Vertebrate Physiology 437

1. Seminars and Legible Paper
2. Important molecules, physical and chemical properties (CH3)
4. Membranes (CH4)
5. We are a bit behind already!
Friday Physiology Seminars

See course website for link to schedule

PHYSIOLOGY

T. Philip Malan, M.D., PH.D.
Associate Professor
Department of Anesthesiology
University of Arizona
College of Medicine

“Cannabinoids for the Treatment of Pain”

Friday, September 5, 2003 @ 11 a.m.
Room 5403, Arizona Health Sciences Center

Also available on-line at:
http://www.physio.arizona.edu/seminars
(Refreshments served @ 10:30 a.m.)
Biological Molecules

- **Lipids**

- **saturated -> cholesterol**
 No double bonds in side chains (saturated with hydrogens) ~solid at room temperature

- **high energy/ gram**

- **phospholipids**

Table 3-3 The energy content of the three major categories of foodstuffs

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Energy content (kcal·g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates</td>
<td>4.0</td>
</tr>
<tr>
<td>Proteins</td>
<td>4.5</td>
</tr>
<tr>
<td>Fats</td>
<td>9.5</td>
</tr>
</tbody>
</table>

Randall et al. 2002
Biological Molecules

- **Carbohydrates**

- \((CH_2O)_n\)

- monosaccharides, (disaccharides)

- **glucose** is common metabolic currency from plants to animals

- **glycogen** (storage)
Biological Molecules

- **Proteins**
- linear chains of amino acids
- 20 common alpha-amino acids
- amphoteric
- peptide bonds
- polypeptide chains
- 1°, 2°, 3°, 4°

(a) General structure of alpha-amino acids

(b) Structure of a tetrapeptide

3-17 Randall et al. 2002
Biological Molecules

- **Proteins**
- Linear chains of amino acids
- $1^\circ, 2^\circ, 3^\circ, 4^\circ$

- H bonds
- Van der Waals
- Covalent

-HSPs
-Stress Proteins
Biological Molecules

- **Nucleic Acids**
 - pyrimidine (T,C) or
 - purine (A,G)

- Phosphodiester linkages between adjacent

- transcription (nucleus)
 DNA -> mRNA

- translation (ribosome)
 mRNA -> tRNA -> protein (genetic code)
Mid-Lecture Question (MLQ)

How is pH important to the biological activity of ionized groups such as amino acids (and their side chains) and proteins (including enzymes)?

Part Deux:

How do buffers and homeostasis play a role in the above topic?
Mid-Lecture Question (MLQ)

How is pH important to the biological activity of ionized groups such as amino acids (and their side chains) and proteins (including enzymes)?

- Amphoteric with acidic carboxyl groups and basic amino groups
- Enzyme binding involves electrostatic interactions
- pH can alter ionization state of molecules and side groups
- Biological activity relies on narrow pH range
Mid-Lecture Question (MLQ)

- Enzyme function has generally *evolved* within narrow pH range
- **Buffers** tolerate addition of acids and bases without changing pH much
- **Weak acids** (HA) and their dissociated **salts** (A⁻) work best
- Examples include **bicarbonates**, **phosphates**, **amino acids**, **peptides/proteins**
- Best buffering when **pH = pK'** (~dissociation constant)

How do **buffers** and **homeostasis** play a role in the above topic?
Electrical Properties (p. 49-51 in text)

- Important for many biological processes, especially **nerve** transmission and **muscle** contraction

- **Current** flows in direction of **cation** (+), by convention

3-8 Randall et al. 2002
Electrical Properties (p. 49-51 in text)

I = current (amperes A)
V = electromotive force (voltage V or mV)
R = resistance (ohms)

V = electromotive force (voltage V or mV)
 potential difference (relative charge difference)

ohm’s law: I = V/R

All else being equal, how does size (x-sec area) of wire or neuron affect current?
Energetics (sun is origin)
- metabolism
- energy/ATP
- building blocks
- small, controlled oxidation steps

- 1st law – energy neither created or destroyed
- 2nd law – entropy will reign

- free energy ΔG
 (energy available to do useful work)
 - ΔG
 - exergonic (liberate heat)
 + ΔG
 - endergonic (uphill)
Energetics

- **exergonic** (liberate heat) \(- \Delta G\)
- **endergonic** (uphill) \(+ \Delta G\)

\[
\begin{align*}
\text{Phosphoenolpyruvate} & : \Delta G^\circ = -14.8 \text{ kcal} \cdot \text{mol}^{-1} \\
1,3-\text{Diphosphoglycerate} & : \Delta G^\circ = -11.8 \text{ kcal} \cdot \text{mol}^{-1} \\
\text{Phosphocreatine} & : \Delta G^\circ = -10.3 \text{ kcal} \cdot \text{mol}^{-1}
\end{align*}
\]
Metabolic Production of ATP

- Oxidation (lose e-) / Reduction (gain e-)

- Phosphorylation
 steps for harnessing energy

- Energy Transfer
 electron transport chain

O₂ is ultimate electron acceptor

3-39 Randall et al. 2002

3-40 Randall et al. 2002
Metabolism

IN:

fat, CHO, protein, (O₂)

OUT:

CO₂, H₂₀, urea

Food oxidized to CO₂ and H₂₀ in presence of O₂
Metabolism

\[\text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O} \]
\[\Delta G = -686 \text{ kcal/mol} \text{ (e.g., bomb calorimeter)} \]

\[\text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 + 38\text{Pi} + 38\text{ADP} \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O} + 38\text{ATP} \]
\[\Delta G = -420 \text{ kcal/mol} \text{ (lost as heat), therefore } 266 \text{ kcal stored in 38 ATP (40-60% efficient)} \]

anaerobic 2% (20x less efficient)
Energetics

- Activation Energy
- Enzymes
- CATALYSTS
- Temperature
- \(\uparrow \) Reaction Rates

(a) Enzyme activity versus temperature

3-30 Randall et al. 2002

3-27 Randall et al. 2002

3-26 Randall et al. 2002
Enzymes

- pH, temperature
- Cofactors (often vitamins)

Randall et al. 2002

<table>
<thead>
<tr>
<th>Metal ion</th>
<th>Some enzymes requiring this cofactor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca$^{2+}$</td>
<td>Phosphodiesterase</td>
</tr>
<tr>
<td></td>
<td>Protein kinase C</td>
</tr>
<tr>
<td>Cu$^{2+}$ (Cu$^+$)</td>
<td>Cytochrome oxidase</td>
</tr>
<tr>
<td></td>
<td>Tyrosinase</td>
</tr>
<tr>
<td>Fe$^{2+}$ or Fe$^{3+}$</td>
<td>Catalase</td>
</tr>
<tr>
<td></td>
<td>Cytochromes</td>
</tr>
<tr>
<td></td>
<td>Ferredoxin</td>
</tr>
<tr>
<td></td>
<td>Peroxidase</td>
</tr>
<tr>
<td>K$^+$</td>
<td>Pyruvate phosphokinase (also requires Mg$^{2+}$)</td>
</tr>
<tr>
<td>Mg$^{2+}$</td>
<td>Phosphohydrolases</td>
</tr>
<tr>
<td>Mn$^{2+}$</td>
<td>Arginase</td>
</tr>
<tr>
<td></td>
<td>Phosphotransferases</td>
</tr>
<tr>
<td>Na$^+$</td>
<td>Plasma membrane ATPase (also requires K$^+$ and Mg$^{2+}$)</td>
</tr>
<tr>
<td>Zn$^{2+}$</td>
<td>Alcohol dehydrogenase</td>
</tr>
<tr>
<td></td>
<td>Carbonic anhydrase</td>
</tr>
<tr>
<td></td>
<td>Carboxypeptidase</td>
</tr>
</tbody>
</table>

Source: Adapted from Nelson and Cox, 2000.
Enzymes

- Regulation
 1 - Competitive
 2 - Allosteric
Enzymes

- Rates of Rxn \((V)\)

- MM constant \((K_m)\)

- Michaelis-Menten equation

\[
V_0 = \frac{V_{max}[S]}{K_m + [S]}
\]
Enzymes
- Lineweaver-Burk Plot

\[
\frac{1}{V_0} = \frac{K_m}{V_{max}[S]} + \frac{1}{V_{max}}
\]

Lineweaver-Burk plot

- Intercept \(= - \frac{1}{K_m} \)
- Slope \(= - \frac{K_m}{V_{max}} \)

3-33 Randall et al. 2002

3-34 Randall et al. 2002
Membrane Structure and Composition

1. Phospholipids
 - bilayer, fluidity

2. Cholesterol
 - stabilizer

3. Proteins
 - integral
 - peripheral

4-2 Randall et al. 2002
Membrane Structure and Composition

Protein Structure

Fluid Mosaic Model
- Type of lipids
- Length of tails
- Amount of cholesterol
- Amount and type of protein
- "Sided"
Mid-Lecture Question (MLQ)

How do scientists come up with the protein conformations such as pictured here:

4-5 Randall et al. 2002

5-25 nm thick
Movement Across Membranes - Background

Diffusion (net movement)

(a) Semipermeable membrane

I II

Individual fluxes

- $J_{I \rightarrow II}$
- $J_{II \rightarrow I}$

(b) Net flux

- $J_{I \rightarrow II}$ minus $J_{II \rightarrow I}$

Movement of solutes

-Diffusion coefficient, Partition coefficient, Thickness

Viscosity, size, dissolved components

4-8 Randall et al. 2002
Movement Across Membranes - Background

Osmosis

Initially, there is net movement of water from I to II.

At equilibrium, there is no net movement of water.

-Osmotic Pressure; Hydrostatic Pressure

4-9 Randall et al. 2002
Movement Across Membranes - Background

Osmosis

<table>
<thead>
<tr>
<th>Sucrose (%)</th>
<th>Osmotic pressure (atm)</th>
<th>Ratio of osmotic pressure to percentage of sucrose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>2</td>
<td>1.34</td>
<td>0.67</td>
</tr>
<tr>
<td>4</td>
<td>2.74</td>
<td>0.68</td>
</tr>
<tr>
<td>6</td>
<td>4.10</td>
<td>0.68</td>
</tr>
</tbody>
</table>

* Results were obtained by Pfeffer (1877) in experimental measurements.

-Osmotic Pressure; Hydrostatic Pressure
Movement Across Membranes

Iso
Hypo osmotic
Hyper

In specific tissues and cells:

Iso
Hypo tonic
Hyper

4-14 Randall et al. 2002
Movement Across Membranes

Electrochemical Gradient

Electrical gradient

Concentration gradient

Electrochemical equilibrium

Equilibrium potential \((E_x \text{ in mV}) \)

when \([X]\) gradient = electrical gradient
Osmotic Properties of Cells and Relative Ion Concentrations

[Diagram showing ion concentrations inside and outside the cell.]

- Exterior: [Na⁺] = 120 mM, [K⁺] = 2.5, [Ca²⁺] = 2.0, [Cl⁻] = 120

[Note: A⁻ = molar equivalent of negative charges carried by other molecules and ions.]

Normally, Na⁺ levels are maintained at equilibrium as ion passively enters the cell and is pumped back out.

When inhibitor blocks active transport of Na⁺ outward, the intracellular concentration of Na⁺ rises, and water enters osmotically, increasing cell volume.

Eventually, increasing cell volume causes cell to burst.

4-12 Randall et al. 2002

4-16 Randall et al. 2002
Movement Across Membranes

1. Passive Diffusion (= simple diffusion)
2. Passive Transport (= facilitated diffusion)
3. Active Transport

Transport (pore or carrier) may be **highly selective**
End
3x5 card

Discussion section: 9 (=morning) or 2 (=afternoon) on Wed.

Name (and what you prefer to be called)
- distinguishing characteristics

Email address

Year in school

Major

Relevant courses taken, or research projects, etc.

Why are you taking this course?

Hold onto card til photo