What is an Invasive Species?

• Plants, animals, & microbes (usually) not native to a region
• Introduced accidentally or intentionally
• Out-compete native species for available resources, reproduce prolifically, and dominate regions and ecosystems.
• Difficult to control w/o native predators

• *Remember: not all invasive species are exotic, and not all exotic species are invasive!*
Historical Context in North America

• Originally viewed as welcome additions to landscape!

• Domestic plants and animals

• Ornamental plants and animals to remind settlers of home

Current state

• More than 6,500 species of established, self-sustaining populations of non-native animals, plants, and microbes in the U.S.

• result from: increased movements of people, transportation of products, and reduced travel time between destinations
How serious of a problem?

- Costs due to invasives in US ~ $125-140 billion / year.
- 25% of US agriculture GNP lost to foreign pests
- ~ 1/2 of species listed as threatened or endangered under the E.S.A. are at risk due to competition with or predation by invasive spp.
- Considered by biologists to be the 2nd greatest threat to biodiversity

Ecological Impacts of Invasive Species

1. Direct interactions with native spp:
 - Competition
 - Predation

2. Impact ecosystem function

3. Spread of disease

4. Hybridization with natives
Ecological Impacts

1. Direct interactions with native species:

 Competition and Predation
 - Compete for light, space, nutrients, pollinators, etc.
 - Community has evolved without defense mechanisms to non-native predators

Purple Loosestrife
- Aggressive wetland invader
- Produce up to 2.7 million seeds per plant yearly
- Spreads across approximately 480,000 additional hectares of wetlands / year
- Local fauna do NOT eat
- Did not become invasive for first 100 years in U.S.
Kudzu Vine
- Fast-growing vine introduced to prevent soil erosion
- Major pest in the southern US.
- Grows up to 1 foot/day
- Costs $50 million/year in lost farm & timber production

Brown Tree Snake
- Originating in the South Pacific and Australia
- Extirpated 10 of 13 native bird species, 6 of 12 native lizard species, and 2 of 3 bat species on the island of Guam
- Now found on Hawaii
Domestic Cats

- Originated from wild cats in the middle east
- Hunt native birds, lizards, small mammals
- Carry infectious diseases that can be transferred to native animals, domestic livestock, and humans
- VERY significant impact on islands where native birds have not evolved to fear predators

Insect Invasions

- Argentine Ants
- Fire Ants
- Africanized Honey bees
- Asian long-horned beetle
Ecological Impacts

2. Change to ecosystem function
 • Biogeochemistry (ex: change in soil type)
 • Biophysical processes (water uptake and transpiration)
 • Trophic structure (food webs)
 • Disturbance regime (ex: fire)

Grasses in the Sonoran Desert
 • Buffel grass from Africa is the most rapidly spreading invasive in Arizona
 • Promotes fire and re-sprout easily
 • Decreases water filtration into the soil
 • Fire is NOT a natural part of the saguaro-palo verde plant communities
 • (Kills tortoises too 😞)
 • Invasion facilitated by open space in desert: entire structure of communities changes
Ecological Impacts

3. **Disease**: invasive species may carry diseases to which native species are not adapted.
 - Avian malaria
 - Chestnut blight
 - Dutch Elm disease
 - Small pox… ?

Chestnut Blight

- Deciduous forests of eastern NA
- Made up to 40% of overstory trees
- In early 1900s fungal disease noticed
- Fungus originated in nursery stock from Asia
- Many animal species depend on chestnuts; 7 spp. of moths and butterflies now extinct
Ecological Impacts

4. Hybridization

- introduced species may not be genetically separated from a native species, and can proceed to hybridize. Ex: introduced trout.
 - may mean the end of a genetically unique local population.

Invasives on Islands
Example: Hawaii

- 50% of flora considered invasive. Prior to human colonization over 90% of flora was endemic.
- All reptiles and amphibians are introduced.
- Over 100 species of birds introduced (26 extinct endemics and 31 endangered)
- Mass extinctions are in progress due to habitat destruction and species invasions.
What types of species invade U.S.?

- **Plants**: ~5000 plant species (17,000 native species);
 - **Mammals**: ~20 species (dogs, cats, horses, burros, cattle, sheep, pigs, goats, deer, European rat, Asiatic rat, house mouse, European rabbit, Indian mongoose
 - **Birds**: ~ 97 of ~1,000 species; chickens, pigeon; starling, sparrow
 - **Amphibians and Reptiles**: ~53 species
 - **Fish**: ~ 138 fish (sport fishing)
 - **Arthropods**: ~4,500 land arthropod species (~50% in Hawaii)
 - **Earthworms**: 11 species
 - **Mollusca**: ~ 88 species (zebra mussel, ship worm, etc)
 - **~100 aquatic arthropods and worms**
 - **Parasites**: fungal pests; pathogens

Not all Introduced Species Are Successful

The “Tens Rule”:

- 10% of non-native species become established

- 10% of those become ecological problems (invasives!!)
Characteristics of Invasive Species

- Widespread distribution (AND abundance)
- Great dispersal ability or migratory tendencies
- Great reproductive capability; being r-selected
- Early maturation; short generation time
- Small body size
- Edge species
- Affinity with humans (anthrophilic)
- Capacity for clonal/asexual reproduction

Characteristics of Invaded Habitats

- Disturbance
- Low diversity
- Absence of predators of invading species
- Absence of native species morphologically or ecologically similar to invader
- Absence of predators or grazers in evolutionary history (naive prey)
Accidental Introductions

- Seeds on livestock
- Disease on agricultural and forestry plants
- Aquatic organisms in ship ballast waters from international shipping
- Canals that connect formerly disconnected oceans, seas, and lakes

Zebra Mussels

- Fresh water mussels native to Black Sea
- Transported to Great Lakes via ballast water from a trans-oceanic vessel.
- Down to Gulf of Mexico and into Connecticut
- Cover large areas of lakes & rivers, prevent establishment of native species, clog pipes.
Escaped Introductions

- Agricultural species

- Ornamental species

aquarium fish, residential trees, European birds

Intentional Introductions

- Planted for erosion control, forage, forestry

- Introduced for hunting, fishing

Arundo donax: Giant Reed
Control and Management Options

- **Inspection/restrictions** on travel and trade
- **Genetic breeding**: selectively breed hosts for resistance against exotic diseases OR changes in genome of pests so that they are sterile or less vigorous
- **Eradication**: physically remove plants/animals
- **Herbicides**: chemically kill (plants)
- **Exotic pests**: bring in biological control agent
Salt Cedar (Tamarisk)

- Introduced as an ornamental and for windbreaks
- Invades riparian areas
- Accumulates salts in tissues which alters soil composition
- Uses lots of water!
- Provides poor wildlife habitat
- Forms monocultures
- Decreases biodiversity

Management of Salt Cedar

- **Manual removal**
 - Costly and takes a LONG time
- **Chemical/herbicide**
 - Usually used in conjunction with manual removal; expensive, risk of harming other species
- **Restore flood regime**
- **Biological control**
 - Possible more effective and less costly solution???
Biological Control (biocontrol)

- Definition: the use of natural enemies to reduce damage caused by pest population.

- Based on principles of population dynamics- animals are adapted to interact with other species, which keep each other ‘in check’

Biological Control

- Used successfully in the U.S. since 1889

- About 420 invasive spp. have been controlled successfully with biocontrol

- Benefit/cost ratio can be very high: the derived benefit of controlling a pest divided by the total cost of the biological control project.
Why introduce insect herbivores?

- Salt cedar has little/no natural enemies in new habitat
- This gives it a competitive advantage over native species
- Introduction of herbivores from native habitat will help control it, slow reproduction, and better integrate plant into the environment

Diorhabda elongata

- Beetle co-evolved with salt cedar in China.
- Salt cedar is only plant insect feeds or reproduces on
- Has special adaptations to be a specialist on salt cedar
Salt Cedar defoliation: NV

The Big Question: What if the biocontrol agent itself becomes invasive??

- Beetle was tested for 13 years in quarantine before release to be sure it was not going to feed on native plants
- Very small risks of beetle changing hosts are outweighed by benefits
- Tamarisk has no close relatives in N.A.
Biocontrol Success Stories

• Prickly Pear Cactus and moth borer in Australia (1926)
• Vedalia Beetle in California; saved citrus industry from scales: 1890s
• Cassava mealybug in Africa with a wasp from South America (1980s)

Benefits

• Roughly one in five of all recent biological control projects have led to economically significant control of the target
• Virtually no continuing expenses
• Yearly benefits in the U.S. are estimated to exceed $180 million
Biocontrol Horror Stories

• Cane Toads in Australia: introduced to control Cane grub
 Cane Toads: An Unnatural History 1987

• Rosy Wolfsnail in Hawaii: introduced to control Giant African Snail. Prefers small native spp. (15-20 native snails extinct)

• Indian Mongoose

Biocontrol and catastrophic mistakes

• Take home message:
 • Control agent must be a specialist on target!
 • Generalist vertebrates = bad biocontrol

• Some of worst invaders today were originally introduced for control of other invasive species

• What works in one site, won’t work in others
Conclusion

• Invasives are a threat to human health, biodiversity and ecosystem functions

• Need to put an ECONOMIC value on loss of species, habitats, and ecosystem functions as a result of invasive species

• Most important solution is early detection and PREVENTION!

• Education