1. (15) The \textit{lgt} gene in dragons codes for an enzyme required for the synthesis of lighter fluid. Dragons are diploid. Suppose that you cloned both copies of this gene from all of the 50 dragons still alive (they are an endangered species) and sequenced a 20-bp segment of each gene. You found three different sequences, as follows:

<table>
<thead>
<tr>
<th>sequence type</th>
<th>sequence</th>
<th>number of genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CATTTGCAATGATGACGGGCA</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>GATTTGCAAATGTTCACGGGCA</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>CATTTGCAAACGATCACGGCCA</td>
<td>40</td>
</tr>
</tbody>
</table>

(a) The base pair polymorphism at the eleventh site is nonsynonymous and can be detected by electrophoresis, with T giving a slower-migrating protein than A. Calculate the expected heterozygosity if this difference is selectively neutral.

(b) Assuming that \(N_e = N \) and that the differences between the \textit{lgt} alleles are selectively neutral, use your answer to estimate the mutation rate for electrophoretic variants; be sure to give the units of your answer.

(c) What would you predict about the expected heterozygosity of this region if a new mutation that is very strongly advantageous should occur in position 10?
2. (30) Below are scaled phylogenetic trees of the \textit{rbcL} and \textit{Rrn18} genes of three species of plants. The \textit{rbcL} gene resides in the plastid and codes for a major protein required for photosynthesis. The \textit{Rrn18} gene is the nuclear gene that codes for the 18S rRNA. Species B and C are photosynthetic; species A is not. The \textit{rbcL} gene of species A has a frameshift mutation in the fourth codon; the \textit{rbcL} genes of species B and C have no frameshift mutations. There are two striking features of these trees: (i) the branch leading to species A is much longer than the other branches in the \textit{rbcL} tree; and (ii) all the branches are shorter in the \textit{Rrn18} tree.

(a) Circle the coalescent of species B and C in the \textit{Rrn18} tree.

(b) Could the accelerated evolution in the \textit{rbcL} gene of A be due, partly or entirely, to a change in mutation rate? random drift? selection? Explain each answer briefly.

(c) Could the lower rate of evolution of the \textit{Rrn18} gene, relative to the \textit{rbcL} gene, be due, partly or entirely, to a change in mutation rate? random drift? selection? Explain each answer briefly.
random drift

selection

(d) Suppose that you made a new tree based only on the third codon position of \textit{rbcL} and found the tree below, in which the species A branch is much shorter and all the rest of the branches are slightly shorter. Would this change your answer to (b), and if so, how and why?

![Tree Diagram]

3. (15) The following two sequences were obtained from two species of dragons found on Procyon IV.

green dragon \ AATGCTTGCTGGG\-GCGCAATTA
blue dragon \ ATTGCTG\-CTGAGTGCGCAGTT-

(a) Calculate the sequence difference (to four decimal places).

Answer:__

(b) Calculate the sequence divergence (to four decimal places).

Answer:__
(c) The rate of sequence evolution in these dragons is 10^{-8} substitutions per bp per year. Approximately how long ago was the most recent common ancestor of these two species?

Answer: __

4. (5) Using one or more runs of the driftworm simulations, how could you simulate the difference between evolution in a gene and in a pseudogene? (Answer in one sentence.)

5. (10) *Salmonella* is a bacterial human pathogen of great medical importance. *Salmonella* cells may be sensitive to the antibiotic chloramphenicol (genotype *cap*-s) or resistant (*cap*-r). If one isolates cells from many different sources that have not been exposed to chloramphenicol, most of them will be *cap*-s, even though such cells mutate to *cap*-r with easily detectable frequency. But since the widespread use of chloramphenicol began, patients with *Salmonella* infections are increasingly found to be infected with *cap*-r cells. Based on these observations, if the fitness of *cap*-s is 1, will the selection coefficient s of the *cap*-r mutants be > 0, 0, or < 0:

(a) in the presence of chloramphenicol? ______

(b) in the absence of chloramphenicol? ______

6. (10) Species become endangered when their populations drop to very low values. Suppose the effective population size of a diploid organism decreases from 10^6 to 10^3 and stays at the new low value long enough to reach equilibrium between mutation and drift.

(a) What happens to neutral genetic diversity, as measured by expected heterozygosity or nucleotide diversity, in this species? Use an appropriate equation to give a quantitative (although approximate) answer.

(b) What happens to the effectiveness of natural selection in this species, i.e. to the extent to which selection can eliminate detrimental mutations and fix advantageous mutations? Explain your answer.
7. (15) If \(K_N \) is the rate of nonsynonymous substitution in a gene, and \(K_S \) is the rate of synonymous substitution, the ratio \(K_N / K_S \) be > 1, 1, or < 1:

(a) in a pseudogene? __________

(b) in a functional gene? __________

(c) at a site where an advantageous mutation has recently been fixed? __________