Effects of an experimental drought and recovery on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest

ERIC A. DAVIDSON*, DANIEL C. NEPSTAD*, FRANÇOISE YOKO ISHIDA† and PAULO M. BRANDO‡§

*The Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540-1644, USA, †CENA, University of Sao Paulo, Av. Centenário, 303 Piracicaba, SP, Brazil, ‡Instituto de Pesquisa Ambiental da Amazônia, Av. Rui Barbosa, 136 Santarém, PA, Brazil, §Department of Botany and School of Natural Resources and Environment, University of Florida, 220 Bartram Hall, Gainesville, FL 118526, USA

Abstract

Changes in precipitation in the Amazon Basin resulting from regional deforestation, global warming, and El Niño events may affect emissions of carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), and nitric oxide (NO) from soils. Changes in soil emissions of radiatively important gases could have feedback implications for regional and global climate. Here, we report the final results of a 5-year, large-scale (1ha) throughfall exclusion experiment, followed by 1 year of recovery with natural throughfall, conducted in a mature evergreen forest near Santarém, Brazil. The exclusion manipulation lowered annual N₂O emissions in four out of five treatment years (a natural drought year being the exception), and then recovered during the first year after the drought treatment stopped. Similarly, consumption of atmospheric CH₄ increased under drought treatment, except during a natural drought year, and it also recovered to pretreatment values during the first year that natural throughfall was permitted back on the plot. No treatment effect was detected for NO emissions during the first 3 treatment years, but NO emissions increased in the fourth year under the extremely dry conditions of the exclusion plot during a natural drought. Surprisingly, there was no treatment effect on soil CO₂ efflux in any year. The drought treatment provoked significant tree mortality and reduced the allocation of C to stems, but allocation of C to foliage and roots were less affected. Taken together, these results suggest that the dominant effect of throughfall exclusion on soil processes during this 6-year period was on soil aeration conditions that transiently affected CH₄, N₂O, and NO production and consumption.

Keywords: Amazon Basin, Brazil, climate change, CH₄, CO₂, N₂O, nitrogen, NO, soil carbon

Received 28 December 2007 and accepted 5 May 2008

Introduction

Some climate models predict that the drought episodes and seasonal water deficits in the eastern and southern Amazon Basin may be more common and more severe as global climatic change proceeds during the 21st century (Cox et al., 2004; Li et al., 2006; Malhi et al., 2008). Global warming may also increase the intensity of El Niño Southern Oscillation (ENSO) events (Hansen et al., 2006), which cause severe drought in the eastern Amazon Basin (Nepstad et al., 1999). In 1998, a particularly severe El Niño episode was associated with prolonged drought in eastern and northern Amazonia (Nepstad et al., 1999, 2004; Alencar et al., 2006). In 2005, warming of the tropical North Atlantic triggered the worst drought in 40 years across the southern Amazon Basin (Brown et al., 2006; Aragão et al., 2007). Tropical rainfall inhibition by smoke (Rosenfeld, 1999; Andreae et al., 2004) may exacerbate this general drying trend in this moist tropical forest region.

Reduced precipitation may have important feedback effects on climate change by altering soil emissions of radiatively important gases, such as CO₂, CH₄, N₂O,

Correspondence: Eric A. Davidson, tel. +1 508 540 9900, fax +1 508 540 9700, e-mail: edavidson@whrc.org

© 2008 The Authors
Journal compilation © 2008 Blackwell Publishing Ltd
(Forster et al., 2007), and NO (NO is not, itself, a greenhouse gas, but it is a precursor to the formation of tropospheric ozone, which is a greenhouse gas; Lammel & Graell, 1995). Upland forest soils of the tropics are known to be important sources of N\textsubscript{2}O (Matson & Vitousek, 1990) and NO (Davidson & Kingerlee, 1997) and sinks for CH\textsubscript{4} (Potter et al., 1996). Both primary productivity and respiration are high in many tropical ecosystems, resulting in large emissions of CO\textsubscript{2} from soils (Davidson et al., 2000b).

Variation in precipitation influences trace gas emissions by affecting soil water content and soil aeration, which, in turn, affects microbial processes of production and consumption of these trace gases (Davidson & Schimel, 1995; Davidson et al., 2000a). Climate change can also alter root turnover, litterfall, decomposition, and mineralization, which would, in turn, affect the availability of carbon and nitrogen substrates for trace gas production.

We previously reported on the first 3 treatment years and 2 pretreatment years of trace gas flux measurements in a large-scale (1 ha) throughfall experiment manipulation conducted in the Tapajós National Forest, near Santarém, Pará, Brazil (Davidson et al., 2004). Here, we report the final results of the entire throughfall exclusion manipulation experiment, including pretreatment, 5 years of throughfall exclusion, and 1 year of posttreatment recovery. The previously reported results for effects on NO, N\textsubscript{2}O, CH\textsubscript{4}, and CO\textsubscript{2} are generally reconfirmed, although a natural drought that occurred during the fourth year of the treatment yielded novel results. Finally, we report on the first year of recovery after permitting throughfall to return at natural rates in the exclusion plot.

Materials and methods

The study area and methods employed here are the same as those described by Davidson et al. (2004). We present an abbreviated description here.

Study area

The Tapajós National Forest, located in east central Amazonia (2.8968°S, 54.9519°W), receives 600–3000 mm of rain each year, with a mean of 2000 mm, most of which falls during the wet season from January to June (Fig. 1a). The forest is situated on a terrace of Tertiary sediments capped by the Belterra Clay Formation (Clapperton, 1993). The Oxisol soil (Haplustox) is acidic (pH 4–5), is dominated by kaolinite clay minerals (60–80% clay), and is free of hardpan or iron oxide concretions in the upper 12 m; the water table is more than 100 m deep. The forest has emergent trees up to 55 m in height, with a continuous canopy at approximately 30 m (Nepstad et al., 2002).

Experimental design

Two 1 ha plots were identified from an initial survey of 20 ha of forest. Details of site selection, research infrastructure, and the broad array of ecological measurements are available in other project publications (Nepstad et al., 2002, 2007; Oliveira et al., 2005; Brando et al., 2006).

A 1.5 m deep trench was excavated around the perimeter of the treatment plot to reduce the potential for lateral movement of soil water from the surrounding forest into the plot. A similar trench was excavated around the control plot to avoid the confounding of treatment and trenching effects. All measurements reported here were taken at least 20 m from the trench edge to guard against edge effects.

As with many large-scale ecosystem manipulations, such as the well-known watershed manipulations at Hubbard Brook, this experiment is prohibitively large and expensive to permit replication. Hence, the treatment design follows the methodology for unrepli- cated large-scale ecosystem manipulation experiments (Hurlbert, 1984). Before imposing the throughfall exclusion treatment, we first intercalibrated the two plots by...
making measurements in each plot during an 18-month intercalibration period, beginning in September 1998. By determining differences between the two plots before and after rainfall exclusion, treatment effects are clearly identified when pretreatment similarities and differences between plots begin to diverge after the treatment begins.

Throughfall was partially excluded from the treatment plot during the rainy seasons of 2000 through 2004, using 5660 panels made of clear, PAR-transmitting greenhouse plastic mounted on wooden frames. The panels were removed during the dry season to reduce their influence on the forest floor. Only ~1% of solar radiation penetrates the forest canopy (Nepstad et al., 1996), and panels change forest floor temperature by <0.2 °C. The panels were flipped on their sides every 2 days to transfer accumulated litter onto the forest floor beneath. Each 3 m × 0.5 m panel drained into a plastic-lined, wooden gutter that carried the water into the trench, which was also lined with plastic; the gutters served as catwalks for various measurements and panel maintenance. Water flowed by gravity from the trenches into a deeper drainage ditch, and into a small valley 250 m away from the plot. The panels and gutters covered only 78% of the forest floor; openings were left around tree stems. Stemflow was not excluded from the plot, given its small contribution to forest soil water input (1–2%; P. Jipp et al., unpublished manuscript), and its disproportionately high contribution to nutrient inputs to the soil. Water yield from the gutters that drain the plot was 72–75% of throughfall, and 34–40% of total annual rainfall (Brando et al., 2008).

Volumetric water content

Volumetric soil water content (VWC; cm³ water cm⁻³ soil) was measured to 11 m depth in each of the soil shafts using Time Domain Reflectometry (TDR) as described by Nepstad et al. (2002). Each of the six shafts (three per plot) had duplicate vertical sensors at the soil surface and duplicate horizontal sensors in opposite walls at 50, 100, 200, 300 cm, and at 100 cm intervals to 1100 cm depth. The dielectric constant of the TDR probes was measured with a cable tester, and VWC was estimated from the calibration equation developed in a similar Belterra clay formation, in eastern Amazonia (Jipp et al., 1998). The mean VWC was calculated from the duplicate TDR probes at each depth in each shaft.

Gas flux measurements

Fluxes of gases at the soil surface were made using chambers consisting of a polyvinyl chloride (PVC) ring (20 cm diameter × 10 cm height) and a vented PVC cover made from an end-cap of a 20 cm diameter PVC pipe. In September 1998, PVC rings were pushed into the soil to a depth of 2–3 cm to make the base of the chamber and have been left in place for the duration of the study. Six rings were placed in each of the three subplots within the rainfall exclusion plot and the control plots, yielding a sample size of 18 for each treatment.

A dynamic chamber method was used for measuring the fluxes of NO (Verchot et al., 1999) and CO₂ (Davidson et al., 2002). Air drawn from the chamber was circulated through a nafion gas sample dryer, a Scintrex LMA-3 NO₂ analyzer (Scintrex Limited, Concord, ON, Canada), and a LiCor infrared gas analyzer (LiCor, Lincoln, NE, USA), and then back to the chamber, using teflon tubing and a battery-operated pump, at a flow rate of 0.5 L min⁻¹. Fluxes were calculated from the rate of increase of NO and CO₂ concentrations, recorded by a datalogger at 12 s intervals between 1 and 3 min after placing the cover over the ring. The instruments were calibrated twice daily in the field. Fluxes of N₂O and CH₄ were measured using a static chamber technique (Matson et al., 1990; Verchot et al., 1999, 2000) and using the same chamber bases as those described above. Syringe samples removed from the chamber headspace at 30 s, 10, 20 min, and 30 min were analyzed in the laboratory by gas chromatography within 48 h, using an electron capture detector (ECD) for N₂O analysis and a flame ionization detector (FID) for CH₄ analysis (Verchot et al., 1999, 2000). Fluxes were calculated from the rate of concentration change, determined by linear regression. Both dynamic and static chamber flux measurements were made on the same day and, in most cases, within 90 min of each other. Detailed discussion of spatial and temporal variation using this sampling scheme have been addressed in other publications (Verchot et al., 1999, 2000; Davidson et al., 2000b).

Statistical analyses

The surface gas flux measurements were not normally distributed, so the data were logarithmically transformed before analysis of variance. In the case of CH₄ and N₂O and NO, where negative fluxes were observed, a constant (5 CH₄, 2 for N₂O, and 0.1 for NO) was added to all fluxes to make the values positive before logarithmic transformations.

A repeated measures design was used to test the effects of plot, year, season, and their interactions. The data were aggregated to a seasonal mean (wet and dry seasons) for each year, from the dry season of 1998 to the wet season of 2005. Plot was a grouping variable; year and season were considered as two repeated trial factors. Because there were pretreatment differences in...
CO₂ and NO fluxes between the two plots (Davidson et al., 2004), the between-subjects test of plot effects is not an adequate test of the throughfall exclusion treatment. Rather, we examined the within-subjects interactions of plot, year, and season across the pretreatment (1998–1999), treatment (2000–2004), and posttreatment (2004–2005) periods to analyze the response to the throughfall exclusion manipulation.

Data were aggregated across treatment years (2000–2004) to derive average annual flux estimates for each individual flux chamber. During this period, 13 wet season measurements and 10 dry season measurements were averaged to derive a seasonal mean. Each season is about 6 months long, so the seasonal means were weighted equally to derive an average annual flux estimate. After calculating an annual flux for each chamber, the mean and 95% confidence interval was calculated for the 18 chambers within each treatment plot. Hence, temporal variation was addressed in the repeated measures analysis, while the error terms of the annual estimates reflect only spatial heterogeneity.

Results

Nitrous oxide
Fluxes of N₂O were marginally significantly higher \((P = 0.04)\) in the exclusion plot before the start of the exclusion treatment (Davidson et al., 2004). Fluxes of N₂O increased during the wet season in the control plot in every year except the drought year of 2003, but the throughfall exclusion treatment effectively inhibited this wet season increase (Fig. 2a). This season-by-year-by-treatment effect was significant in the repeated measures analysis of all data, where the within-subjects effects of year, season, and all two-way and three-way interactions were significant (Table 1). After the exclusion treatment ended and the natural throughfall was permitted back in the treatment plot in the wet season of 2005, there was no significant difference in N₂O emissions between plots.

Nitric oxide
Fluxes of NO were slightly higher in the treatment plot than in the control plot in 1998 and 1999, before initiation of the throughfall exclusion treatment (Fig. 2b). Although the difference was modest, the effect was statistically significant \((P < 0.01)\), and we attributed it to pre-existing differences between the plots of unknown origin (Davidson et al., 2004). This same pattern was maintained through the first three wet seasons of the exclusion experiment, which initially led us to conclude that the exclusion treatment had had no significant effect on NO emissions. However, the NO emissions in the exclusion plot began to increase relative to the control plot in December 2002 and continued to remain elevated through 2004 (Fig. 2b). This year-by-treatment effect was significant, as were all but one of the interaction terms (Table 1). After the exclusion treatment ended and the natural throughfall was permitted back in the treatment plot in the wet season of 2005, there was no significant difference in NO emissions between plots.
Fluxes of CO₂ were not significantly different ($P > 0.05$) in exclusion and treatment plots before the start of the exclusion treatment, but diverged after the throughfall exclusion began (Fig. 2c). The control plot was a net sink of CH₄ to the atmosphere in all wet seasons except the drought year of 2003. In contrast, the exclusion plot remained a net sink for atmospheric CH₄ throughout the years of the exclusion treatment. The differences between treatments were generally larger during the wet season. This season-by-year-by-treatment effect was significant in the repeated measures analysis of all data, where the within-subjects effects of year, season, and all interaction terms but one were significant (Table 1). After the exclusion treatment ended and the natural throughfall was permitted back in the treatment plot in the wet season of 2005, there was no significant difference in CH₄ emissions between plots, both being a net source of atmospheric CH₄ in that wet season (Fig. 2c).

Carbon dioxide

Fluxes of CO₂ were slightly higher in the treatment plot than in the control plot in 1998 and 1999, before initiation of the throughfall exclusion treatment (Fig. 2d), and the effect was statistically significant ($P < 0.01$; Davidson et al., 2004). Although there was subsequently a significant treatment-by-year interaction, the effect of the exclusion treatment was not consistent among years or seasons, and the treatment-by-year-by-season interaction was not significant (Table 1). When large pulses were measured, as in February 2000, April 2003, and August 2004, which were probably related with recent wetting events, they tended to be higher in the control plots (Fig. 2d). On the other hand, the exclusion plot had somewhat higher CO₂ efflux rates on most of the other dates during the exclusion treatment years. These differences in apparent treatment effects across time nearly completely cancelled, resulting in nearly identical estimates of annual CO₂ efflux from the two plots (Table 2). After the exclusion treatment ended and the natural throughfall was permitted back in the treatment plot in the wet season of 2005, there was no significant difference in CO₂ fluxes between plots.

Correlations with VWC

Qualitatively, the observed responses to variation in VWC did not change from those reported by Davidson et al. (2004), but an additional 3 years of measurements permits some distinction between responses in treatment and control plots. As previously reported, there remained no relationship between VWC of the top 30 cm soil and CO₂ (Fig. 3a), except perhaps a weak indication of the highest fluxes at intermediate water contents. In contrast to CO₂, NO fluxes were negatively correlated with VWC (Fig. 3b), N₂O and CH₄ fluxes were positively correlated with VWC (Fig. 3c and d), and the ratio of N₂O:NO fluxes was positively correlated with VWC (Fig. 3e). The slope for the VWC–NO regression is steeper in the exclusion plot than in the control plot (Fig. 3b) and is steeper that we previously reported for the earlier combined dataset (Davidson et al., 2004). We speculate that there may have been a change in substrate availability to nitrifying bacteria, thus enhancing NO emissions at low water content. Similarly, the VWC–N₂O regression slope is less steep for the exclusion plot than the control plot. Although N₂O emissions were generally lower in the exclusion plot compared with the control plot on most dates (Fig. 2a), comparing N₂O emissions at common VWC values reveals that N₂O emissions were somewhat higher in the exclusion plot compared with the control plot when VWC was < 0.30 cm3 cm$^{-3}$ (Fig. 3c).

Table 1

<table>
<thead>
<tr>
<th>Effect</th>
<th>N₂O</th>
<th>NO</th>
<th>CH₄</th>
<th>CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot</td>
<td>0.516</td>
<td><0.001</td>
<td><0.001</td>
<td>0.229</td>
</tr>
<tr>
<td>Year</td>
<td><0.001</td>
<td><0.001</td>
<td>0.039</td>
<td><0.001</td>
</tr>
<tr>
<td>Year × Plot</td>
<td>0.040</td>
<td><0.001</td>
<td>0.013</td>
<td><0.001</td>
</tr>
<tr>
<td>Season</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td>0.878</td>
</tr>
<tr>
<td>Season × Plot</td>
<td><0.001</td>
<td>0.331</td>
<td>0.507</td>
<td>0.060</td>
</tr>
<tr>
<td>Year × Season</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Year × Season × Plot</td>
<td><0.001</td>
<td><0.001</td>
<td>0.012</td>
<td>0.650</td>
</tr>
</tbody>
</table>

The ‘plot’ effect is the between-subject effect of the throughfall exclusion treatment, which was initiated in 2000. The others are within-subject effects. Values < 0.05 are highlighted in bold.

Table 2

<table>
<thead>
<tr>
<th></th>
<th>Exclusion</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ (Mg C ha$^{-1}$)</td>
<td>12.8 ± 1.0</td>
<td>12.8 ± 1.3</td>
</tr>
<tr>
<td>NO (kg N ha$^{-1}$)</td>
<td>2.8 ± 0.7</td>
<td>0.8 ± 0.2</td>
</tr>
<tr>
<td>N₂O (kg N ha$^{-1}$)</td>
<td>1.4 ± 0.2</td>
<td>2.1 ± 0.7</td>
</tr>
<tr>
<td>CH₄ (kg CH₄ ha$^{-1}$)</td>
<td>−4.9 ± 1.0</td>
<td>−1.6 ± 0.9</td>
</tr>
</tbody>
</table>

The error terms represent the 95% confidence interval derived from analysis of spatial heterogeneity among the 18 flux chambers per study plot.
is consistent with increased NO and N₂O production by nitrifying bacteria under relatively dry conditions in the exclusion plot. The positive correlation between VWC and CH₄ fluxes is significant only for the control plot, because the range of VWC in the exclusion plot was too narrow to include many periods of high VWC and net CH₄ emissions. The graphs in Fig. 3 demonstrate that the exclusion treatments shifted the VWC toward the drier end of the gradient, thus increasing CH₄ consumption, decreasing production of N₂O and CH₄, and increasing the production of NO.

Annual fluxes

The addition of data from 2003 and 2004 has not changed the direction of the throughfall exclusion effect on annual flux estimates compared with our previous estimates (Davidson et al., 2004), although the magnitudes differ slightly. The differences in N₂O and CH₄ fluxes between plots were diminished during the drought year of 2003, which lowered slightly the differences in average annual emissions between treatments. The exclusion plot had 33% lower average annual N₂O emissions and three times higher average annual CH₄ uptake rates compared with the control plot (Table 2). The appearance of a treatment effect on NO emissions in 2003 and 2004 increased the difference between treatment plots to a factor of 3.5. The average annual CO₂ efflux rates are somewhat higher than previously reported, but there continues to be no difference between treatments.

Discussion

Extending our measurements into 2005 revealed four new results. First, a treatment effect on NO emissions emerged during the third year of the throughfall exclusion treatment, coinciding with a natural drought year. An increase in NO emissions with drought was initially hypothesized, because dry soil conditions tend to favor NO emissions over N₂O emissions (Firestone & Davidson, 1989; Davidson et al., 2000a), but it apparently required very dry conditions resulting from 3 years of exclusion and a natural drought (Fig. 1a and b), before that effect was observed. It is possible that an increase in N availability to nitrifying bacteria may have occurred by the third year of drought treatment, increasing NO, and to a lesser extent, N₂O emissions under dry soil conditions. The fine texture of this soil also favors N₂O emissions, so the drought conditions may need to be severe before NO emissions are favored in this soil.

Second, a natural drought in 2003 nearly eliminated the usual wet season increase in N₂O emissions and net CH₄ production in the control plot, so that the exclusion treatment effect was not observed in that year. This result emphasizes the need for multi-year observations to understand both natural interannual variability and how that natural variation affects manipulation experiments.

Third, the recovery of N₂O and CH₄ fluxes in the exclusion treatment plot to rates similar to the control plot in 2005 is striking. Once natural throughfall was allowed back into the exclusion treatment plot, the N₂O and CH₄ fluxes increased during the wet season to
about the same magnitude as observed in the control plots. This result reinforces our earlier conclusion, that the dominant effect of the drought manipulation on trace gas emissions was mediated by its short-term effects on soil aeration rather than longer-term effects on carbon and nitrogen substrate supply. Once the soil was adequately rewetted (Fig. 1b), the anaerobic processes of denitrification and methanogenesis in soil microsites resumed in the treatment plot in 2005, demonstrating that the effect of throughfall exclusion was quickly reversible. This result does not preclude the possibility of more profound changes in nutrient cycling processes that could affect substrate supply in a longer experiment or under a sustained change in climate, but they were not observed during this 5-year manipulation. In contrast, significant changes in plant phenology (Brando et al., 2006), hydraulic redistribution of soil water (Oliveira et al., 2005), and tree mortality (Nepstad et al., 2007) were observed.

Fourth, the curious lack of a consistent exclusion treatment effect on soil CO$_2$ efflux can now be interpreted in the light of other carbon cycling responses of the forest. Throughfall exclusion could be hypothesized to provoke numerous changes in C cycling processes, such as reduced litterfall due to less foliar production by stressed trees, reduced heterotrophic respiration in the litter layer and mineral soil due to drought stress or substrate limitation of heterotrophs (Davidson et al., 2000b, 2006; Saleska et al., 2003), increased allocation of C to fine roots to explore for deep water resources (Nepstad et al., 1994), and increased root mortality and subsequent decomposition due to tree mortality (Brando et al., 2008).

Brando et al. (2008) reported that litterfall in this throughfall exclusion experiment was initially somewhat higher in the exclusion plot (7.3 Mg ha$^{-1}$ yr$^{-1}$) compared with the control plot (6.4 Mg ha$^{-1}$ yr$^{-1}$) in 2000, which is consistent with our observation of slightly higher pretreatment CO$_2$ efflux in the exclusion plot. Subsequently, there was a significant year-by-year trend interaction for litterfall, with the rates in the control plot showing no consistent trend among years, but a modestly declining litterfall rate in the exclusion plot. The largest difference was observed in 2003, when litterfall had declined to 5.1 Mg ha$^{-1}$ yr$^{-1}$ in the exclusion plot and was 6.7 Mg ha$^{-1}$ yr$^{-1}$ in the control plot. The greatest tree mortality was mostly among large trees with diameter at breast height >20 cm in the exclusion plots in 2003 (Nepstad et al., 2007; Brando et al., 2008). Interestingly, the smaller trees in the exclusion plot appeared to be released by the mortality of the larger trees and began growing more rapidly in 2004 and 2005, which was accompanied by an increase in litterfall in the exclusion plot back up to 6.1 Mg ha$^{-1}$ yr$^{-1}$ in 2004 and 2005 (Brando et al., 2008). Although the observed modest reduction in litterfall in the exclusion plot between 2000 and 2003 was statistically significant, Brando et al. (2008) calculated that by far the largest effect of the throughfall exclusion on aboveground net primary productivity was reduced stem increment rather than litter production. They concluded that allocation of resources to leaves had priority over woody stems under drought stress. Of course, soil CO$_2$ efflux is also affected by the allocation of C belowground. Brando et al. (2008) also found no effect of the drought treatment on the radiocarbon content of the soil surface CO$_2$ efflux, indicating that the mean age of the respired carbon had not changed and suggesting that belowground C allocation may not have been significantly affected by the throughfall exclusion treatment. The absence of large, persistent effects on litterfall and the unchanged radiocarbon content of soil CO$_2$ are consistent with our finding of no significant effect of the exclusion manipulation on annual soil CO$_2$ efflux.

Our results contrast with those of Sotta et al. (2007), who reported an average annual reduction of 22% of soil CO$_2$ efflux in a similar 2-year throughfall exclusion experiment located at the Caxuiana National Forest. These authors attributed the difference in the observed soil respiration response to drought treatment between our two studies to differences in soil texture and rooting depth. Whereas the Tapajos soil is 60–80% clay, the Caxuiana soil is 70–95% sand. Roots extend to 10 m or more at Tapajos, but are rare below 5 m at Caxuiana. Drought stress for both decomposers and plants may be more easily provoked in the more shallowly rooted sandy soil at Caxuiana. Soil CO$_2$ production at Tapajos may be more buffered from drought because of more options for trees to tolerate dry periods, including changes in rooting depths to access a larger rooting volume of soil water resources.

Conclusion

This throughfall exclusion experiment has demonstrated that emissions of NO, N$_2$O, and CH$_4$ from Amazonian forest soils are sensitive to changing climate. The exclusion manipulation, which is similar to the reduction in rainfall experienced during severe El Niño events, lowered annual N$_2$O emissions by about 33% and increased rates of NO production and CH$_4$ consumption by a factor of about 3. No consistent treatment effect was detected for soil CO$_2$ efflux. Once natural throughfall was permitted back into the treatment plot, differences between plots disappeared. The responses of these microbial processes after five rainy seasons of the exclusion treatment, followed by 1 year
of recovery with natural throughfall, indicate a quickly reversible effect of soil aeration on the balance of gaseous production and consumption via nitrification, denitrification, methanogenesis, and methanotrophy. Longer-term drought effects, which might include more profound changes in C and N substrate supply for these microbial processes, probably require significant change in vegetation cover, which could be a decadal process.

Acknowledgements

This research was supported by grant nos. NCC5-332, NCC5-686, NCC5-700, and NNG06GE88A of NASA’s Terrestrial Ecology Program as part of the Large-scale Biosphere-Atmosphere (LBA) project and by NSF grants DEB 0213011. We thank Elizabeth Belk (WHRC), Renata Tuma Saba’ (CNPq DTI Bolsista), and Elisana B. dos Santos (IPAM) for assistance with trace gas measurements, David Ray (WHRC) for assistance with soil water data, Cláudio J. Reis de Carvalho (Embrapa Amazônia Oriental) for hosting our gas chromatography laboratory in Belém, Ricardo Figueiredo (Embrapa Amazônia Oriental) and Paulo Moutinho (IPAM) for institutional logistical support, Patrick Crill and Michael Keller (University of New Hampshire) and Raimundo Cosme de Oliveira Junior (Embrapa Amazônia Oriental) for use of their GCs in Santarém, and CNPq’s Programa de Bolsas RHAE for the LBA project for supporting Renata Saba.

References

