R E P O R T S

Polyplody and the Evolution of Gender Dimorphism in Plants
J. S. Miller* and D. L. Venable

Gender dimorphism and polyplody are important evolutionary transitions that have evolved repeatedly in many plant families. We show that gender dimorphism in North American Lycium (Solanaceae) has evolved in polyplody, self-compatible taxa whose closest relatives are cosexual, self-incompatible diploids. This has occurred independently in South African Lycium. We present additional evidence for this pathway to gender dimorphism from 12 genera involving at least 20 independent evolutionary events. We propose that polyplody is a trigger of unrecognised importance for the evolution of gender dimorphism, which operates by disrupting self-incompatibility and leading to inbreeding depression. Subsequently, male sterile mutants invade and increase because they are unable to inbreed.

The evolution of sex and sexual systems is a central issue of evolutionary biology, and the deployment of sexual function into one or more morphs is a core concern (1, 2). Gender dimorphism (the presence of two sexual morphs in a population) occurs in only ~10% of angiosperm ancestors in nearly half of the angiosperm families, making it an important evolutionary trend (3). Several pathways for the evolution of gender dimorphism have been advanced (3–5). The mechanistic explanations for the transition from cosexuality to gender dimorphism have concentrated on overcoming the inherent 50% fitness loss of single-sexed nuclear gene mutants arising in cosexual populations (6, 7). These mechanisms fall into two broad nonexclusive categories: elimination of inbreeding depression (IBD) by male sterile mutants (i.e., selection for outcrossing) and compensatory resource reallocation following the loss of one sexual function. Whereas both factors are thought to be important in the evolution of gender dimorphism, the outcrossing scenarios have more empirical support and are widely advanced as the principal mechanism favoring gender dimorphism (6). Because inbreeding avoidance is not important for self-incompatible taxa, the prominence accorded the inbreeding avoidance mechanism has led to a search for a correlation between the occurrence of separate sexes and an evolutionary background of self-compatibility (9, 10).

Polyplody disrupts self-incompatibility in many species (11, 12). The tendency for polyploids to express self-compatibility [due to genetic interactions in diploid pollen grains (13)] allows for the establishment of otherwise reproductively isolated polyploids (14). Because polyploids buffer the effects of selfing more effectively than diploids (11, 15, 16), the resultant polyplloid plants may be shielded initially

The references and notes are as follows:

19. The pore water samples were squeezed from the sediments at shipboard following standard procedures and immediately sealed in glass bottles. Chloride was determined on shipboard by argentometric titration, and iodide and bromide concentrations were determined by the iodometric method and spectrophotometry (10).
22. Iodine was extracted from the samples and precipitated as AgI, with standard procedures (11). About 1 mg of iodine is needed to produce a reliable 129I/131I ratio with AMS. The samples yielded between 1 and 2 mg of AgI each, which was used for the isotope determination at the PrimeLab AMS system, Purdue University (26). As usual for isotopic dating systems, uncertainty in input ratio and the decay constant were not considered in the age calculations.
23. Determination of sediment and pore water age: Assume a constant rate of sediment deposition and steady state porosity profile \(P(x) = (P_s - P_w) \exp(-L-x) + P_w \). Derive expression for sediment age \(A_s(x) \) [flux of sediment in kg m\(^{-2}\) year\(^{-1}\)] = \(W(x) \) \(\times \) \(\Gamma(x) \) \(\times \) \(S(x) \) \(\times \) \(m^{\text{year}} \). The age of sediment particles \(\tau_{s} \) is

\[
\tau_{s} = \int_{0}^{L} \frac{W(x) \times \Gamma(x)}{S(x)} \, dx
\]

Derive the expression for pore water age \(A_w(x) \) [flux of pore water in kg m\(^{-2}\) year\(^{-1}\)] = \(V(x) \) \(\times \) \(S(x) \) \(\times \) \(m \). The age of pore water \(\tau_{w} \) is

\[
\tau_{w} = \int_{0}^{L} \frac{V(x) \times \Gamma(x)}{S(x)} \, dx
\]

The variables are as follows: \(P_s \), porosity at sediment surface (0.72); \(P_w \), porosity at “fully compacted” sediment (0.43); \(L \), radial extent of pore water (1000 kg m\(^{-3}\)); \(R_s \), density of particles (2500 kg m\(^{-3}\)); \(s \), rate of particle deposition at sediment surface (0.130 kg m\(^{-3}\) year\(^{-1}\)); \(P(x) \), porosity profile; \(S(x) \), “sedimentosity” profile; \(V(x) \), rate of pore water flow relative to sediment surface (m year\(^{-1}\)); \(W(x) \), rate of particle burial relative to sediment surface (m year\(^{-1}\)). Boundary conditions for sediment ages are derived from biostatigraphic data for Blake Ridge (27).

24. The addition of fissogenic 129I is described in the following equation:

\[
N_{129} = (N_{129} \times \lambda_{129} \times [I/E] \times (1 - \exp(-\lambda_{129} \times t)))/\lambda_{129}
\]

where \(N_{129} \) is the concentration of fissogenic 129I in the pore waters, \(N_{129} \) is the concentration of 238U in the sediments, \(\lambda_{129} \) is the decay constant of 129I, and \(t \) is the residence time of the pore water in the sediments. The following values were used for this calculation [see (71) for source references]: \(\lambda_{129} = 8.5 \times 10^{-17} \text{ year}^{-1}; \quad N_Y = 0.0003; \quad R_s = 2.4 \text{ kg/l}; \quad E/P = 2; \quad \text{and} \lambda_{129} = 4.4 \times 10^{-2} \text{ year}^{-1}. \)

28. We thank D. Elmore and P. Sharma for the 129I/131I determinations and J. Gieskes and R. Hesse for helpful comments. U.F. acknowledges the hospitality provided by the Beppo Geothermal Institute, Kyoto University, which allowed the timely completion of this report. The research was supported in part by NSF grant OCE-9907024 to U.F.

1 May 2000; accepted 20 July 2000

www.sciencemag.org SCIENCE VOL 289 29 SEPTEMBER 2000 2335
from the detrimental effects of IBD. However, theoretical (17) and empirical (18, 19) results indicate that equilibrium IBD under some conditions can be quite severe in polyploids. Specifically, for certain sets of dominance coefficients, IBD can vary non-monotonically with the selfing rate and even increase with increased selfing rates (17). In the face of strong IBD, male gametes from outcrossing taxa often invade because they produce no pollen and cannot self (Fig. 1). This potential connection between self-incompatibility, polyploidy, and gender dimorphism has not been widely appreciated [but, see (20)].

Polyplody is associated with self-fertility and gender dimorphism in North American Lycium (wolfberry), as depicted in Fig. 2 (21). Gender dimorphism has evolved once among North American Lycium and occurs in three species that possess separate female and perfect-flowered (i.e., hermaphroditic) individuals. All other Lycium in North America (~18 species) are cosexual, with all individuals producing perfect flowers. Chromosome counts are available for 10 of the cosexual North American Lycium: all are diploid with n = 12 (22). The three dimorphic species, in contrast, are tetraploids or octoploids with n = 24 or 48 (22). Gametophytic self-incompatibility is well documented in Solanaceae (12, 23, 24). Allelic diversity at the self-incompatibility (S) gene in Lycium andersonii, a close relative of the dimorphic taxa (Fig. 2), has been estimated at >35 alleles, and coalescence analysis has shown that the S-allele lineages in this species are older than the genus as a whole, indicating that self-incompatibility is the basal condition for Lycium (23). Results of experimental pollinations reveal that, for three cosexual species, outcross pollen results in a 14- to 27-fold increase in seed production per flower, as compared to selfing (Fig. 3). Furthermore, pollen tube growth following outcrossing was more successful than that following selfing (Fig. 4), and evidence of the self-incompatibility reaction (i.e., thickened, irregular callose deposition and wandering pollen tube growth) was observed in self-pollinations. These results indicate that gametophytic self-incompatibility, not the theoretically expected self-compatibility, is the immediate ancestral breeding system of the dimorphic Lycium. Fruit and seed set levels in the hermaphroditic morphs of the dimorphic polyploids are too low to be used to test for self-compatibility. Yet, pollen tube growth following selfing and outcrossing of these plants is equivalent, suggesting that self-incompatibility has broken down (Fig. 4), as shown in other Solanaceae (12, 25). It is difficult to document the level of IBD in the hermaphroditic morphs of polyploid, dimorphic Lycium species because of low levels of fruit and seed set. However, flowers of Lycium do not possess other outcrossing mechanisms such as spatial or temporal segregation of gender function that would reduce selfing once self-incompatibility was disrupted. Also, selfing among different flowers on the same plant is likely to be high because of large floral displays (>500 flowers per plant are often open simultaneously).

Gender dimorphism in South African Lycium is evolutionarily independent of and morphologically distinct from that in North America (26, 27). As in North America, all six dimorphic species are polyploids (n = 24 or 36), whereas all of the cosexual species (19 species) with chromosome counts are diploid with n = 12 (27) and are undoubtedly self-incompatible, based on molecular studies of S-allele variation (23).

Polyplody is widespread in plants (14, 28). If it leads to selfing and gender dimorphism even occasionally, it should be possible to find examples in the literature of polyploid, self-compatible, dimorphic species that are associ-
ated with diploid, self-incompatible, cosexual ancestors. We have identified 12 genera in which polyploid, dimorphic taxa have evolved from diploid, cosexual ancestors at least 20 times (Table 1). In Lycium, Chionographis, Rubus, Fragaria, Pachyvera, and Echinocereus, the diploid taxa are cosexual and self-incompatible, whereas dimorphic taxa are polyploid and self-compatible. The relationship between polyploidy and dimorphism is further illustrated in Potentilla, Mammillaria, Astilbe, Labordia, Thalictrum, and Boteleoua, in which diploid taxa are cosexual and polyploid taxa are dimorphic. Data on compatibility systems are either incomplete or lacking for these groups but consistent with the proposed scenario where present.

A survey of 37 related pairs of taxa for which there is both compatibility information and variation in ploidy shows that a breakdown of incompatibility has occurred in 70% of polyploids associated with diploid self-incompatible plants (29). This suggests that the first step in the proposed scenario (Fig. 1) is widespread. Moreover, recent molecular work (13) and the experimental observation that induced polyploidy breaks down self-incompatibility (11-13, 25) argue for a causal role of polyploidy in the breakdown of incompatibility. Interestingly, of the subset showing the predicted pattern (i.e., diploids, self-incompatible and polyploids, self-compatible), 92% are in families known to have gametophytic self-incompatibility. Thus, the scenario outlined here may occur more often in species with gametophytically controlled self-incompatibility. Another test of the proposed scenario would be to determine compatibility for the genera listed in Table 1 for which information concerning compatibility is incomplete. In these cases, we predict that diploid taxa will be self-incompatible and polyploids will be self-compatible.

Though many polyploid self-compatible species may remain self-compatible cosexuals, selection for outbreeding will still exist in many such species and may frequently result in the evolution of new outcrossing mechanisms not present in the self-incompatible ancestors. The net results are likely to be various: purging and remaining predominant selfers, new spatial or temporal mechanisms that reduce selfing, or (as documented here) gender dimorphism. Determining the relative frequency of these outcomes following the breakdown of self-incompatibility would further reveal the scope of the proposed scenario.

Gender dimorphism has evolved by other avenues, and there are other patterns of gender dimorphism in relation to polyploidy and compatibility, yet these do not necessarily constitute counter evidence to the proposed scenario. For example, diploid Emepetrum nigrum (Empetraceae) is dimorphic, whereas polyploid E. hermaphroditum is cosexual. Here, dimorphism evolved at the diploid level under an alternative evolutionary scenario, and the sex-determining mechanism appears to have broken down with polyploidy (11). Thus, polyploidy can break down dimorphism as well as trigger it. However, because gender dimorphism evolved on a diploid background before polyploidization, the importance of polyploidy as a trigger for gender dimorphism in self-incompatible, diploid, cosexual populations cannot be tested in such systems. Similarly, in Kosoma flavilí (Campanulaceae), diploid populations are either cosexual or dimorphic, whereas polyploid populations are exclusively cosexual (30). Apparently, both dioecious diploids and cosexual polyploids evolved from cosexual diploid populations. However, the diploids are self-compatible, so polyploidy is not a necessary trigger for gender dimorphism. No association is expected in such cases.

Baker (9) first suggested that dioecy and self-incompatibility are unlikely to exist togeth-

Table 1. Taxa in which gender dimorphism is associated with polyploidy. For each genus listed, the first line refers to the gender dimorphic taxa, and the second line refers to the presumed ancestral states of the dimorphic taxa. A fully referenced table is available as supplementary information (29). SC, self-compatible; SI, self-incompatible; P, polyploid; PF, cosexual plants with perfect flowers; D, diploid; ? unknown; M, monococious populations (i.e., cosexual plants with unisexual flowers). ‡ indicates that dimorphic taxa cannot be self-pollinated to test for self-compatibility.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Gender expression</th>
<th>Ploidy</th>
<th>SC/SI</th>
<th>Number of times evolved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lycium (Solanaceae)</td>
<td>Gynodioecious (three species); cosexual (six species)</td>
<td>P</td>
<td>SC</td>
<td>≥2</td>
</tr>
<tr>
<td></td>
<td>Cosexual (PF)†</td>
<td>D (1 P)</td>
<td>D-SI (P-?)</td>
<td>≥1</td>
</tr>
<tr>
<td>Chionographis japonica (Liliaceae)</td>
<td>Usually gynodioecious (three subspecies)</td>
<td>P</td>
<td>SC</td>
<td>≥1</td>
</tr>
<tr>
<td></td>
<td>Cosexual (PF)‡</td>
<td>D</td>
<td>SI</td>
<td>≥3</td>
</tr>
<tr>
<td>Rubus (Rosaceae)</td>
<td>Dioecious (five species)</td>
<td>P</td>
<td>SC</td>
<td>≥3</td>
</tr>
<tr>
<td></td>
<td>Cosexual (PF)†</td>
<td>D or P</td>
<td>D-SI, P-SC</td>
<td>≥3</td>
</tr>
<tr>
<td>Fragaria (Rosaceae)</td>
<td>Gynodioecious or dioecious (seven species)</td>
<td>P</td>
<td>SC or $</td>
<td>≥3</td>
</tr>
<tr>
<td></td>
<td>Cosexual (PF, M)†</td>
<td>D</td>
<td>SI or SC</td>
<td>≥3</td>
</tr>
<tr>
<td>Pachyvera (Cactaceae)</td>
<td>Trioeceous (one species)</td>
<td>P</td>
<td>SC</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cosexual (PF)†</td>
<td>D</td>
<td>SI</td>
<td>1</td>
</tr>
<tr>
<td>Echinocereus (Cactaceae)</td>
<td>Functionally dioecious [one species with a few cosexual (PF) populations]</td>
<td>P</td>
<td>SC</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cosexual (PF)†</td>
<td>D or P</td>
<td>D-SI</td>
<td>≥2</td>
</tr>
<tr>
<td>Potentilla fruticosa (Rosaceae)</td>
<td>Cosexual populations</td>
<td>P</td>
<td>§</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cosexual (PF) populations</td>
<td>P</td>
<td>SI</td>
<td>1</td>
</tr>
<tr>
<td>Mammillaria (Cactaceae)</td>
<td>Gynodioecious (one species)</td>
<td>P</td>
<td>?</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cosexual (PF)†</td>
<td>D or P</td>
<td>D-SI, P-SI</td>
<td>≥2</td>
</tr>
<tr>
<td>Astilbe (Saxifragaceae)</td>
<td>Gynodioecious (one species)</td>
<td>P</td>
<td>SC</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cosexual (PF)†</td>
<td>D</td>
<td>?</td>
<td>1</td>
</tr>
<tr>
<td>Labordia (Geniostomaceae)</td>
<td>Dioecious (sixteen species)</td>
<td>P</td>
<td>?</td>
<td>1</td>
</tr>
<tr>
<td>Thalictrum (Ranunculaceae)</td>
<td>Cosexual (PF)†</td>
<td>D</td>
<td>Geniostoma</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>Dioecious (nine species)</td>
<td>P</td>
<td>§</td>
<td>2</td>
</tr>
<tr>
<td>Bouteloua (Poaceae)</td>
<td>Dioecious (eight species)</td>
<td>P (1 D)</td>
<td>§</td>
<td>≥3</td>
</tr>
<tr>
<td></td>
<td>Cosexual (PF, M)†</td>
<td>D or P</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

*Characteristics of the closest known relatives of the dimorphic species, based on phylegetic studies. †Characteristics of cosexual species within the genus. ‡Within-species example involving multiple populations or subspecies.
er in the same lineage because both are mechanisms to avoid inbreeding. The obvious corollary, that gender dimorphism is more likely to evolve in groups that are self-compatible, has often been discussed (9, 10, 20). Yet, if scenarios like that proposed here are common, gender dimorphism may frequently evolve in lineages with self-incompatibility without neglecting inbreeding avoidance as a selective mechanism. The pathway presented here reinforces the importance of inbreeding avoidance in the evolution of gender dimorphism and could explain why a negative association between gender dimorphism and self-incompatibility has been difficult to find (10). Although gender dimorphism has been widely studied, many aspects are not fully understood, and new scenarios, such as the one presented here, surely await discovery.

References and Notes
21. The internal transcribed spacers (ITS-1 and ITS-2) and the 5.8S cistron of nuclear ribosomal DNA were sequenced for 13 North American Lycium species, two Grabowskia species, and Jaborosa integrifolia following work by J. Wen and E. A. Zimmer [Mol. Phylogenet. Evol. 6, 167 (1996)]. Sequences for Grabowskia glauca and four Nolana species were obtained from GenBank (accession numbers AB019954, AB019294, AB019311, AB019971, AB019314, AB019974, AB019966, AB019306, AB019289, and AB019949), and a sequence for Atropa belladonna was supplied by R. C. O’Meara. Sequences were aligned manually and combined with 29 morphological characters, producing a matrix of 733 characters, of which 17% were potentially phylogenetically informative. Phylogenies were inferred from 1000 random-addition sequence replicates with tree bisection reconnection (TBR) branch swapping using heuristic parsimony in PAUP* [D. A. Swofford, Phylogenetic Analysis Using Parsimony (*and Other Methods), version 4.0b3a (Sinauer Associates, Sunderland, MA, 2000)]. Five hundred bootstrap searches, each with 50 random-addition sequence replicates and TBR branch swapping, were performed to assess the internal consistency of the data set. DNA sequences of this study are under GenBank accession numbers AF238981 through AF238995.

Cytosolic calcium oscillations control signaling in animal cells, whereas in plants their importance remains largely unknown. In wild-type Arabidopsis guard cells abscisic acid, oxidative stress, cold, and external calcium elicited cytosolic calcium oscillations of differing amplitudes and frequencies and induced stomatal closure. In guard cells of the V-ATPase mutant det3, external calcium and oxidative stress elicited prolonged calcium increases, which did not oscillate, and stomatal closure was abolished. Conversely, cold and abscisic acid elicited calcium oscillations in det3, and stomatal closure occurred normally. Moreover, in det3 guard cells, experimentally imposing external calcium-induced oscillations rescued stomatal closure. These data provide genetic evidence that stimulus-specific calcium oscillations are necessary for stomatal closure.

Alteration of Stimulus-Specific Guard Cell Calcium Oscillations and Stomatal Closing in Arabidopsis det3 Mutant

Gethyn J. Allen,† Sarah P. Chu,‡ Karin Schumacher,†† Chad T. Shimazaki,§ Dionne Vafeados,† Andrea Kemper,§ Scott D. Hawke,§ Gary Tallman,§ Roger Y. Tsien,§ Jeffrey F. Harper,§ Joanne Chory,‡ Julian I. Schroeder*§

Cytosolic calcium ([Ca2+]cyt) oscillations are an integral component of cell signaling, and the frequency, amplitude, and spatial localization of oscillations control the efficiency and specificity of cellular responses in animals (1–3). In plant cells [Ca2+]cyt oscillations are induced by multiple stimuli (4–9); however, it remains unknown whether oscillations are required to elicit physiological responses in plants. Here we show that the Arabidopsis det3 mutant abolishes guard cell [Ca2+]cyt oscillations and stomatal closure in response to oxidative stress and extracellular calcium ([Ca2+]ext), but not to abscisic acid (ABA) and cold. Restoring [Ca2+]cyt-induced calcium oscillations in det3 guard cells rescued stomatal closure, suggesting that [Ca2+]cyt oscillations are essential for stomatal closure.

Stomatal closure follows increases in guard cell [Ca2+]cyt (10), and endomembrane calcium transport contributes to the [Ca2+]cyt signal (7, 11–13). Genetic impairment of endomembrane calcium transport could therefore provide a direct approach for dissecting [Ca2+]cyt signals. The de-etiolated 3 (det3) Arabidopsis mutant has reduced endomembrane energization owing to a 60% reduction