Game theory

- What it is
- · What it can do
- · What it is used for

What is game theory?

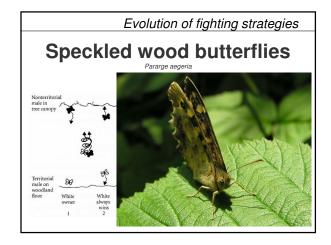
Games and theory

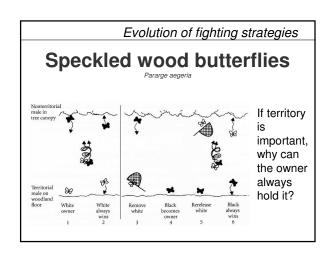
- Originally developed to literally analyze optimal strategies in games (chess, tic-tac-toe)
- Describes interactions of individuals, their strategies, outcomes of those, and how to 'win'

What is game theory?

Hawks and Doves

 Model of animal fighting behavior / ritualization of fights


Payoff to Player A	B plays Hawk	B plays Dove
A plays Hawk	Both get injured: very bad	B flees, A wins:
A plays Dove	A flees, B wins:	Win 50%, neither gets injured: ok


No single best strategy: each strategy is the best answer to the other (frequency dependence)

Game theoretic methods

Analysis of the payoff matrix

- Which strategy gives the highest payoff on average?
- Which is robust (=high payoff against many other strategies)?
- Which is evolutionary stable (=can't be invaded by any other strategy)?
- Which could invade any other strategy (=initial viability at low frequency)?

Evolution of fighting strategies

'Bourgeois' is an ESS

Because it is the optimal strategy with this payoff matrix...

Payoff to Player A	B plays Hawk	B plays Dove	B plays Bourgeois
A plays Hawk	injury, win 50%	win	injury & win 50% (D) / no win (I)
A plays Dove	no win	win 50%	win (D), win 50% (I)
A plays Boureois	injury & win 50% (D) / no win (I)	win (D), win 50% (I)	win (D), no win (I)

Evolution of altruism

The Prisoner's Dilemma

• Model of animal cooperation vs. competition

Payoff to Player A	B cooperates	B defects
A cooperates	Both benefit: good	A gets exploited: very bad
A defects	A exploits B: very good	No interaction / mutual exploitation: bad

• In a single game, you always defect

Game theoretic methods

More sophisticated analyses

- Iterated games with fixed number of interactions or certain probability of repeated interaction
- Spatially explicit games with unequal probabilities for interacting with different individuals
- · Stochasticity in interactions or outcomes
- Evolution: replicator dynamics and adaptive dynamics

Example

Evolution of altruism

Evolution of altruism in the iterated prisoner's dilemma

Payoff to Player A	B cooperates	B defects
A cooperates	Both benefit: good	A gets exploited: very bad
A defects	A exploits B: very good	No interaction / mutual exploitation: bad

- If defectors can be recognized and punished
- If interaction probabilities are changed by spatial viscosity, relatedness, etc.
- · If interactions can be terminated

Game theory applications

Classic questions investigated by game theory

- · Evolution of ritualization
- · Resolution of conflicts
- Evolution of altruism
- Public goods games ('tragedy of the commons')
- Role of reputation in cooperation

Discussion questions I

- Did you understand the difference between 'replicator dynamics' and 'adaptive dynamics'?
- Is game theory too simplistic? What if the contestants have different probabilities of winning, for example?

Discussion questions II

- How does game theory change our understanding of the 'fitness landscape'?
- How are ESSs realized in individuals are individuals actually at the ESS? Is there frequency dependence for adopting the ESS?