Systems biology and evolution

Grant Peterson & Alex Lancaster

Definition (1):
- why “systems biology”?
- doesn’t all biology study “systems”?
 - cell
 - tissue
 - organ
 - organism
 - ecosystem
- “systems biology” in practice focuses on the cell

Definition (2):
- “structure and dynamics of cellular and organismal function” (Kitano 2002)
- “studies biological systems by systematically perturbing them ... integrating ... data ... formulating mathematical models” (Ideker, Galitski & Hood 2001)

Definition (3):
- quantitative study of cellular processes:
 - measuring interactions (data)
 - building models (theory)
- kinds of networks
 - gene networks (e.g., sea squirt mesoderm development)
 - metabolic networks (cellular respiration)
 - signal transduction (e.g., cascade of events triggered by external hormone)

Goal:
- What are the molecules involved
- Which molecules interact with which
- How interactions lead to cell function
- Spatial-temporal organization
- Analyze cell response to perturbation
- Modeling for hypothesis testing
- General principles that apply across many taxa

History: molecular biology
- sequencing projects (late 1980s)
 - genomics (mid-late 1990s)
 - proteomics (late 1990s–early 2000s)
- “interactomics” (early-mid 2000s) which is characterizing how elements interact (normally proteins)
- focus on high-throughput data generation
- Shifted focus from molecules to networks
Example "-omics": protein "interactomics"

History: other disciplines
- Development of techniques from
 - mathematics (non-linear dynamics 1970-80s)
 - statistics (Bayesian 1990s)
 - engineering (control theory, metabolic engineering)
 - physics (enzyme kinetics)
- Cultural cross-talk between mathematicians & biologists has increased

History: other branches

History: systems tradition
- non-equilibrium thermodynamics
- self-organization
- 1960s systems theory
- 1980s genetic and biochemical systems, more abstract:
 - e.g. biochemical systems theory (BST), metabolic control analysis (MCA)
- late 1980s – present
 - artificial life (cellular automata)
 - complex adaptive systems (NK-landscapes, emergence)

Molecular biology vs. systems biology
- Molecular biology: how molecules work one by one
- Systems biology: predicts consequences of networks for the cell as a whole
- DNA + protein structure does not equals systems biology

Top-down modeling:
- measures of genome-wide experimental data (microarrays)
- aims to reconstruct networks using data mining/statistical inference
 - e.g. correlation of gene expression in microarray to find gene network
- mostly phenomenological
 - mechanism of regulation is not specified
Bottom-up modeling
- mechanistic-oriented
- model formulates the interactions between the components
- dynamic modeling (includes time)
 - deterministic (e.g. metabolism has large # of molecules)
 - stochastic (e.g. transcription involves small # molecules)
- typically simulation-based
- mostly data-poor:
 - kinetic for in vivo are hard to measure

Cautionary notes:
- "top-down": not able to get to molecular level
- "bottom-up": proof of principle is not enough, need to show it occurs in nature

Modes of explanation
- Systems-oriented explanations
 - emergent properties of system
 - more abstract
 - primarily non-molecular biologists, physiologists, physicists, etc.
- Artificial life models
 - e.g. game of life
- Kacser & Burns molecular dominance
- Top-down models
- Pragmatic explanations
 - focuses on data integration from multiple levels
 - genome still has primacy from explanatory POV
 - primarily molecular biologists & biomedically-oriented researchers

Systems biology & evolutionary biology
- Is a network/system biology approach useful or necessary in evolutionary biology?
 - Wilkins (2007) argues that it is useful based on:
 - network properties constrain paths evolution can take
 - single gene approaches

Is evolution “design” or “bricolage”?
- Biologists must explain how species are so well designed for specific tasks without an omnipotent Designer.
 - In fact, many organisms well “designed” for one task may be suboptimal for others.
 - “Tradeoffs”
Is evolution “design” or “bricolage”?
- “Bricolage” may connote a haphazard throwing together of things.
- A better metaphor may be “tinkering”.

How does network constrain paths of evolution?
- Two kinds of general constraint must operate
 - Set of preexisting conditions of the recruited molecule, permitting its adoption for new roles
 - Eg. A transcription factor must have properties not shared with other TFs.

How does recruitment occur?
- We often think of this process as a gene at time
 - In fact, it may often be a module at a time.
 - Eg. Six-Dacha-eya functional ensemble of TF in fruit flies.
- Combination of modules used that determines the composition of an entire gene network governing a trait.

Questions and Discussions