first sight makes sense intuitively
need not make sense with further information. This formula
embodies inconsistencies whichmean that it should not be used to
determine the effect of the number of species on the consequences
of FDP. As the relative abundance of some species i, (not equal to j)
goes to zero, the formula (A.2) for the attack rate on species j does
not change, but the system approaches an n − 1 species system.
It makes sense that when ui = 0, and the system is truly n − 1
species, the formula for the attack rate on species j should in fact
be

Aj/P = a[1− w + (n− 1)wuj]. (A.3)

However, formula (A.2) does not convert to formula (A.3) as a
species drops out of the system, and so it is inconsistent. It says
that although one prey has negligible abundance, formula (A.2)
applies, but as soon as it becomes zero, formula (A.3) applies, and
there is a sudden drop in the attack rates on other prey species.
This discontinuous behaviormakes no sense in an invasion analysis
with any number of prey species. In that case, it is important that
themodel used for residents be continuouswith that applying after
invasion when the number of species has increased by 1.
The formula (A.1) that we use, however, does not maintain

average foraging efficiency as the number of species increases.
Nor does it maintain average foraging efficiency as the degree
of frequency dependence increases (i.e. as w increases). Instead,
in both cases, that efficiency must fall. Although these facts may
appear to be deficiencies, asmentioned in the text there is evidence
from nature that foraging efficiency is lower when more choices
are to be made. These facts are discussed by Bernays et al. (2004),
primarily for insects, and by Warburton and Thomson (2006) for
fishes. In Appendix A.2 we go on to show that such decreasing
efficiencies are necessary properties of models of predation where
changes in attack rates are functions of frequency alone.

A.2. Strict frequency-dependent predation and decline in foraging
efficiency with number of species and choosiness

In this work, it is critical also that the model behave sensibly
as the number of species increases. This entails decreasing efficacy
of the coexistence mechanism as the number of species increases,
which is a natural property whenever species have overlapping
niches, because with more species, species abundances are
naturally lower on average, and the distinction between resident
and invader is necessarily less. Although our formulae (2) and (3)
in the text are particular formulae, the property that we have
been discussing is a generic one. If we make that attack rate
some arbitrary increasing function, f (uj), of relative abundance
alone, average attack rates must necessarily decrease as diversity
increases. For instance in the casewhere species are exactly even in
abundance, the attack rate is f (1/n) and necessarily declines with
n. In the specific formula (A.1) that we use here, the attack rate
is linear in uj, which means that the average attack rate is always
f (1/n). Uneven abundances, however, lead to higher weighted
average attack rates, where the weights are the prey densities.
A little algebra shows this weighted average to be f (1/n) +
nwvarj(uj), i.e. it is inflated by an amount proportional to the
variance between species in relative abundance. This means that
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Table A.1
Quantification of the mechanisms with sFDP.

Mechanism Notation Mechanism magnitude (natural units)

Frequency-dependent predation (FDP) ∆P awP̄ {−i}

Nonlinear competitive variance (NCV) ∆N (1−β)
2

∑
r 6=i

[
var

(
F {−i}r

)
− var

(
F {−i}i

)]
/(n− 1)

Storage effect due to competition (SEc) ∆Ic s
∑
r 6=i

[
cov

(
Er , C {−i}

)
− cov

(
Ei, C {−i}

)]
/(n− 1)

Storage effect due to predation (SEp) ∆Ip s
∑
r 6=i cov

(
Er , A

{−i}
r

)
/(n− 1)
the instantaneous total food intake of the predator in continuous
time is increased by unevenness in prey abundance. The discrete-
time formulation of the text does not lead to such a simple
quantitative result, but the same qualitative outcome can be seen
to apply. Thus, the predator’s intake rate declines both with prey
species richness and prey species evenness, that is, with the two
standard components of species diversity.
Now consider the related problem of the decline in the attack

rate as the choosiness parameter w increases. Suppose the attack
rate on species j takes the form

f (w, uj) (A.4)

where f is any function that increases in uj (i.e. defines frequency
dependence), and w is a parameter determining the degree
of frequency dependence. This function must satisfy several
properties to be a sensible model of frequency-dependence. These
are as follows:

∂ f (w, uj)
∂uj

> 0 for any positive values ofw and uj (A.5)

(the predation rate increases with frequency).

∂2f (w, uj)
∂w∂uj

> 0 (A.6)

(increasing the parameter w increases the dependence on
frequency).

f (0, uj) = constant (A.7)

(there is no frequency dependence whenw = 0).

f (w, 1) = constant (A.8)

(in a monoculture there is no frequency dependence and therefore
no effect of the parameterw).
From (A.6) and (A.8), we see that

∂ f (w, uj)
∂w

= −

∫ 1

uj

∂2f (w, u)
∂w∂u

du < 0. (A.9)

So attack ratesmust decline asw increases regardless of the precise
formula in use. Thus, there is no alternative model. In particular,
the model used historically (Eq. (A.2)) is not one such model
because it depends in some unclear manner on total prey density.
When frequency dependence is strict, that is, depends only on
relative, not absolute, abundance, its behavior is quite constrained
if it is to maintain logical consistency.
The question of course arises as to how we interpret this

outcome biologically. One interpretation is as follows: we expect
w to be a predator trait. High w means that predator learning in
relation to specific prey is necessary for prey capture. Such learning
leads both to frequency dependence, and to costs that lower overall
capture rates. A predator that requires less learning has lower costs
and is not so frequency-dependent in behavior.
A.3. A model for frequency-dependent predation without learning
constraints

Here we modify our model so that foraging efficiency does
not decline with number of species and the degree of frequency
dependence. We do this without the inconsistencies of the Comins
and Hassell (1976) model, but of course by Appendix A.2 the
foraging rate on a given species cannot be a function of that species
relative abundance alone. However, the desired properties can
be achieved by making the foraging rate depend on the relative
abundances of all species. For this, we modify Eq. (A.1) by dividing
the relative frequency uj of species j by the summed squared
relative abundances of all species, to obtain

Aj/P = a

(
1− w + wuj/

∑
k

u2k

)
. (A.10)

When the species are equal in relative abundance, 1/
∑
k u
2
k is

simply n, and so we see that formula (A.10) modifies the Comins
and Hassell (1976) formula so that decreasing the number of
species by 1, and setting one species to zero density, agree, freeing
(A.10) of the inconsistency in the Comins and Hassell (1976)
formula. In terms of the notation in the text, this formula can be
written

Aj = a

(
(1− w)+ w

GjYjNj∑
GkYkNk

·

(∑
GkYkNk

)2∑
(GkYkNk)2

)
P. (A.11)

This formula has the intuitively appealing property that the
total instantaneous rate of seed consumption by the predator
population,

∑
j AjYjGjNj exp(−C), equals aP

∑
j YjGjNj exp(−C),

i.e. it is simply proportional to the total density of seed available,
with no reflection of frequency-dependent behavior and no
reflection of the number of species. Thus, this form of FDP involves
no cost to foraging efficiency from frequency-dependent behavior.
We refer to this situation as ‘‘super FDP’’ (sFDP). Appendix B shows
how the invasion rate of a species at low density is partitioned into
the fitness comparison term, FDP, nonlinear competitive variance,
and two storage effect terms due respectively to competition and
predation as follows:

r̄i = ηi − η̄ +∆P −∆N +∆Ic +∆Ip, (A.12)

regardless of the form of FDP. The formulae for the last four
terms in the case of sFDP are given in Table A.1, as derived in
Appendix B.
Note that in the two-species case, coexistence conditions for

sFDP do not differ from those applying to iFDP and gFDP because
then the resident A{−i}r is always equal to aP , and A{−i}i is always
a(1− w)P regardless of the form of FDP.
In the multispecies case, sFDP behaves completely differently

from iFDP and gFDP. Specifically, the direct contribution of FDP
to coexistence (∆P) remains unchanged as the number of prey,
n, increases. Moreover, the magnitude of SEp changes little as n
increases. These effects are illustrated by plots of the minimum
productivity required for invasion shown in Fig. A.1. Thisminimum
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a b

Fig. A.1. Minimum invasion requirements with sFDP. Each panel gives theminimumproductivity, η, required for a successful invasion as a function of the number of residents.
The solid lines are for a variable environment without predation. The dashed lines are for a variable environment with FDP of 25%, 50% and 100%, from top to bottom in each
panel. The horizontal solid line marks the average resident productivity, η̄. (a) Number of residents (n− 1) ranging from 1 to 6. (b) Number of residents (n− 1) ranging from
1 to 101 residents. Parameter: s = 0.8, Ȳr = 40, sp = 0.8, a = 0.2, G = beta(0.5, 0.5) independent between species.
productivity is asymptotically constant as the number prey species
increase, and is almost completely constant with 100% FDP. These
facts are unsurprising given that the formula for FDP was chosen
to maintain total food intake without any cost associated with
complex behavior. We include the case of sFDP for comparison,
but in the absence of a derivation from amodel of actual predatory
behavior, it cannot be taken seriously.

A.4. Density-dependent frequency-dependent predation (ddFDP)

McNair’s (1980) stochastic foragingmodel considers an individ-
ual predator repeatedly searching for, encountering, capturing and
handling prey. The idea of learning is incorporated by assuming
that the predator success rate is higher with repeated encounters
of the same species. As prey are not depleted, the stochastic capture
process approaches a stationary stochastic process, with asymp-
totic capture rate, Ω(j), of prey species j, which is the total rate at
which prey of species j are consumed by a unit of predator biomass.
If we assume that the prey j are encountered at the rate ej and that
the time to handle prey is negligible, then the asymptotic capture
rate of species j is simply

Ω(j)
=

∑
k

ek
Σel
ejγkj, (A.13)

where γkj is the probability that species j is captured on encounter,
given that the previous encounterwaswith species k. In Kuang and
Chesson (2010) γkj is equal to 1 if the previous encounter was with
the same species, and α < 1, if the previous encounter was with a
different species. The absolute magnitudes of these quantities are
of little significance. Only their relative magnitudes are important.
The important feature of the previous assumption, which we now
modify, is that learning from a previous encounter does not decay
with time. The mean spacing of encounters is the reciprocal of
the sum, Σel, of the individual species’ encounter rates. We make
the assumption here that γkj is a decreasing function of the mean
spacing of encounters, or equivalently, an increasing function of
the species sum of the mean encounter rate. This assumption
treats the encounter spacings as deterministic for the purposes of
the capture probability. However, this assumption is not likely to
change the results qualitatively compared with a full stochastic
treatment. The form we choose for capture probability is

γkj =

α + (1− α)
B
∑
l
el

1+ B
∑
l
el
, k = j

α, k 6= j.

(A.14)

Thus, as encounter rates approach zero, it does notmatter whether
the previous encounter was with the same or a different species:
the capture rate is the same. Substituting in (A.13), we get the per
encounter capture rate

Ω(j)/ej = α + (1− α)
ej∑
l
el

 B
∑
l
el

1+ B
∑
l
el

 . (A.15)

We can now define w = 1 − α, so that w measures the failure
rate when a predator encounters an unfamiliar prey. Assuming the
encounter rates el are proportional to prey abundance,

ej = aYjGjNje−C . (A.16)
Absorbing a into B to simplify the parameterization then leads to
the formula for the attack rate,

Aj/aP = (1− w)+ w
GjYjNj∑
GkYkNk

[
B
∑
GkYkNke−C

1+ B
∑
GkYkNke−C

]
, (A.17)

as used in the text.

Appendix B. Coexistence criteria

We first consider the equilibrium case, and then use that to
derive the criteria for the variable environment case by quadratic
approximation.

B.1. Criteria for invasion of the resident equilibrium

We first derive the multispecies invasion condition for the
equilibrium case. We define C∗{−i} and P∗{−i} as the equilibrium of
C and P with species i being the invader. These quantities are thus
determined by the resident species at equilibrium. Species i can
invade if its growth rate ri is positive. However, in the equilibrium
case, it is easier to work with the finite rate of increase exp(ri),
which is just the same as Ni(t+1)/Ni(t). Using Eq. (1a) of the text,
the finite rate of increase of any species j is

sj(1− Gj)+ GjYje−C−Aj . (B.1)

The invader species i always has Ai = a(1 − w)P {−i}, because it is
at zero density, and experiences only the frequency-independent
component of predation.
For a system with n − 1 residents and gFDP, with the invader

being species n (so that it is at the end of a list), and equating
resident finite rates of increase to one (resident growth rates to
zero), we find that the resident joint equilibrium must satisfy the
equations

s1(1− G1)+ G1Y1e
−C∗{−n}−aP∗{−n}

(
(1−w)+wN∗{−n}1 /

∑
N∗{−n}r

)
= 1

· · ·

sn−1(1− Gn−1)+ Gn−1Yn−1

× e−C
∗{−n}

−aP∗{−n}
(
(1−w)+wN∗{−n}n−1 /

∑
N∗{−n}r

)
= 1.

(B.2)
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In this general equilibrium situation, we can define ηj simply as
ln
{
GjYj/

[
1− sj(1− Gj)

]}
, then (B.2) rearranges to

C∗{−n} + aP∗{−n}
(
(1− w)+ wN∗{−n}1

/∑
N∗{−n}r

)
= η1

· · ·

C∗{−n} + aP∗{−n}
(
(1− w)+ wN∗{−n}n−1

/∑
N∗{−n}r

)
= ηn−1.

(B.3)

Summation of the equations in (B.3) gives

(n− 1)C∗{−n} + (n− 1)aP∗{−n}(1− w)+ aP∗{−n}w =
∑

ηr

or,

C∗{−n} + a(1− w)P∗{−n} = η̄ − awP∗{−n}/(n− 1). (B.4)

Substituting (B.4) into (B.1) and rearranging (with the invader now
designated as usual as species i, instead of n) the condition for
invasion is

ηi > η̄ −∆P, (B.5)

with ∆P = awP∗{−i}/ (n− 1). Simulations show that P∗{−i}
increases with resident η̄, and∆P hence is larger when the species
with smaller η is the invader.
The calculation of the invasion condition in the case of iFDP is

similar to the calculation for gFDP. However, Eqs. (B.3) become

C∗{−n} + aP∗{−n}
(
(1− w)

+wG1Y1N
∗{−n}
1

/∑
GrYrN∗{−n}r

)
= η1

· · ·

C∗{−n} + aP∗{−n}
(
(1− w)

+wGn−1Yn−1N
∗{−n}
n−1

/∑
GrYrN∗{−n}r

)
= ηn−1,

(B.6)

which also sum to give (B.4) and (B.5). Thus, in a constant
environment, the invasion condition for iFDP is equal to that for
gFDP.
The calculation of the invasion condition in the case of sFDP is

parallel to that for gFDP, above, with small variations, as follows.
For sFDP, the resident joint equilibrium relationship satisfies

C∗{−n} + aP∗{−n}
(
(1− w)+ wG1Y1N

∗{−n}
1

×

∑
GrYrN∗{−n}r

/∑(
GrYrN∗{−n}r

)2)
= η1

· · ·

C∗{−n} + aP∗{−n}
(
(1− w)+ wGn−1Yn−1N

∗{−n}
n−1

×

∑
GrYrN∗{−n}r

/∑(
GrYrN∗{−n}r

)2)
= ηn−1.

(B.7)

Summation of the equations in (B.7) gives∑
ηr = (n− 1) C∗{−n} + (n− 1)aP∗{−n}(1− w)

+ aP∗{−n}w
[(∑

GrYrN∗{−n}r

)2/∑(
GrYrN∗{−n}r

)2]
. (B.8)
If each species has the same seedling density, GkYkN
∗{−n}
k , at

equilibrium, expression (B.8) reduces to

C∗{−n} + a(1− w)P∗{−n} + awP∗{−n} = η̄. (B.9)

Substituting (B.9) into (B.1) and replacing nwith i, we get (B.5) once
more but with

∆P = awP∗{−i}. (B.10)

This calculation extends to the case considered belowwhere the
η values of the species are assumed to differ from one another by
no more than a certain amount. Such an assumption applies to the
quadratic approximation that is the mainstay of the analysis for
calculating the magnitudes of the coexistence mechanisms in the
case of a variable environment. To define what we mean here, we
first introduce standard mathematical notation, O(x), to indicate a
quantity that remains of comparable magnitude to x as x becomes
small (Hughes-Hallett et al., 2009). Below, x is σ 2, the variance of
the environmental response. For consistency, we use that notation
throughout for the small quantity intended here. If themagnitudes
of the ηs differ by no more than O(σ 2), subtracting any pair of
equations in (B.7) reveals that

GkYkN
∗{−n}
k = GjYjN

∗{−n}
j + O(σ 2); for j 6= k. (B.11)

Applying this to (B.9) then reveals that Eq. (B.10) remains truewith
an error equal to O(σ 4). It follows that the magnitude of FDP is

∆P = awP∗{−i} + O(σ 4). (B.12)

Thus, we see that in a constant environment, with sFDP, the
number of resident species does not appear in the formula for∆P ,
in contrast to∆P for iFDP and gFDP.

B.2. Variable environments and quadratic approximation

Coexistence of annual plant species in the presence of
environmental fluctuations is studied in detail in Chesson (1994),
and adapted to coexistence of two species in the presence of FDP
in Kuang and Chesson (2010). In effect, the multispecies case takes
the invasion conditions for the two-species case, and averages
over resident species. Our results require certain technical
assumptions (Chesson, 1994), which are satisfied whenever
temporal fluctuations are small and the parameter differences
between species are comparable to themagnitude of the variances
of the environmental responses. Although these assumptions
are restrictive, they point the way to the larger patterns,
and sometimes produce surprisingly accurate results (Kuang
and Chesson, 2010). As mentioned in the text, we make
some simplifying assumptions, which lead to easily interpreted
formulae. The samemethods, however, can be used to obtainmore
complex formulae without these assumptions. Here we assume
that the log germination fractions, the Ej(t) = ln[Gj(t)]’s, have
the same probability distribution for all species, and that this
probability distribution is independent of time. Thus, Ēj = Ēk
(where Ēj means the expected value, E[Ej(t)], of the random
variable Ej(t), and var(Ej) = var(Ek)). We denote the common
value of this variance by σ 2. For the approximations below, we
need to assume that this variance is small. We use the standard
mathematical notation O(x) (see Appendix B.1) to indicate a
quantity that remains of comparable magnitude to x as x becomes
small. With the assumptions here, we expect r̄i = O(σ 2) (Chesson,
1994), and in approximating r̄i, we neglect terms equal to O(σm)
wherem is 3 ormore, as these cannot give important contributions
to r̄i for small σ 2. Our development considers the cases of iFDP
and gFDP first, and then goes on to consider the modifications
necessary for ddFDP and sFDP.
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We assume independence of environmental fluctuations over
time, but allow the Ej(t)’s to be correlated between species with
common correlationρ. For simplicity,we assume also that the seed
survival rate is the same for all species, i.e. sj = sk = s. Thus, it
follows that the seed loss rate, β = 1 − s(1 − Ḡ), is the same for
each species, i.e., βj = βk.
To ensure r̄i = O(σ 2), the η’s should not differ between

species by more than O(σ 2), and w should be O(σ 2), which gives
∆P = O(σ 2). To constrain η differences, we must assume that
the Y ’s for different species differ by at most O(σ 2). The final
assumption that wemake is that the variance in F over time is also
O(σ 2). More detailed discussions of all these assumptions and their
consequences can be found in Kuang and Chesson (2010).
The growth rate of species j takes the form

rj(t) = ln
(
s(1− eEj)+ YjeEj−Fj

)
, (B.13)

where t is suppressed on the right in Ej and Fj for notational
convenience; and Y , but not s, is assumed to depend on j. This
formula is just a special case of the general formdiscussed in Kuang
and Chesson (2010), viz

rj(t) = gj(Ej, Fj). (B.14)

The analysis beginswith a Taylor expansion of rj(t) in Ej and Fj. This
is done about fixed values, E∗j and F

∗

j , of Ej and Fj, which satisfy the
equilibrium condition

gj(E∗j , F
∗

j ) = 0
(
i.e. ln

(
s(1− eE

∗
j )+ Yje

E∗j −F
∗
j
)
= 0

)
. (B.15)

We first choose F∗j = ηj = ln
(
ḠYj/

[
1− s(1− Ḡ)

])
, and then E∗j is

found from (B.15) to equal ln Ḡ, and so is the same for all species.
Rather than a standard Taylor expansion, it has been found to be
more informative to do this expansion in terms of standardized
variables that take the same units as rj. To do this, we define

Ej = gj(Ej, F∗j ), i.e. E j = ln
{
s
[
1− eEj

]
+ Yje

Ej−F∗j
}
, (B.16)

and

Cj = −gj(E∗j , Fj), i.e. C j = − ln
{
s
[
1− eE

∗
j
]
+ Yje

E∗j −Fj
}
. (B.17)

These quantities Ej and Cj are increasing functions respectively of
Ej and Fj, and so are simply nonlinear transformations of these
variables into rj units. The choice of E∗j so that it is equal to ln Ḡ
means that it satisfies one of the required technical assumptions
of Chesson (1994) mentioned above, viz E[Ej] = E∗j + O(σ

2).
Combined with suitable deterministic stability of the combined
plant densities and their predator (Chesson, 1994), this implies also
E[Fj] = F∗j +O(σ

2). These facts permit changes of variable between
Ej and Fj and Ej and Cj with control over the errors involved.
In terms of the transformed variables (B.16) and (B.17), the

growth rate becomes

rj≈ E j−C j+γ jE jC j, (B.18)

where

γj =
∂2rj
∂E j∂C j

∣∣∣∣
Ej =C j=0

, (B.19)

(Chesson, 1994).
Long-term growth rates of species in this system are then found

by averaging (B.18) over time:

r̄j ≈ E
[
Ej
]
− E

[
Cj
]
+ γjE

[
EjCj

]
, (B.20)

where on the right, we use standard expected value notation E[.]
in place of a bar, for our more formal mathematical development
that follows. Note that resident values of the long-term growth
rate (expression (B.20)) are necessarily zero, but by comparing the
components of the long-term growth rates between resident and
invader, we can see how the interactions between species lead
to coexistence mechanisms. Thus, we write the invader growth
rate as a comparison with the resident growth rates as follows
(Chesson, 1994):

r̄i = r̄i −
∑
r 6=i

qir r̄r = ∆E −∆C +∆I, (B.21)

where the qir are constants to be defined, r̄r is the zero long-term
growth rate of a resident species, labeled r , and the terms on the
right are as follows:

∆E = E[Ei] −
n∑
r 6=i

qirE[Er ], (B.22)

∆C = E[C {−i}i ] −

n∑
r 6=i

qirE[C {−i}r ], (B.23)

where the superscript {−i} denotes a measurement with species i
in the invader state, and

∆I = γiE
[
EiC
{−i}
i

]
−

n∑
r 6=i

qirγrE
[
ErC
{−i}
r

]
. (B.24)

We shall see below that∆E = 0, and

∆C = −β(ηi − η̄)−∆P +∆N, (B.25)

so that the invader growth rate becomes

r̄i ≈ β(ηi − η̄)+∆P −∆N +∆I. (B.26)

This equation expresses the invader growth rate as a fitness
comparison between species (productivity, η, comparison), a
frequency-dependent predation comparison, nonlinear competi-
tive variance (NCV), and the storage effect (SEc and SEp combined).
Before calculating these quantities, we need to define qir .

This quantity is intended to serve the purpose of adjusting
the comparisons between species due to differences in their
sensitivities to common density-dependent limiting factors, here
measured as F less FDP. For example, a less sensitive species is
not harmed so easily by a more sensitive species, leading to a low
qir for that comparison. In more general models, qir also has the
effect of partitioning out fluctuation-independent mechanisms. It
was originally defined as the partial derivative of Ci with respect
to Cr (Chesson, 1994). Because of FDP here, it is not possible to
express Ci exactly as a function of Cr in this model, but, as w =
O(σ 2), it is possible to ignore FDP in deriving qir because errors no
more than O(σ 4)would arise. As in Kuang and Chesson (2009), qir
becomes βi/βr(n−1) here, and because the β ’s are the same here,
as explained above,

qir = 1/(n− 1). (B.27)

We now derive the approximations for each term in expression
(B.26). First of all

∆E = E[Ei] −
1
n− 1

n∑
r 6=i

E[Er ], (B.28)

which is a comparison of mean invader and resident environmen-
tal responses. Using definition (B.16) of Ej, and noting that F∗j = ηj,
we see that

Ej = ln
{
s+ (1− s)Gj/Ḡ

}
, (B.29)

exactly as in Kuang and Chesson (2010). Since the Gj have the same
distribution for all j, E[Ej] does not depend on j, and so

∆E = 0. (B.30)
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We now establish Eq. (B.25), i.e. ∆C = −β(ηi − η̄) − ∆P + ∆N ,
with

∆P ≈ βawP̄ {−i}/(n− 1), (B.31)

and

∆N ≈
β(1− β)
2

∑
r 6=i

[
var

(
F {−i}r

)
− var

(
F {−i}i

)]
/(n− 1). (B.32)

WeexpandCi andCr to quadratic order in F about their equilibrium
values F∗i and F

∗
r . The first derivative of either C in F , at the

equilibrium value is β , and the second derivative is β(1 − β),
while the value of C at F = F∗ is necessarily zero. These facts are
derived in Chesson (1994) but are also easily checked. Thus,∆C/β
is approximately

E[Fi] − F∗i −
(
E[Fr ]

r
− F∗r

r
)
−
1
2
(1− β)

×

(
E
[(
Fi − F∗i

)2]
− E

[(
Fr − F∗r

)2]r)
, (B.33)

where the over bar with superscript r in expression (B.33) means
the average over resident species. Because E[Fj] is within O(σ 2) of
F∗j in Chesson (1994), the expected squares in (B.33) become the
variances Var (Fi) and Var (Fr). Thus, the quadratic part of (B.33)
becomes ∆N/β as given by (B.32) above. The quantity (1 − β) is
a measure of the nonlinearity of the growth rate as a function of F .
Because 1−β is positive, it means that the growth rate is a concave
up function of F , and fluctuations in F make a positive contribution
to the growth rate (Kuang and Chesson, 2008). However, this
contribution is greater for residents than invaders because resident
F is more variable than invader F .
The linear part of (B.33) rearranges to

−

(
F∗i − F∗r

r
)
+ E

[
Fi − Fr

r
]
. (B.34)

The equilibrium comparison (first term) is simply − (ηi − η̄),
and the difference between the resident and average invader
expected F values simplifies to−awE[P {−i}]/(n−1). Thus, we have
established (B.25), i.e.∆C = −β(ηi− η̄)−∆P+∆N , with∆P and
∆N given by (B.31) and (B.32).
The last term in the formula (B.26) for r̄i is the storage effect,

∆I . Because the quantities E[C ] = O(σ 2) (Chesson, 1994), the
definition of the storage effect (B.24) is equivalent to

∆I = γicov(Ei, C
{−i}
i )−

n∑
r 6=i

qirγrcov(Er , C {−i}r ), (B.35)

which is in fact the more common definition of the storage effect.
Table II of Chesson (1994) gives the γ ’s here as identical, and equal
to 1 − (1 − s)−1. Moreover, Chesson (1994) shows that Ej can be
linearly approximated as (1 − s)(Ej − E∗j ), and Cj can be linearly
approximated as β(Fj − F∗). It follows that the interaction term
γjEjCj in Eq. (B.18) is equal to

γjEjCj = −sβ(Ej − E∗j )(Fj − F
∗

j )+ O(σ
3). (B.36)

Moreover, because E∗j and F
∗

j differ by no more than O(σ
2)

from their means, (B.36) remains true on substituting means for
equilibrium values. Scaling by β then gives the per seed generation
interaction term (7) of the text.
To continue our formal development of the storage effect, recall

that qir = βi/βr(n−1) = 1/(n−1), substituting (B.36) into (B.35)
gives

∆I ≈ βs

{
1
n− 1

∑
r 6=i

[
cov

(
Er , F {−i}r

)
− cov

(
Ei, F

{−i}
i

)]}
. (B.37)
Now Fj = C + Aj. For the case of gFDP, Ar = aP((1 − w) + wNr/∑
Nk), and Ai = aP(1 − w). Since we assume there is no time

correlation in E(t), there is no correlation between E(t) and P(t)
or N(t). Hence for gFDP expression (B.37) reduces to the storage
effect due to competition,

∆Ic ≈ βs

{
1
n− 1

∑
r 6=i

[
cov

(
Er , C {−i}

)
− cov

(
Ei, C {−i}

)]}
, (B.38)

which is reported in natural units in Table 3 (i.e. divided by β
following the convention of Chesson, 2008), and is approximately
≈ βs(1− ρ)σ 2Ḡ

∑
r 6=i N̄r/(n− 1) (Kuang and Chesson, 2009).

For iFDP, Ar = aP
(
(1− w)+ wGrYrNr/

∑
GkYkNk

)
, and Ai =

aP(1−w), so expression (B.37) is the sum of expression (B.38) and
the storage effect due to predation (SEp). Since cov

(
Ei, A

{−i}
i

)
=

0 due to the fact that the invader only experiences frequency-
independent component of predation, A{−i}i (t) has no correlation
with Ei(t). This means that SEp is simply

∆Ip ≈ βs

{
1
n− 1

∑
r 6=i

cov
(
Er , A{−i}r

)}
. (B.39)

To estimate ∆Ip to the correct accuracy we linearly expand Ar
around the equilibrium value of Er = lnGr for all r 6= i (Chesson,
1994):

Ar = A∗r +
∑
j6=i

(
Ej − E∗j

) (∂Ar
∂Ej

)∗
+ O

(
σ 2
)
. (B.40)

Here, the subscripts j, r and s are all for the residents, and A∗r and(
∂Ar/∂Ej

)∗ are evaluated at E’s equal to the equilibrium values.
However, these derivatives still dependonN(t) and P(t), which are
statistically independent of Ej(t). The first derivatives are different
for different residents,(
∂Ar
∂Ej

)∗/
awP

=



[
eE
∗
j YjNj

∑
s6=i

eE
∗
s YsNs −

(
eE
∗
j YjNj

)2]/(∑
s6=i

eE
∗
s YsNs

)2
,

if j = r

−eE
∗
j YjNjeE

∗
r YrNr

/(∑
s6=i

eE
∗
s YsNs

)2
, if j 6= r.

(B.41)

Substituting expression (B.40) in expression (B.39) gives

∆IP =
sβ
n− 1

∑
r 6=i

cov (Er , Ar)

≈
sβ
n− 1

∑
r 6=i

cov

(
Er ,
∑
s6=i

Es

(
∂Ar
∂Es

)∗)

=
sβ
n− 1

∑
r 6=i

{
σ 2E

[(
∂Ar
∂Er

)∗]
+

∑
s6=r,i

ρσ 2E
[(
∂Ar
∂Es

)∗]}
,

(B.42)

where σ 2 is the variance of E’s,ρ is the correlation between species
E’s, and E[.] is the time average for N(t). Substituting expression
(B.41) in (B.42) gives

∆IP ≈
sβawP̄(1− ρ)σ 2

n− 1

× E

1−∑
r 6=i

(
eE
∗
r YrNr

)2/(∑
r 6=i

eE
∗
r YrNr

)2 . (B.43)
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Because E∗r equals ln Ḡ, and we assume that the Yr ’s differ only
by O(σ 2), eE

∗
r Yr = ḠȲ + O

(
σ 2
)
, and expression (B.43) can be

simplified to

∆IP ≈
sβawP̄(1− ρ)σ 2E[S]

n− 1
, (B.44)

where S is the Simpson’s diversity (Legendre and Legendre, 1998)

S = 1−
∑
r 6=i

N2r /

(∑
r 6=i

Nr

)2
, (B.45)

calculated for the resident densities in the seed bank.

B.3. Modifications for ddFDP and sFDP

Most of the calculations above remain the same with these two
other forms of FDP. The first of these is the value of ∆P , which
comes from −E

[
Fi − Fr

r
]
in expression (B.34). As C cancels out

here in all cases, in fact∆P = −E
[
Ai − Ar

r
]
=
∑
r E[Ar−Ai]/(n−

1). In the case of ddFDP

∑
r

(Ar − Ai) = awP

 B
∑
r
Mr

1+ B
∑
r
Mr

 (B.46)

where Mr = YrGrNre−C . Taking expected values and dividing by
(n− 1) gives∆P , as stated in Table 3.
In the case of sFDP,

∑
r (Ar − Ai)GrYrNr/awP =

∑
r GrYrNr .

If it is now assumed that the resident species have identical
parameters, then it is possible to deduce from this equation that
E [(Ar − Ai) /awP|P] = 1 + O(σ 2), from which it follows that
E [(Ar − Ai)] = awE[P] + O(σ 2), demonstrating the desired result
for the case of sFDP.
The storage effect due to predation satisfies the general

expression (B.42) above, regardless of the form of FDP. For ddFDP,
the part ofAr/awP that depends on the Ej splits up into the product,
XrZ , with

Xr =
YrGrNr∑
s
YsGsNs

, Z =
B
∑
r
Mr

1+ B
∑
r
Mr
. (B.47)

The derivatives of Xr with respect to the Ej are the same as the
derivatives of Ar/awP for iFDP, given by Eq. (B.41) above. For Z ,
we have simply(
∂Z
∂Ej

)∗
=

BM∗j(
1+ B

∑
r
M∗r

)2 (B.48)

whereM∗j is justMj with the E
∗

l replacing El. The partial derivatives
for Ar are then just found from (B.48) and (B.41) using the product
rule. Straightforward calculation then produces the formula in
Table 3 for ∆Ip, where at the final stage, Mj is substituted for M∗j
in the formulae for U and V because these lead to equally correct
formulae (cannot differ more than O(σ 4)), and the tabulated
formula is simpler to interpret.
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