1. Circulation
2. Heart Muscle
3. Heart Function
4. Diving Response

Reading of Text:
Start with Chapters 23 & 24
(skip the invert material if you like)
Next week we will discuss 21 & 22
(read Chapter 20 quickly)
EXAM THURSDAY, Paper Drafts today
1. Draw a graph that represents the length-tension curve.
 3 points

2. Explain, mechanistically, why the curve above has the shape it does.
 2 points

3. Describe two characteristics that differ between muscle fiber types.
 2 points

4. Explain what ryanodine and dihydropyridine receptors are and what they do.
 3 points

Include Name and Lab time
Cardiac Muscle (the other striated muscle)
- Small muscle fiber cells with only one nucleus
- Individual fibers are connected to neighbors electronically via gap junctions

- Two types of fibers:
 1. **Contractile** (similar to skeletal muscle)
 2. **Conducting** (including pacemaker cells)
 - Do not contract, but transmit electrical signal

- Cardiac contraction **myogenic** (arises within heart)
 - Can be influenced by autonomic nervous system (alpha, beta adrenoreceptors increase [Ca2+])

- Long-lasting AP with long plateau phase, and long refractory period - why?
Cardiac Muscle (the other striated muscle)

- Intracellular calcium from SR and across plasma membrane (unlike in skeletal)

- Dihydropyridine receptors in T-tubules are voltage-activated calcium channels

- Ryanodine receptors then release more calcium from SR into the cytoplasm (calcium-induced calcium release)

- During relaxation, Calcium pumped actively back into SR and out across plasma membrane

Vertebrate Circulation (too big for diffusion!)

Heart is main propulsive organ

Arterial system
 - distributes blood
 - regulates pressure

Capillaries
 - transfer between blood and tissues

Venous system
 - return blood to heart
 - storage reservoir

Divided into Central and Peripheral
Focus on Mammalian Circulation with some exceptions
Gravity and BP

FIGURE 3.15 Arterial and venous pressures in a man as he assumes different postures. The figures indicate the pressures at various points in relation to the pressure in the right atrium of the heart. (1 mm Hg = 0.13 kPa).

[Modified from Burton 1972]

Knut Schmidt_Nielsen 1997

Circulatory Roles and Components

Valves control direction of blood flow

Smooth muscle controls diameter of peripheral vessels, thereby altering resistance and flow to different tissues.
Circulatory Roles and Components

- Gases (CO₂, O₂)
- Nutrients
- Waste
- Hormones
- Antibodies
- Salts
- etc.

-Temperature Regulation

-Blood volume 5-10% of body volume

Development of Terrestrial Circulatory System:

gills simple (and linear):
1. Blood goes to gills
2. O₂-rich blood goes to tissues
3. O₂-poor blood goes to heart
4. Blood gets pumped back to gills

lungs more complex because get 2 circuits in parallel:
1. Pulmonary circuit (lower pressure)
2. Systemic circuit (higher pressure)
Spongy vs. Compact Myocardium

Fish Circulation through gills
Addition of lungs more complicated

Water vs. air

Mammalian Circulation

Two parallel closed circuits:

1. Pulmonary (lower press.)
2. Systemic

Note venous reservoir

(Eckert, 12-3)
Tissue Beds in Parallel, not Series

All cells within 2-3 cells of a capillary
Can control amount of flow to each tissue independently

In addition to Heart,

Blood also moved via
1. Elastic recoil of arteries
2. Squeezing of vessels during body movement
3. Peristaltic contractions of smooth muscle in vessels
Non-Mammalian Heart Examples:

Amphibians and Reptiles (except crocodilians) with 3 chambers (= one ventricle, two atria)

- incomplete ventricular septum
- BUT separate rich and poor blood
- AND alter pressure in systemic and pulmonary
- able to alter flow to systemic or pulmonary circuit

Cardiovascular System

Amphibians:

only vertebrates where O_2 poor blood to skin
(as well as to lungs)

adults with paired pulmocutaneous arteries divide into two branches
1. Pulmonary
2. Cutaneous (to flanks and dorsum)

skin provides 20-90% O_2 uptake
30-100% CO_2 release
Cardiovascular System

FROG Heart

- conus arteriosus w/ spiral valve
- trabeculae (create channels)
- role of Tb and HR

Cardiovascular System

Reptilian Heart (not crocs)

(no conus arteriosus, no spiral valve)

- 2 systemic arches and one pulmonary artery from single ventricle
- BUT, single ventricle functions as THREE
- 3-chambered heart anatomically
- 5-chambered heart functionally

- RAA = right aortic arch
- LAA = left aortic arch
- PA = pulmonary artery

Muscular Ridge

- RA = right atrium
- LA = left atrium
Reptilian and Amphibian Circulation

Cardiac Shunts (in 3-chambered heart)

1. temperature regulation
2. breath holding (diving, turtle in shell, inflated lizards)
3. stabilize O_2 content of blood when breathe intermittently

R to L

O_2 poor to systemic via aortic arches
(short delay between valves opening)

L to R

O_2 rich to pulmonary artery
(longer delay between valves opening)
Mammalian fetus:

Ductus arteriosus (R -> L shunt, lung bypass)
- pulmonary artery to systemic arch
- when lung inflate resistance down (pulm)
- when lose placental circ. resistance up (syst)
- closes at birth

Foramen ovale (interatrial shunt R -> L)
- hole in wall between atria
- closes at birth

Bird chick:

Chorioallantois
= network of vessels under shell surface

Interatrial septum
- R -> L shunt, lung bypass
- closes after hatching
Electrical Activity in the Mammalian Heart

Influenced by autonomic NS

Cardiac Cells electronically linked by Gap Junctions

(except from atrial to ventricular cells...)

Vander 2001

Sherwood 1997
Electrical Activity in the Mammalian Heart

Recall AP and refractory period differences...

(Eckert, 12-7)
Types of Cardiac Cells:

A. **Contractile**

B. **Conducting**
 - autorhythmic
 - SA node
 - AV node
 - fast-conducting
 - Internodal
 - Interatrial
 - Bundle of His
 - Purkinje
 - Etc.
Types of Cardiac Cells:

A. Contractile

B. Conducting
 - 1° autorhythmic
 SA node
 AV node
 - 1° fast-conducting
 Internodal
 Interatrial
 Bundle of His
 Purkinje
 Etc.

Pacemakers:

- Normally HR driven by SA node
- Others are Latent pacemakers
- Called Ectopic pacemaker when node other than SA driving HR

Sherwood 1997

Figure 9.12 Different Autorhythmic Rates

(a) Recording from autorhythmic cell A. (b) Recording from autorhythmic cell B. Because cell A has a faster rate of depolarization, it reaches threshold more quickly than cell B and therefore generates action potentials more rapidly.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Action Potentials Per Minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA node (normal pacemaker)</td>
<td>70–80</td>
</tr>
<tr>
<td>AV node</td>
<td>60–70</td>
</tr>
<tr>
<td>Bundle of His and Purkinje fibers</td>
<td>20–60</td>
</tr>
</tbody>
</table>

*In the presence of parasympathetic tone (see p. 206).

Sherwood 1997
The Heart Rate Train

Autorhythmic Cardiac Muscle (e.g. SA node)

- Transient Ca\(^{2+}\) channels
- K\(^+\), Na\(^+\)

Which way would you alter channel permeabilities to speed or slow HR??

9-11, Sherwood 1997
Contractile Cardiac Muscle

Ca$^{2+}$ current maintains plateau

(a) Electrocardiogram

(Eckert, 12-8)

P = Atrial depolarization

Q,R,S = Ventricular depolarization

T = Ventricular repolarization

(Q,R,S masks atrial repolarization)
Wiggers Diagram

Valves open/close where pressure curves cross

760 mmHg = 1 atm = 9.8 m blood

1:2

14-25, Vander 2001
Figure 9.22 Ventricular Filling Profiles during Normal and Rapid Heart Rates: Because much of ventricular filling occurs early in diastole during the rapid-filling phase, filling is not seriously impaired when diastolic time is reduced as a result of an increase in heart rate.

Figure 9.26 Frank-Starling Curve: The cardiac muscle fiber's length, which is determined by the extent of venous filling, is normally less than the optimal length for developing maximal tension. Therefore, an increase in end-diastolic volume (i.e., an increase in venous return) by moving the cardiac muscle fiber length closer to optimal length, increases the contractile tension of the fibers on the next systole. A stronger contraction expels more blood. Thus, as more blood is returned to the heart and the end-diastolic volume increases, the heart automatically pumps out a correspondingly larger stroke volume.

Figure 14-30 Effects on stroke volume of stimulating the sympathetic nerves to the heart. Stroke volume is increased at any given end-diastolic volume; that is, the sympathetic stimulation has increased ventricular contractility.

Atrial Kick

Highlighted text

Sherwood 1997

Sherwood 1997

Frank-Starling Curve

Sysotle = Ventricular Emptying

_Diastole = Ventricular Filling (rest)
Cardiac Output:

\[CO = \text{cardiac output} \ (\text{ml/min from 1 ventricle}) \]

\[SV = \text{stroke volume} \ (\text{ml/beat from 1 ventricle}) \]

\[= \text{EDV} - \text{ESV} \ (\text{end-diastolic - end-systolic volume}) \]

\[HR = \text{heart rate} \ (\text{beats/min}) \]

\[\text{MABP} = CO \times TPR \]

\[\text{MABP} = DP + \frac{1}{3}(SP-DP) \]

- Heart can utilize different types of energy sources (unlike brain)
HR control

Parasympathetic vs. Sympathetic

Gravity and BP

FIGURE 3.15 Arterial and venous pressures in a man as he assumes different postures. The figures indicate the pressures at various points in relation to the pressure in the right atrium of the heart. (1 mm Hg = 0.13 kPa).
[Modified from Burton 1972]

Knut Schmidt_Nielsen 1997
Peripheral Circulation

- Endothelium lining vessels
- Middle layer with smooth muscle (esp. arteries)
- Outer fibrous layer

Capillaries with ~ only Endothelium
Peripheral Circulation

Compliance vs. Elasticity

~ Veins vs. Arteries

Volume Reservoir vs. Pressure Reservoir
Volume Reservoir vs. Pressure Reservoir

(Eckert, 12-27)

~Constant P and Q at Capillaries!

Venous System

- **low pressure** (11 mm Hg or less)
- thin walled veins with **less muscle**
- more **compliant** and less elastic
- **valves**
- blood moved by **skeletal muscle** (and smooth)
- **breathing** creates vacuum (low pressure) in chest to aid blood flow to heart